scsiPhy.cpp 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. // Implements the low level interface to SCSI bus
  2. // Partially derived from scsiPhy.c from SCSI2SD-V6
  3. #include "scsiPhy.h"
  4. #include "BlueSCSI_platform.h"
  5. #include "BlueSCSI_log.h"
  6. #include "BlueSCSI_log_trace.h"
  7. #include "BlueSCSI_config.h"
  8. #include "scsi_accel_rp2040.h"
  9. #include <scsi2sd.h>
  10. extern "C" {
  11. #include <scsi.h>
  12. #include <scsi2sd_time.h>
  13. }
  14. /***********************/
  15. /* SCSI status signals */
  16. /***********************/
  17. extern "C" bool scsiStatusATN()
  18. {
  19. return SCSI_IN(ATN);
  20. }
  21. extern "C" bool scsiStatusBSY()
  22. {
  23. return SCSI_IN(BSY);
  24. }
  25. /************************/
  26. /* SCSI selection logic */
  27. /************************/
  28. volatile uint8_t g_scsi_sts_selection;
  29. volatile uint8_t g_scsi_ctrl_bsy;
  30. void scsi_bsy_deassert_interrupt()
  31. {
  32. if (SCSI_IN(SEL) && !SCSI_IN(BSY))
  33. {
  34. // Check if any of the targets we simulate is selected
  35. uint8_t sel_bits = SCSI_IN_DATA();
  36. int sel_id = -1;
  37. for (int i = 0; i < S2S_MAX_TARGETS; i++)
  38. {
  39. if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
  40. {
  41. if (sel_bits & (1 << scsiDev.targets[i].targetId))
  42. {
  43. sel_id = scsiDev.targets[i].targetId;
  44. break;
  45. }
  46. }
  47. }
  48. if (sel_id >= 0)
  49. {
  50. // Set ATN flag here unconditionally, real value is only known after
  51. // OUT_BSY is enabled in scsiStatusSEL() below.
  52. g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | SCSI_STS_SELECTION_ATN | sel_id;
  53. }
  54. // selFlag is required for Philips P2000C which releases it after 600ns
  55. // without waiting for BSY.
  56. // Also required for some early Mac Plus roms
  57. scsiDev.selFlag = *SCSI_STS_SELECTED;
  58. }
  59. }
  60. extern "C" bool scsiStatusSEL()
  61. {
  62. if (g_scsi_ctrl_bsy)
  63. {
  64. // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
  65. // Instead update the state here.
  66. // Releasing happens with bus release.
  67. g_scsi_ctrl_bsy = 0;
  68. SCSI_OUT(CD, 0);
  69. SCSI_OUT(MSG, 0);
  70. SCSI_ENABLE_CONTROL_OUT();
  71. SCSI_OUT(BSY, 1);
  72. // On RP2040 hardware the ATN signal is only available after OUT_BSY enables
  73. // the IO buffer U105, so check the signal status here.
  74. delay_100ns();
  75. if (!scsiStatusATN())
  76. {
  77. // This is a SCSI1 host that does send IDENTIFY message
  78. scsiDev.atnFlag = 0;
  79. scsiDev.target->unitAttention = 0;
  80. scsiDev.compatMode = COMPAT_SCSI1;
  81. }
  82. }
  83. return SCSI_IN(SEL);
  84. }
  85. /************************/
  86. /* SCSI bus reset logic */
  87. /************************/
  88. static void scsi_rst_assert_interrupt()
  89. {
  90. // Glitch filtering
  91. bool rst1 = SCSI_IN(RST);
  92. delay_ns(500);
  93. bool rst2 = SCSI_IN(RST);
  94. if (rst1 && rst2)
  95. {
  96. bluedbg("BUS RESET");
  97. scsiDev.resetFlag = 1;
  98. }
  99. }
  100. static void scsiPhyIRQ(uint gpio, uint32_t events)
  101. {
  102. if (gpio == SCSI_IN_BSY || gpio == SCSI_IN_SEL)
  103. {
  104. // Note BSY / SEL interrupts only when we are not driving OUT_BSY low ourselves.
  105. // The BSY input pin may be shared with other signals.
  106. if (sio_hw->gpio_out & (1 << SCSI_OUT_BSY))
  107. {
  108. scsi_bsy_deassert_interrupt();
  109. }
  110. }
  111. else if (gpio == SCSI_IN_RST)
  112. {
  113. scsi_rst_assert_interrupt();
  114. }
  115. }
  116. // This function is called to initialize the phy code.
  117. // It is called after power-on and after SCSI bus reset.
  118. extern "C" void scsiPhyReset(void)
  119. {
  120. SCSI_RELEASE_OUTPUTS();
  121. g_scsi_sts_selection = 0;
  122. g_scsi_ctrl_bsy = 0;
  123. scsi_accel_rp2040_init();
  124. // Enable BSY, RST and SEL interrupts
  125. // Note: RP2040 library currently supports only one callback,
  126. // so it has to be same for both pins.
  127. gpio_set_irq_enabled_with_callback(SCSI_IN_BSY, GPIO_IRQ_EDGE_RISE, true, scsiPhyIRQ);
  128. gpio_set_irq_enabled(SCSI_IN_RST, GPIO_IRQ_EDGE_FALL, true);
  129. // Check BSY line status when SEL goes active.
  130. // This is needed to handle SCSI-1 hosts that use the single initiator mode.
  131. // The host will just assert the SEL directly, without asserting BSY first.
  132. gpio_set_irq_enabled(SCSI_IN_SEL, GPIO_IRQ_EDGE_FALL, true);
  133. }
  134. /************************/
  135. /* SCSI bus phase logic */
  136. /************************/
  137. static SCSI_PHASE g_scsi_phase;
  138. extern "C" void scsiEnterPhase(int phase)
  139. {
  140. int delay = scsiEnterPhaseImmediate(phase);
  141. if (delay > 0)
  142. {
  143. s2s_delay_ns(delay);
  144. }
  145. }
  146. // Change state and return nanosecond delay to wait
  147. extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
  148. {
  149. if (phase != g_scsi_phase)
  150. {
  151. // ANSI INCITS 362-2002 SPI-3 10.7.1:
  152. // Phase changes are not allowed while REQ or ACK is asserted.
  153. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
  154. if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT))
  155. {
  156. // Akai S1000/S3000 seems to need extra delay before changing to data phase
  157. // after a command. The code in BlueSCSI_disk.cpp tries to do this while waiting
  158. // for SD card, to avoid any extra latency.
  159. s2s_delay_ns(400000);
  160. }
  161. int oldphase = g_scsi_phase;
  162. g_scsi_phase = (SCSI_PHASE)phase;
  163. scsiLogPhaseChange(phase);
  164. // Select between synchronous vs. asynchronous SCSI writes
  165. if (g_scsi_phase == DATA_IN && scsiDev.target->syncOffset > 0)
  166. {
  167. scsi_accel_rp2040_setWriteMode(scsiDev.target->syncOffset, scsiDev.target->syncPeriod);
  168. }
  169. else
  170. {
  171. scsi_accel_rp2040_setWriteMode(0, 0);
  172. }
  173. if (phase < 0)
  174. {
  175. // Other communication on bus or reset state
  176. SCSI_RELEASE_OUTPUTS();
  177. return 0;
  178. }
  179. else
  180. {
  181. SCSI_OUT(MSG, phase & __scsiphase_msg);
  182. SCSI_OUT(CD, phase & __scsiphase_cd);
  183. SCSI_OUT(IO, phase & __scsiphase_io);
  184. SCSI_ENABLE_CONTROL_OUT();
  185. int delayNs = 400; // Bus settle delay
  186. if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
  187. {
  188. delayNs += 400; // Data release delay
  189. }
  190. if (scsiDev.compatMode < COMPAT_SCSI2)
  191. {
  192. // EMU EMAX needs 100uS ! 10uS is not enough.
  193. delayNs += 100000;
  194. }
  195. return delayNs;
  196. }
  197. }
  198. else
  199. {
  200. return 0;
  201. }
  202. }
  203. // Release all signals
  204. void scsiEnterBusFree(void)
  205. {
  206. g_scsi_phase = BUS_FREE;
  207. g_scsi_sts_selection = 0;
  208. g_scsi_ctrl_bsy = 0;
  209. scsiDev.cdbLen = 0;
  210. SCSI_RELEASE_OUTPUTS();
  211. }
  212. /********************/
  213. /* Transmit to host */
  214. /********************/
  215. #define SCSI_WAIT_ACTIVE(pin) \
  216. if (!SCSI_IN(pin)) { \
  217. if (!SCSI_IN(pin)) { \
  218. while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
  219. } \
  220. }
  221. #define SCSI_WAIT_INACTIVE(pin) \
  222. if (SCSI_IN(pin)) { \
  223. if (SCSI_IN(pin)) { \
  224. while(SCSI_IN(pin) && !scsiDev.resetFlag); \
  225. } \
  226. }
  227. // Write one byte to SCSI host using the handshake mechanism
  228. static inline void scsiWriteOneByte(uint8_t value)
  229. {
  230. SCSI_OUT_DATA(value);
  231. delay_100ns(); // DB setup time before REQ
  232. SCSI_OUT(REQ, 1);
  233. SCSI_WAIT_ACTIVE(ACK);
  234. SCSI_RELEASE_DATA_REQ();
  235. SCSI_WAIT_INACTIVE(ACK);
  236. }
  237. extern "C" void scsiWriteByte(uint8_t value)
  238. {
  239. scsiLogDataIn(&value, 1);
  240. scsiWriteOneByte(value);
  241. }
  242. extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
  243. {
  244. scsiStartWrite(data, count);
  245. scsiFinishWrite();
  246. }
  247. extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
  248. {
  249. scsiLogDataIn(data, count);
  250. if ((count & 1) != 0 || ((uint32_t)data & 1) != 0)
  251. {
  252. // Unaligned write, do it byte-by-byte
  253. scsiFinishWrite();
  254. for (uint32_t i = 0; i < count; i++)
  255. {
  256. if (scsiDev.resetFlag) break;
  257. scsiWriteOneByte(data[i]);
  258. }
  259. }
  260. else
  261. {
  262. // Use accelerated routine
  263. scsi_accel_rp2040_startWrite(data, count, &scsiDev.resetFlag);
  264. }
  265. }
  266. extern "C" bool scsiIsWriteFinished(const uint8_t *data)
  267. {
  268. return scsi_accel_rp2040_isWriteFinished(data);
  269. }
  270. extern "C" void scsiFinishWrite()
  271. {
  272. scsi_accel_rp2040_finishWrite(&scsiDev.resetFlag);
  273. }
  274. /*********************/
  275. /* Receive from host */
  276. /*********************/
  277. // Read one byte from SCSI host using the handshake mechanism.
  278. static inline uint8_t scsiReadOneByte(int* parityError)
  279. {
  280. SCSI_OUT(REQ, 1);
  281. SCSI_WAIT_ACTIVE(ACK);
  282. delay_100ns();
  283. uint16_t r = SCSI_IN_DATA();
  284. SCSI_OUT(REQ, 0);
  285. SCSI_WAIT_INACTIVE(ACK);
  286. if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ SCSI_IO_DATA_MASK))
  287. {
  288. bluedbg("Parity error in scsiReadOneByte(): ", (uint32_t)r);
  289. *parityError = 1;
  290. }
  291. return (uint8_t)r;
  292. }
  293. extern "C" uint8_t scsiReadByte(void)
  294. {
  295. uint8_t r = scsiReadOneByte(NULL);
  296. scsiLogDataOut(&r, 1);
  297. return r;
  298. }
  299. extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
  300. {
  301. *parityError = 0;
  302. if ((count & 1) != 0 || ((uint32_t)data & 1) != 0)
  303. {
  304. // Unaligned transfer, do byte by byte
  305. for (uint32_t i = 0; i < count; i++)
  306. {
  307. if (scsiDev.resetFlag) break;
  308. data[i] = scsiReadOneByte(parityError);
  309. }
  310. }
  311. else
  312. {
  313. // Use accelerated routine
  314. scsi_accel_rp2040_read(data, count, parityError, &scsiDev.resetFlag);
  315. }
  316. if(*parityError && (scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY))
  317. {
  318. bluelog("Parity error in scsiRead()");
  319. }
  320. scsiLogDataOut(data, count);
  321. }