| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826 | /** * This program logs data from the Arduino ADC to a binary file. * * Samples are logged at regular intervals. Each Sample consists of the ADC * values for the analog pins defined in the PIN_LIST array.  The pins numbers * may be in any order. * * Edit the configuration constants below to set the sample pins, sample rate, * and other configuration values. * * If your SD card has a long write latency, it may be necessary to use * slower sample rates.  Using a Mega Arduino helps overcome latency * problems since 13 512 byte buffers will be used. * * Each 512 byte data block in the file has a four byte header followed by up * to 508 bytes of data. (508 values in 8-bit mode or 254 values in 10-bit mode) * Each block contains an integral number of samples with unused space at the * end of the block. * * Data is written to the file using a SD multiple block write command. */#ifdef __AVR__#include <SPI.h>#include "SdFat.h"#include "FreeStack.h"#include "AnalogBinLogger.h"//------------------------------------------------------------------------------// Analog pin number list for a sample.  Pins may be in any order and pin// numbers may be repeated.const uint8_t PIN_LIST[] = {0, 1, 2, 3, 4};//------------------------------------------------------------------------------// Sample rate in samples per second.const float SAMPLE_RATE = 5000;  // Must be 0.25 or greater.// The interval between samples in seconds, SAMPLE_INTERVAL, may be set to a// constant instead of being calculated from SAMPLE_RATE.  SAMPLE_RATE is not// used in the code below.  For example, setting SAMPLE_INTERVAL = 2.0e-4// will result in a 200 microsecond sample interval.const float SAMPLE_INTERVAL = 1.0/SAMPLE_RATE;// Setting ROUND_SAMPLE_INTERVAL non-zero will cause the sample interval to// be rounded to a a multiple of the ADC clock period and will reduce sample// time jitter.#define ROUND_SAMPLE_INTERVAL 1//------------------------------------------------------------------------------// ADC clock rate.// The ADC clock rate is normally calculated from the pin count and sample// interval.  The calculation attempts to use the lowest possible ADC clock// rate.//// You can select an ADC clock rate by defining the symbol ADC_PRESCALER to// one of these values.  You must choose an appropriate ADC clock rate for// your sample interval.// #define ADC_PRESCALER 7 // F_CPU/128 125 kHz on an Uno// #define ADC_PRESCALER 6 // F_CPU/64  250 kHz on an Uno// #define ADC_PRESCALER 5 // F_CPU/32  500 kHz on an Uno// #define ADC_PRESCALER 4 // F_CPU/16 1000 kHz on an Uno// #define ADC_PRESCALER 3 // F_CPU/8  2000 kHz on an Uno (8-bit mode only)//------------------------------------------------------------------------------// Reference voltage.  See the processor data-sheet for reference details.// uint8_t const ADC_REF = 0; // External Reference AREF pin.uint8_t const ADC_REF = (1 << REFS0);  // Vcc Reference.// uint8_t const ADC_REF = (1 << REFS1);  // Internal 1.1 (only 644 1284P Mega)// uint8_t const ADC_REF = (1 << REFS1) | (1 << REFS0);  // Internal 1.1 or 2.56//------------------------------------------------------------------------------// File definitions.//// Maximum file size in blocks.// The program creates a contiguous file with FILE_BLOCK_COUNT 512 byte blocks.// This file is flash erased using special SD commands.  The file will be// truncated if logging is stopped early.const uint32_t FILE_BLOCK_COUNT = 256000;// log file base name.  Must be six characters or less.#define FILE_BASE_NAME "analog"// Set RECORD_EIGHT_BITS non-zero to record only the high 8-bits of the ADC.#define RECORD_EIGHT_BITS 0//------------------------------------------------------------------------------// Pin definitions.//// Digital pin to indicate an error, set to -1 if not used.// The led blinks for fatal errors. The led goes on solid for SD write// overrun errors and logging continues.const int8_t ERROR_LED_PIN = 3;// SD chip select pin.const uint8_t SD_CS_PIN = SS;//------------------------------------------------------------------------------// Buffer definitions.//// The logger will use SdFat's buffer plus BUFFER_BLOCK_COUNT additional// buffers.  QUEUE_DIM must be a power of two larger than//(BUFFER_BLOCK_COUNT + 1).//#if RAMEND < 0X8FF#error Too little SRAM//#elif RAMEND < 0X10FF// Use total of two 512 byte buffers.const uint8_t BUFFER_BLOCK_COUNT = 1;// Dimension for queues of 512 byte SD blocks.const uint8_t QUEUE_DIM = 4;  // Must be a power of two!//#elif RAMEND < 0X20FF// Use total of five 512 byte buffers.const uint8_t BUFFER_BLOCK_COUNT = 4;// Dimension for queues of 512 byte SD blocks.const uint8_t QUEUE_DIM = 8;  // Must be a power of two!//#elif RAMEND < 0X40FF// Use total of 13 512 byte buffers.const uint8_t BUFFER_BLOCK_COUNT = 12;// Dimension for queues of 512 byte SD blocks.const uint8_t QUEUE_DIM = 16;  // Must be a power of two!//#else  // RAMEND// Use total of 29 512 byte buffers.const uint8_t BUFFER_BLOCK_COUNT = 28;// Dimension for queues of 512 byte SD blocks.const uint8_t QUEUE_DIM = 32;  // Must be a power of two!#endif  // RAMEND//==============================================================================// End of configuration constants.//==============================================================================// Temporary log file.  Will be deleted if a reset or power failure occurs.#define TMP_FILE_NAME "tmp_log.bin"// Size of file base name.  Must not be larger than six.const uint8_t BASE_NAME_SIZE = sizeof(FILE_BASE_NAME) - 1;// Number of analog pins to log.const uint8_t PIN_COUNT = sizeof(PIN_LIST)/sizeof(PIN_LIST[0]);// Minimum ADC clock cycles per sample intervalconst uint16_t MIN_ADC_CYCLES = 15;// Extra cpu cycles to setup ADC with more than one pin per sample.const uint16_t ISR_SETUP_ADC = PIN_COUNT > 1 ? 100 : 0;// Maximum cycles for timer0 system interrupt, millis, micros.const uint16_t ISR_TIMER0 = 160;//==============================================================================SdFat sd;SdBaseFile binFile;char binName[13] = FILE_BASE_NAME "00.bin";#if RECORD_EIGHT_BITSconst size_t SAMPLES_PER_BLOCK = DATA_DIM8/PIN_COUNT;typedef block8_t block_t;#else  // RECORD_EIGHT_BITSconst size_t SAMPLES_PER_BLOCK = DATA_DIM16/PIN_COUNT;typedef block16_t block_t;#endif // RECORD_EIGHT_BITSblock_t* emptyQueue[QUEUE_DIM];uint8_t emptyHead;uint8_t emptyTail;block_t* fullQueue[QUEUE_DIM];volatile uint8_t fullHead;  // volatile insures non-interrupt code sees changes.uint8_t fullTail;// queueNext assumes QUEUE_DIM is a power of twoinline uint8_t queueNext(uint8_t ht) {  return (ht + 1) & (QUEUE_DIM -1);}//==============================================================================// Interrupt Service Routines// Pointer to current buffer.block_t* isrBuf;// Need new buffer if true.bool isrBufNeeded = true;// overrun countuint16_t isrOver = 0;// ADC configuration for each pin.uint8_t adcmux[PIN_COUNT];uint8_t adcsra[PIN_COUNT];uint8_t adcsrb[PIN_COUNT];uint8_t adcindex = 1;// Insure no timer events are missed.volatile bool timerError = false;volatile bool timerFlag = false;//------------------------------------------------------------------------------// ADC done interrupt.ISR(ADC_vect) {  // Read ADC data.#if RECORD_EIGHT_BITS  uint8_t d = ADCH;#else  // RECORD_EIGHT_BITS  // This will access ADCL first.  uint16_t d = ADC;#endif  // RECORD_EIGHT_BITS  if (isrBufNeeded && emptyHead == emptyTail) {    // no buffers - count overrun    if (isrOver < 0XFFFF) {      isrOver++;    }    // Avoid missed timer error.    timerFlag = false;    return;  }  // Start ADC  if (PIN_COUNT > 1) {    ADMUX = adcmux[adcindex];    ADCSRB = adcsrb[adcindex];    ADCSRA = adcsra[adcindex];    if (adcindex == 0) {      timerFlag = false;    }    adcindex =  adcindex < (PIN_COUNT - 1) ? adcindex + 1 : 0;  } else {    timerFlag = false;  }  // Check for buffer needed.  if (isrBufNeeded) {    // Remove buffer from empty queue.    isrBuf = emptyQueue[emptyTail];    emptyTail = queueNext(emptyTail);    isrBuf->count = 0;    isrBuf->overrun = isrOver;    isrBufNeeded = false;  }  // Store ADC data.  isrBuf->data[isrBuf->count++] = d;  // Check for buffer full.  if (isrBuf->count >= PIN_COUNT*SAMPLES_PER_BLOCK) {    // Put buffer isrIn full queue.    uint8_t tmp = fullHead;  // Avoid extra fetch of volatile fullHead.    fullQueue[tmp] = (block_t*)isrBuf;    fullHead = queueNext(tmp);    // Set buffer needed and clear overruns.    isrBufNeeded = true;    isrOver = 0;  }}//------------------------------------------------------------------------------// timer1 interrupt to clear OCF1BISR(TIMER1_COMPB_vect) {  // Make sure ADC ISR responded to timer event.  if (timerFlag) {    timerError = true;  }  timerFlag = true;}//==============================================================================// Error messages stored in flash.#define error(msg) {sd.errorPrint(F(msg));fatalBlink();}//------------------------------------------------------------------------------//void fatalBlink() {  while (true) {    if (ERROR_LED_PIN >= 0) {      digitalWrite(ERROR_LED_PIN, HIGH);      delay(200);      digitalWrite(ERROR_LED_PIN, LOW);      delay(200);    }  }}//==============================================================================#if ADPS0 != 0 || ADPS1 != 1 || ADPS2 != 2#error unexpected ADC prescaler bits#endif//------------------------------------------------------------------------------// initialize ADC and timer1void adcInit(metadata_t* meta) {  uint8_t adps;  // prescaler bits for ADCSRA  uint32_t ticks = F_CPU*SAMPLE_INTERVAL + 0.5;  // Sample interval cpu cycles.  if (ADC_REF & ~((1 << REFS0) | (1 << REFS1))) {    error("Invalid ADC reference");  }#ifdef ADC_PRESCALER  if (ADC_PRESCALER > 7 || ADC_PRESCALER < 2) {    error("Invalid ADC prescaler");  }  adps = ADC_PRESCALER;#else  // ADC_PRESCALER  // Allow extra cpu cycles to change ADC settings if more than one pin.  int32_t adcCycles = (ticks - ISR_TIMER0)/PIN_COUNT - ISR_SETUP_ADC;  for (adps = 7; adps > 0; adps--) {    if (adcCycles >= (MIN_ADC_CYCLES << adps)) {      break;    }  }#endif  // ADC_PRESCALER  meta->adcFrequency = F_CPU >> adps;  if (meta->adcFrequency > (RECORD_EIGHT_BITS ? 2000000 : 1000000)) {    error("Sample Rate Too High");  }#if ROUND_SAMPLE_INTERVAL  // Round so interval is multiple of ADC clock.  ticks += 1 << (adps - 1);  ticks >>= adps;  ticks <<= adps;#endif  // ROUND_SAMPLE_INTERVAL  if (PIN_COUNT > sizeof(meta->pinNumber)/sizeof(meta->pinNumber[0])) {    error("Too many pins");  }  meta->pinCount = PIN_COUNT;  meta->recordEightBits = RECORD_EIGHT_BITS;  for (int i = 0; i < PIN_COUNT; i++) {    uint8_t pin = PIN_LIST[i];    if (pin >= NUM_ANALOG_INPUTS) {      error("Invalid Analog pin number");    }    meta->pinNumber[i] = pin;    // Set ADC reference and low three bits of analog pin number.    adcmux[i] = (pin & 7) | ADC_REF;    if (RECORD_EIGHT_BITS) {      adcmux[i] |= 1 << ADLAR;    }    // If this is the first pin, trigger on timer/counter 1 compare match B.    adcsrb[i] = i == 0 ? (1 << ADTS2) | (1 << ADTS0) : 0;#ifdef MUX5    if (pin > 7) {      adcsrb[i] |= (1 << MUX5);    }#endif  // MUX5    adcsra[i] = (1 << ADEN) | (1 << ADIE) | adps;    adcsra[i] |= i == 0 ? 1 << ADATE : 1 << ADSC;  }  // Setup timer1  TCCR1A = 0;  uint8_t tshift;  if (ticks < 0X10000) {    // no prescale, CTC mode    TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS10);    tshift = 0;  } else if (ticks < 0X10000*8) {    // prescale 8, CTC mode    TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11);    tshift = 3;  } else if (ticks < 0X10000*64) {    // prescale 64, CTC mode    TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11) | (1 << CS10);    tshift = 6;  } else if (ticks < 0X10000*256) {    // prescale 256, CTC mode    TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12);    tshift = 8;  } else if (ticks < 0X10000*1024) {    // prescale 1024, CTC mode    TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12) | (1 << CS10);    tshift = 10;  } else {    error("Sample Rate Too Slow");  }  // divide by prescaler  ticks >>= tshift;  // set TOP for timer reset  ICR1 = ticks - 1;  // compare for ADC start  OCR1B = 0;  // multiply by prescaler  ticks <<= tshift;  // Sample interval in CPU clock ticks.  meta->sampleInterval = ticks;  meta->cpuFrequency = F_CPU;  float sampleRate = (float)meta->cpuFrequency/meta->sampleInterval;  Serial.print(F("Sample pins:"));  for (uint8_t i = 0; i < meta->pinCount; i++) {    Serial.print(' ');    Serial.print(meta->pinNumber[i], DEC);  }  Serial.println();  Serial.print(F("ADC bits: "));  Serial.println(meta->recordEightBits ? 8 : 10);  Serial.print(F("ADC clock kHz: "));  Serial.println(meta->adcFrequency/1000);  Serial.print(F("Sample Rate: "));  Serial.println(sampleRate);  Serial.print(F("Sample interval usec: "));  Serial.println(1000000.0/sampleRate, 4);}//------------------------------------------------------------------------------// enable ADC and timer1 interruptsvoid adcStart() {  // initialize ISR  isrBufNeeded = true;  isrOver = 0;  adcindex = 1;  // Clear any pending interrupt.  ADCSRA |= 1 << ADIF;  // Setup for first pin.  ADMUX = adcmux[0];  ADCSRB = adcsrb[0];  ADCSRA = adcsra[0];  // Enable timer1 interrupts.  timerError = false;  timerFlag = false;  TCNT1 = 0;  TIFR1 = 1 << OCF1B;  TIMSK1 = 1 << OCIE1B;}//------------------------------------------------------------------------------void adcStop() {  TIMSK1 = 0;  ADCSRA = 0;}//------------------------------------------------------------------------------// Convert binary file to csv file.void binaryToCsv() {  uint8_t lastPct = 0;  block_t buf;  metadata_t* pm;  uint32_t t0 = millis();  char csvName[13];  StdioStream csvStream;  if (!binFile.isOpen()) {    Serial.println(F("No current binary file"));    return;  }  binFile.rewind();  if (binFile.read(&buf , 512) != 512) {    error("Read metadata failed");  }  // Create a new csv file.  strcpy(csvName, binName);  strcpy(&csvName[BASE_NAME_SIZE + 3], "csv");  if (!csvStream.fopen(csvName, "w")) {    error("open csvStream failed");  }  Serial.println();  Serial.print(F("Writing: "));  Serial.print(csvName);  Serial.println(F(" - type any character to stop"));  pm = (metadata_t*)&buf;  csvStream.print(F("Interval,"));  float intervalMicros = 1.0e6*pm->sampleInterval/(float)pm->cpuFrequency;  csvStream.print(intervalMicros, 4);  csvStream.println(F(",usec"));  for (uint8_t i = 0; i < pm->pinCount; i++) {    if (i) {      csvStream.putc(',');    }    csvStream.print(F("pin"));    csvStream.print(pm->pinNumber[i]);  }  csvStream.println();  uint32_t tPct = millis();  while (!Serial.available() && binFile.read(&buf, 512) == 512) {    if (buf.count == 0) {      break;    }    if (buf.overrun) {      csvStream.print(F("OVERRUN,"));      csvStream.println(buf.overrun);    }    for (uint16_t j = 0; j < buf.count; j += PIN_COUNT) {      for (uint16_t i = 0; i < PIN_COUNT; i++) {        if (i) {          csvStream.putc(',');        }        csvStream.print(buf.data[i + j]);      }      csvStream.println();    }    if ((millis() - tPct) > 1000) {      uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100);      if (pct != lastPct) {        tPct = millis();        lastPct = pct;        Serial.print(pct, DEC);        Serial.println('%');      }    }    if (Serial.available()) {      break;    }  }  csvStream.fclose();  Serial.print(F("Done: "));  Serial.print(0.001*(millis() - t0));  Serial.println(F(" Seconds"));}//------------------------------------------------------------------------------// read data file and check for overrunsvoid checkOverrun() {  bool headerPrinted = false;  block_t buf;  uint32_t bgnBlock, endBlock;  uint32_t bn = 0;  if (!binFile.isOpen()) {    Serial.println(F("No current binary file"));    return;  }  if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {    error("contiguousRange failed");  }  binFile.rewind();  Serial.println();  Serial.println(F("Checking overrun errors - type any character to stop"));  if (binFile.read(&buf , 512) != 512) {    error("Read metadata failed");  }  bn++;  while (binFile.read(&buf, 512) == 512) {    if (buf.count == 0) {      break;    }    if (buf.overrun) {      if (!headerPrinted) {        Serial.println();        Serial.println(F("Overruns:"));        Serial.println(F("fileBlockNumber,sdBlockNumber,overrunCount"));        headerPrinted = true;      }      Serial.print(bn);      Serial.print(',');      Serial.print(bgnBlock + bn);      Serial.print(',');      Serial.println(buf.overrun);    }    bn++;  }  if (!headerPrinted) {    Serial.println(F("No errors found"));  } else {    Serial.println(F("Done"));  }}//------------------------------------------------------------------------------// dump data file to Serialvoid dumpData() {  block_t buf;  if (!binFile.isOpen()) {    Serial.println(F("No current binary file"));    return;  }  binFile.rewind();  if (binFile.read(&buf , 512) != 512) {    error("Read metadata failed");  }  Serial.println();  Serial.println(F("Type any character to stop"));  delay(1000);  while (!Serial.available() && binFile.read(&buf , 512) == 512) {    if (buf.count == 0) {      break;    }    if (buf.overrun) {      Serial.print(F("OVERRUN,"));      Serial.println(buf.overrun);    }    for (uint16_t i = 0; i < buf.count; i++) {      Serial.print(buf.data[i], DEC);      if ((i+1)%PIN_COUNT) {        Serial.print(',');      } else {        Serial.println();      }    }  }  Serial.println(F("Done"));}//------------------------------------------------------------------------------// log data// max number of blocks to erase per erase calluint32_t const ERASE_SIZE = 262144L;void logData() {  uint32_t bgnBlock, endBlock;  // Allocate extra buffer space.  block_t block[BUFFER_BLOCK_COUNT];  Serial.println();  // Initialize ADC and timer1.  adcInit((metadata_t*) &block[0]);  // Find unused file name.  if (BASE_NAME_SIZE > 6) {    error("FILE_BASE_NAME too long");  }  while (sd.exists(binName)) {    if (binName[BASE_NAME_SIZE + 1] != '9') {      binName[BASE_NAME_SIZE + 1]++;    } else {      binName[BASE_NAME_SIZE + 1] = '0';      if (binName[BASE_NAME_SIZE] == '9') {        error("Can't create file name");      }      binName[BASE_NAME_SIZE]++;    }  }  // Delete old tmp file.  if (sd.exists(TMP_FILE_NAME)) {    Serial.println(F("Deleting tmp file"));    if (!sd.remove(TMP_FILE_NAME)) {      error("Can't remove tmp file");    }  }  // Create new file.  Serial.println(F("Creating new file"));  binFile.close();  if (!binFile.createContiguous(TMP_FILE_NAME, 512 * FILE_BLOCK_COUNT)) {    error("createContiguous failed");  }  // Get the address of the file on the SD.  if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {    error("contiguousRange failed");  }  // Use SdFat's internal buffer.  uint8_t* cache = (uint8_t*)sd.vol()->cacheClear();  if (cache == 0) {    error("cacheClear failed");  }  // Flash erase all data in the file.  Serial.println(F("Erasing all data"));  uint32_t bgnErase = bgnBlock;  uint32_t endErase;  while (bgnErase < endBlock) {    endErase = bgnErase + ERASE_SIZE;    if (endErase > endBlock) {      endErase = endBlock;    }    if (!sd.card()->erase(bgnErase, endErase)) {      error("erase failed");    }    bgnErase = endErase + 1;  }  // Start a multiple block write.  if (!sd.card()->writeStart(bgnBlock, FILE_BLOCK_COUNT)) {    error("writeBegin failed");  }  // Write metadata.  if (!sd.card()->writeData((uint8_t*)&block[0])) {    error("Write metadata failed");  }  // Initialize queues.  emptyHead = emptyTail = 0;  fullHead = fullTail = 0;  // Use SdFat buffer for one block.  emptyQueue[emptyHead] = (block_t*)cache;  emptyHead = queueNext(emptyHead);  // Put rest of buffers in the empty queue.  for (uint8_t i = 0; i < BUFFER_BLOCK_COUNT; i++) {    emptyQueue[emptyHead] = &block[i];    emptyHead = queueNext(emptyHead);  }  // Give SD time to prepare for big write.  delay(1000);  Serial.println(F("Logging - type any character to stop"));  // Wait for Serial Idle.  Serial.flush();  delay(10);  uint32_t bn = 1;  uint32_t t0 = millis();  uint32_t t1 = t0;  uint32_t overruns = 0;  uint32_t count = 0;  uint32_t maxLatency = 0;  // Start logging interrupts.  adcStart();  while (1) {    if (fullHead != fullTail) {      // Get address of block to write.      block_t* pBlock = fullQueue[fullTail];      // Write block to SD.      uint32_t usec = micros();      if (!sd.card()->writeData((uint8_t*)pBlock)) {        error("write data failed");      }      usec = micros() - usec;      t1 = millis();      if (usec > maxLatency) {        maxLatency = usec;      }      count += pBlock->count;      // Add overruns and possibly light LED.      if (pBlock->overrun) {        overruns += pBlock->overrun;        if (ERROR_LED_PIN >= 0) {          digitalWrite(ERROR_LED_PIN, HIGH);        }      }      // Move block to empty queue.      emptyQueue[emptyHead] = pBlock;      emptyHead = queueNext(emptyHead);      fullTail = queueNext(fullTail);      bn++;      if (bn == FILE_BLOCK_COUNT) {        // File full so stop ISR calls.        adcStop();        break;      }    }    if (timerError) {      error("Missed timer event - rate too high");    }    if (Serial.available()) {      // Stop ISR calls.      adcStop();      if (isrBuf != 0 && isrBuf->count >= PIN_COUNT) {        // Truncate to last complete sample.        isrBuf->count = PIN_COUNT*(isrBuf->count/PIN_COUNT);        // Put buffer in full queue.        fullQueue[fullHead] = isrBuf;        fullHead = queueNext(fullHead);        isrBuf = 0;      }      if (fullHead == fullTail) {        break;      }    }  }  if (!sd.card()->writeStop()) {    error("writeStop failed");  }  // Truncate file if recording stopped early.  if (bn != FILE_BLOCK_COUNT) {    Serial.println(F("Truncating file"));    if (!binFile.truncate(512L * bn)) {      error("Can't truncate file");    }  }  if (!binFile.rename(binName)) {    error("Can't rename file");  }  Serial.print(F("File renamed: "));  Serial.println(binName);  Serial.print(F("Max block write usec: "));  Serial.println(maxLatency);  Serial.print(F("Record time sec: "));  Serial.println(0.001*(t1 - t0), 3);  Serial.print(F("Sample count: "));  Serial.println(count/PIN_COUNT);  Serial.print(F("Samples/sec: "));  Serial.println((1000.0/PIN_COUNT)*count/(t1-t0));  Serial.print(F("Overruns: "));  Serial.println(overruns);  Serial.println(F("Done"));}//------------------------------------------------------------------------------void setup(void) {  if (ERROR_LED_PIN >= 0) {    pinMode(ERROR_LED_PIN, OUTPUT);  }  Serial.begin(9600);  // Read the first sample pin to init the ADC.  analogRead(PIN_LIST[0]);  Serial.print(F("FreeStack: "));  Serial.println(FreeStack());  // Initialize at the highest speed supported by the board that is  // not over 50 MHz. Try a lower speed if SPI errors occur.  if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) {    sd.initErrorPrint();    fatalBlink();  }}//------------------------------------------------------------------------------void loop(void) {  // Read any Serial data.  do {    delay(10);  } while (Serial.available() && Serial.read() >= 0);  Serial.println();  Serial.println(F("type:"));  Serial.println(F("c - convert file to csv"));  Serial.println(F("d - dump data to Serial"));  Serial.println(F("e - overrun error details"));  Serial.println(F("r - record ADC data"));  while(!Serial.available()) {    yield();  }  char c = tolower(Serial.read());  if (ERROR_LED_PIN >= 0) {    digitalWrite(ERROR_LED_PIN, LOW);  }  // Read any Serial data.  do {    delay(10);  } while (Serial.available() && Serial.read() >= 0);  if (c == 'c') {    binaryToCsv();  } else if (c == 'd') {    dumpData();  } else if (c == 'e') {    checkOverrun();  } else if (c == 'r') {    logData();  } else {    Serial.println(F("Invalid entry"));  }}#else  // __AVR__#error This program is only for AVR.#endif  // __AVR__
 |