| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 | /* * This program illustrates raw write functions in SdFat that * can be used for high speed data logging. * * This program simulates logging from a source that produces * data at a constant rate of RATE_KB_PER_SEC. * * Note: Apps should create a very large file then truncates it * to the length that is used for a logging. It only takes * a few seconds to erase a 500 MB file since the card only * marks the blocks as erased; no data transfer is required. */#include <SPI.h>#include "SdFat.h"#include "sdios.h"#include "FreeStack.h"// SD chip select pinconst uint8_t chipSelect = SS;const uint32_t RATE_KB_PER_SEC = 100;const uint32_t TEST_TIME_SEC = 100;// Time between printing progress dotsconst uint32_t DOT_TIME_MS = 5000UL;// number of blocks in the contiguous fileconst uint32_t BLOCK_COUNT = (1000*RATE_KB_PER_SEC*TEST_TIME_SEC + 511)/512;// file systemSdFat sd;// test fileSdFile file;// file extentuint32_t bgnBlock, endBlock;// Serial output streamArduinoOutStream cout(Serial);//------------------------------------------------------------------------------// store error strings in flash to save RAM#define error(s) sd.errorHalt(F(s))//------------------------------------------------------------------------------void setup(void) {  Serial.begin(9600);  // Wait for USB Serial  while (!Serial) {    yield();  }}//------------------------------------------------------------------------------void loop(void) {  // Read any extra Serial data.  do {    delay(10);  } while (Serial.available() && Serial.read() >= 0);  // F stores strings in flash to save RAM  cout << F("Type any character to start\n");  while (!Serial.available()) {    yield();  }  cout << F("FreeStack: ") << FreeStack() << endl;  // Initialize at the highest speed supported by the board that is  // not over 50 MHz. Try a lower speed if SPI errors occur.  if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) {    sd.initErrorHalt();  }  // delete possible existing file  sd.remove("RawWrite.txt");  // create a contiguous file  if (!file.createContiguous("RawWrite.txt", 512UL*BLOCK_COUNT)) {    error("createContiguous failed");  }  // get the location of the file's blocks  if (!file.contiguousRange(&bgnBlock, &endBlock)) {    error("contiguousRange failed");  }  //*********************NOTE**************************************  // NO SdFile calls are allowed while cache is used for raw writes  //***************************************************************  // clear the cache and use it as a 512 byte buffer  uint8_t* pCache = (uint8_t*)sd.vol()->cacheClear();  // fill cache with eight lines of 64 bytes each  memset(pCache, ' ', 512);  for (uint16_t i = 0; i < 512; i += 64) {    // put line number at end of line then CR/LF    pCache[i + 61] = '0' + (i/64);    pCache[i + 62] = '\r';    pCache[i + 63] = '\n';  }  cout << F("Start raw write of ") << file.fileSize()/1000UL << F(" KB\n");  cout << F("Target rate: ") << RATE_KB_PER_SEC << F(" KB/sec\n");  cout << F("Target time: ") << TEST_TIME_SEC << F(" seconds\n");  // tell card to setup for multiple block write with pre-erase  if (!sd.card()->writeStart(bgnBlock, BLOCK_COUNT)) {    error("writeStart failed");  }  // init stats  delay(1000);  uint32_t dotCount = 0;  uint32_t maxQueuePrint = 0;  uint32_t maxWriteTime = 0;  uint32_t minWriteTime = 9999999;  uint32_t totalWriteTime = 0;  uint32_t maxQueueSize = 0;  uint32_t nWrite = 0;  uint32_t b = 0;  // write data    uint32_t startTime = millis();  while (nWrite < BLOCK_COUNT) {    uint32_t nProduced = RATE_KB_PER_SEC*(millis() - startTime)/512UL;    uint32_t queueSize = nProduced - nWrite;    if (queueSize == 0) continue;    if (queueSize > maxQueueSize) {      maxQueueSize = queueSize;    }    if ((millis() - startTime - dotCount*DOT_TIME_MS) > DOT_TIME_MS) {      if (maxQueueSize != maxQueuePrint) {        cout << F("\nQ: ") << maxQueueSize << endl;        maxQueuePrint = maxQueueSize;      } else {        cout << ".";        if (++dotCount%10 == 0) {          cout << endl;        }      }    }    // put block number at start of first line in block    uint32_t n = b++;    for (int8_t d = 5; d >= 0; d--) {      pCache[d] = n || d == 5 ? n % 10 + '0' : ' ';      n /= 10;    }    // write a 512 byte block    uint32_t tw = micros();    if (!sd.card()->writeData(pCache)) {      error("writeData failed");    }    tw = micros() - tw;    totalWriteTime += tw;    // check for max write time    if (tw > maxWriteTime) {      maxWriteTime = tw;    }    if (tw < minWriteTime) {      minWriteTime = tw;    }    nWrite++;  }  uint32_t endTime = millis();  uint32_t avgWriteTime = totalWriteTime/BLOCK_COUNT;  // end multiple block write mode  if (!sd.card()->writeStop()) {    error("writeStop failed");  }  cout << F("\nDone\n");  cout << F("maxQueueSize: ") << maxQueueSize << endl;  cout << F("Elapsed time: ") << setprecision(3)<< 1.e-3*(endTime - startTime);  cout << F(" seconds\n");  cout << F("Min block write time: ") << minWriteTime << F(" micros\n");  cout << F("Max block write time: ") << maxWriteTime << F(" micros\n");  cout << F("Avg block write time: ") << avgWriteTime << F(" micros\n");  // close file for next pass of loop  file.close();  Serial.println();}
 |