ZuluSCSI_platform.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
  3. *
  4. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
  5. *
  6. * https://www.gnu.org/licenses/gpl-3.0.html
  7. * ----
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version. 
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16. * GNU General Public License for more details. 
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  20. **/
  21. #include "ZuluSCSI_platform.h"
  22. #include "gd32f4xx_sdio.h"
  23. #include "gd32f4xx_fmc.h"
  24. #include "gd32f4xx_fwdgt.h"
  25. #include "ZuluSCSI_log.h"
  26. #include "ZuluSCSI_config.h"
  27. #include "usb_hs.h"
  28. #include "usbd_conf.h"
  29. #include "greenpak.h"
  30. #include <SdFat.h>
  31. #include <scsi.h>
  32. #include <assert.h>
  33. #include "usb_serial.h"
  34. extern bool g_rawdrive_active;
  35. extern "C" {
  36. const char *g_platform_name = PLATFORM_NAME;
  37. static bool g_enable_apple_quirks = false;
  38. static bool g_led_blinking = false;
  39. /*************************/
  40. /* Timing functions */
  41. /*************************/
  42. static volatile uint32_t g_millisecond_counter;
  43. static volatile uint32_t g_watchdog_timeout;
  44. static uint32_t g_ns_to_cycles; // Q0.32 fixed point format
  45. static void watchdog_handler(uint32_t *sp);
  46. unsigned long millis()
  47. {
  48. return g_millisecond_counter;
  49. }
  50. void delay(unsigned long ms)
  51. {
  52. uint32_t start = g_millisecond_counter;
  53. while ((uint32_t)(g_millisecond_counter - start) < ms);
  54. }
  55. void delay_ns(unsigned long ns)
  56. {
  57. uint32_t CNT_start = DWT->CYCCNT;
  58. if (ns <= 50) return; // Approximate call overhead
  59. ns -= 50;
  60. uint32_t cycles = ((uint64_t)ns * g_ns_to_cycles) >> 32;
  61. while ((uint32_t)(DWT->CYCCNT - CNT_start) < cycles);
  62. }
  63. void SysTick_Handler_inner(uint32_t *sp)
  64. {
  65. g_millisecond_counter++;
  66. if (g_watchdog_timeout > 0)
  67. {
  68. g_watchdog_timeout--;
  69. const uint32_t busreset_time = WATCHDOG_CRASH_TIMEOUT - WATCHDOG_BUS_RESET_TIMEOUT;
  70. if (g_watchdog_timeout <= busreset_time)
  71. {
  72. if (!scsiDev.resetFlag)
  73. {
  74. logmsg("WATCHDOG TIMEOUT at PC ", sp[6], " LR ", sp[5], " attempting bus reset");
  75. scsiDev.resetFlag = 1;
  76. }
  77. if (g_watchdog_timeout == 0)
  78. {
  79. watchdog_handler(sp);
  80. }
  81. }
  82. }
  83. }
  84. __attribute__((interrupt, naked))
  85. void SysTick_Handler(void)
  86. {
  87. // Take note of stack pointer so that we can print debug
  88. // info in watchdog handler.
  89. asm("mrs r0, msp\n"
  90. "b SysTick_Handler_inner": : : "r0");
  91. }
  92. // This function is called by scsiPhy.cpp.
  93. // It resets the systick counter to give 1 millisecond of uninterrupted transfer time.
  94. // The total number of skips is kept track of to keep the correct time on average.
  95. void SysTick_Handle_PreEmptively()
  96. {
  97. static int skipped_clocks = 0;
  98. __disable_irq();
  99. uint32_t loadval = SysTick->LOAD;
  100. skipped_clocks += loadval - SysTick->VAL;
  101. SysTick->VAL = 0;
  102. if (skipped_clocks > loadval)
  103. {
  104. // We have skipped enough ticks that it is time to fake a call
  105. // to SysTick interrupt handler.
  106. skipped_clocks -= loadval;
  107. uint32_t stack_frame[8] = {0};
  108. stack_frame[6] = (uint32_t)__builtin_return_address(0);
  109. SysTick_Handler_inner(stack_frame);
  110. }
  111. __enable_irq();
  112. }
  113. uint32_t platform_sys_clock_in_hz()
  114. {
  115. return rcu_clock_freq_get(CK_SYS);
  116. }
  117. /***************/
  118. /* GPIO init */
  119. /***************/
  120. // Initialize SPI and GPIO configuration
  121. // Clock has already been initialized by system_gd32f20x.c
  122. void platform_init()
  123. {
  124. SystemCoreClockUpdate();
  125. // Enable SysTick to drive millis()
  126. // \todo not sure if this is needed
  127. // nvic_priority_group_set(NVIC_PRIGROUP_PRE2_SUB2);
  128. g_millisecond_counter = 0;
  129. SysTick_Config(SystemCoreClock / 1000U);
  130. NVIC_SetPriority(SysTick_IRQn, 0x00U);
  131. // Enable DWT counter to drive delay_ns()
  132. g_ns_to_cycles = ((uint64_t)SystemCoreClock << 32) / 1000000000;
  133. CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
  134. DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;
  135. // Enable debug output on SWO pin
  136. DBG_CTL0 |= DBG_CTL0_TRACE_IOEN;
  137. // if (TPI->ACPR == 0)
  138. {
  139. CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
  140. TPI->ACPR = SystemCoreClock / 115200 - 1; // Serial speed baudrate for SWO
  141. // TPI->ACPR = SystemCoreClock / 2000000 - 1; // 2 Mbps baudrate for SWO
  142. // TPI->ACPR = SystemCoreClock / 30000000 - 1; // 30 Mbps baudrate for SWO
  143. TPI->SPPR = 2;
  144. TPI->FFCR = 0x100; // TPIU packet framing disabled
  145. // DWT->CTRL |= (1 << DWT_CTRL_EXCTRCENA_Pos);
  146. // DWT->CTRL |= (1 << DWT_CTRL_CYCTAP_Pos)
  147. // | (15 << DWT_CTRL_POSTPRESET_Pos)
  148. // | (1 << DWT_CTRL_PCSAMPLENA_Pos)
  149. // | (3 << DWT_CTRL_SYNCTAP_Pos)
  150. // | (1 << DWT_CTRL_CYCCNTENA_Pos);
  151. ITM->LAR = 0xC5ACCE55;
  152. ITM->TCR = (1 << ITM_TCR_DWTENA_Pos)
  153. | (1 << ITM_TCR_SYNCENA_Pos)
  154. | (1 << ITM_TCR_ITMENA_Pos);
  155. ITM->TER = 0xFFFFFFFF; // Enable all stimulus ports
  156. }
  157. // Enable needed clocks for GPIO
  158. rcu_periph_clock_enable(RCU_GPIOA);
  159. rcu_periph_clock_enable(RCU_GPIOB);
  160. rcu_periph_clock_enable(RCU_GPIOC);
  161. rcu_periph_clock_enable(RCU_GPIOD);
  162. rcu_periph_clock_enable(RCU_GPIOE);
  163. rcu_periph_clock_enable(RCU_GPIOF);
  164. rcu_periph_clock_enable(RCU_GPIOG);
  165. // Switch to SWD debug port (disable JTAG) to release PB4 as GPIO
  166. gpio_mode_set(GPIOB, GPIO_MODE_INPUT, GPIO_PUPD_NONE, GPIO_PIN_4);
  167. // SCSI pins.
  168. // Initialize open drain outputs to high.
  169. SCSI_RELEASE_OUTPUTS();
  170. gpio_mode_set(SCSI_OUT_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_DATA_MASK | SCSI_OUT_REQ);
  171. gpio_mode_set(SCSI_OUT_IO_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_IO_PIN);
  172. gpio_mode_set(SCSI_OUT_CD_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_CD_PIN);
  173. gpio_mode_set(SCSI_OUT_SEL_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_SEL_PIN);
  174. gpio_mode_set(SCSI_OUT_MSG_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_MSG_PIN);
  175. gpio_mode_set(SCSI_OUT_RST_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_RST_PIN);
  176. gpio_mode_set(SCSI_OUT_BSY_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_BSY_PIN);
  177. gpio_output_options_set(SCSI_OUT_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_DATA_MASK | SCSI_OUT_REQ);
  178. gpio_output_options_set(SCSI_OUT_IO_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_IO_PIN);
  179. gpio_output_options_set(SCSI_OUT_CD_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_CD_PIN);
  180. gpio_output_options_set(SCSI_OUT_SEL_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_SEL_PIN);
  181. gpio_output_options_set(SCSI_OUT_MSG_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_MSG_PIN);
  182. gpio_output_options_set(SCSI_OUT_RST_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_RST_PIN);
  183. gpio_output_options_set(SCSI_OUT_BSY_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_BSY_PIN);
  184. gpio_mode_set(SCSI_IN_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_IN_MASK);
  185. gpio_mode_set(SCSI_ATN_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_ATN_PIN);
  186. gpio_mode_set(SCSI_BSY_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_BSY_PIN);
  187. gpio_mode_set(SCSI_SEL_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_SEL_PIN);
  188. gpio_mode_set(SCSI_ACK_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_ACK_PIN);
  189. gpio_mode_set(SCSI_RST_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_RST_PIN);
  190. // Terminator enable
  191. gpio_bit_set(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
  192. gpio_mode_set(SCSI_TERM_EN_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_TERM_EN_PIN);
  193. gpio_output_options_set(SCSI_TERM_EN_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, SCSI_TERM_EN_PIN);
  194. #ifndef SD_USE_SDIO
  195. // SD card pins using SPI
  196. gpio_init(SD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SD_CS_PIN);
  197. gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_CLK_PIN);
  198. gpio_init(SD_PORT, GPIO_MODE_IPU, 0, SD_MISO_PIN);
  199. gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_MOSI_PIN);
  200. #else
  201. // SD card pins using SDIO
  202. gpio_mode_set(SD_SDIO_DATA_PORT, GPIO_MODE_AF, GPIO_PUPD_NONE, SD_SDIO_D0 | SD_SDIO_D1 | SD_SDIO_D2 | SD_SDIO_D3);
  203. gpio_output_options_set(SD_SDIO_DATA_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SD_SDIO_D0 | SD_SDIO_D1 | SD_SDIO_D2 | SD_SDIO_D3);
  204. gpio_af_set(SD_SDIO_DATA_PORT, GPIO_AF_12, SD_SDIO_D0 | SD_SDIO_D1 | SD_SDIO_D2 | SD_SDIO_D3);
  205. gpio_mode_set(SD_SDIO_CLK_PORT, GPIO_MODE_AF, GPIO_PUPD_NONE, SD_SDIO_CLK);
  206. gpio_output_options_set(SD_SDIO_CLK_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SD_SDIO_CLK);
  207. gpio_af_set(SD_SDIO_CLK_PORT, GPIO_AF_12, SD_SDIO_CLK);
  208. gpio_mode_set(SD_SDIO_CMD_PORT, GPIO_MODE_AF, GPIO_PUPD_NONE, SD_SDIO_CMD);
  209. gpio_output_options_set(SD_SDIO_CMD_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SD_SDIO_CMD);
  210. gpio_af_set(SD_SDIO_CMD_PORT, GPIO_AF_12, SD_SDIO_CMD);
  211. #endif
  212. // @TODO confirm dip switch 1 is not longer JTAG NJTRST
  213. // Switch to SWD debug port (disable JTAG) to release PB4 as GPIO
  214. //gpio_pin_remap_config(GPIO_SWJ_SWDPENABLE_REMAP, ENABLE);
  215. // DIP switches
  216. gpio_mode_set(DIP_PORT, GPIO_MODE_INPUT, GPIO_PUPD_PULLDOWN, DIPSW1_PIN | DIPSW2_PIN | DIPSW3_PIN);
  217. // LED pins
  218. gpio_bit_set(LED_PORT, LED_PINS);
  219. gpio_mode_set(LED_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, LED_PINS);
  220. gpio_output_options_set(LED_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, LED_PINS);
  221. // SWO trace pin on PB3
  222. gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_3);
  223. gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, GPIO_PIN_3);
  224. gpio_af_set(GPIOB, GPIO_AF_0, GPIO_PIN_3);
  225. }
  226. void platform_late_init()
  227. {
  228. logmsg("Platform: ", g_platform_name);
  229. logmsg("FW Version: ", g_log_firmwareversion);
  230. if (gpio_input_bit_get(DIP_PORT, DIPSW3_PIN))
  231. {
  232. logmsg("DIPSW3 is ON: Enabling SCSI termination");
  233. gpio_bit_reset(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
  234. }
  235. else
  236. {
  237. logmsg("DIPSW3 is OFF: SCSI termination disabled");
  238. }
  239. if (gpio_input_bit_get(DIP_PORT, DIPSW2_PIN))
  240. {
  241. logmsg("DIPSW2 is ON: enabling debug messages");
  242. g_log_debug = true;
  243. }
  244. else
  245. {
  246. g_log_debug = false;
  247. }
  248. if (gpio_input_bit_get(DIP_PORT, DIPSW1_PIN))
  249. {
  250. logmsg("DIPSW1 is ON: enabling Apple quirks by default");
  251. g_enable_apple_quirks = true;
  252. }
  253. usb_hs_init();
  254. greenpak_load_firmware();
  255. }
  256. void platform_post_sd_card_init() {}
  257. void platform_write_led(bool state)
  258. {
  259. if (g_led_blinking) return;
  260. if (state)
  261. gpio_bit_reset(LED_PORT, LED_PINS);
  262. else
  263. gpio_bit_set(LED_PORT, LED_PINS);
  264. }
  265. void platform_set_blink_status(bool status)
  266. {
  267. g_led_blinking = status;
  268. }
  269. void platform_write_led_override(bool state)
  270. {
  271. if (state)
  272. gpio_bit_reset(LED_PORT, LED_PINS);
  273. else
  274. gpio_bit_set(LED_PORT, LED_PINS);
  275. }
  276. void platform_disable_led(void)
  277. {
  278. gpio_mode_set(LED_PORT, GPIO_MODE_INPUT, GPIO_PUPD_PULLUP, LED_PINS);
  279. logmsg("Disabling status LED");
  280. }
  281. /*****************************************/
  282. /* Debug logging and watchdog */
  283. /*****************************************/
  284. // Send log data to USB UART if USB is connected.
  285. // Data is retrieved from the shared log ring buffer and
  286. // this function sends as much as fits in USB CDC buffer.
  287. // \todo add serial logging for the F4
  288. static void usb_log_poll()
  289. {
  290. static uint32_t logpos = 0;
  291. if (usb_serial_ready())
  292. {
  293. // Retrieve pointer to log start and determine number of bytes available.
  294. uint32_t available = 0;
  295. const char *data = log_get_buffer(&logpos, &available);
  296. // Limit to CDC packet size
  297. uint32_t len = available;
  298. if (len == 0) return;
  299. if (len > USB_CDC_DATA_PACKET_SIZE) len = USB_CDC_DATA_PACKET_SIZE;
  300. // Update log position by the actual number of bytes sent
  301. // If USB CDC buffer is full, this may be 0
  302. usb_serial_send((uint8_t*)data, len);
  303. logpos -= available - len;
  304. }
  305. }
  306. /*****************************************/
  307. /* Crash handlers */
  308. /*****************************************/
  309. extern SdFs SD;
  310. // Writes log data to the PB3 SWO pin
  311. void platform_log(const char *s)
  312. {
  313. while (*s)
  314. {
  315. // Write to SWO pin
  316. while (ITM->PORT[0].u32 == 0);
  317. ITM->PORT[0].u8 = *s++;
  318. }
  319. }
  320. void platform_emergency_log_save()
  321. {
  322. if (g_rawdrive_active)
  323. return;
  324. platform_set_sd_callback(NULL, NULL);
  325. SD.begin(SD_CONFIG_CRASH);
  326. FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  327. if (!crashfile.isOpen())
  328. {
  329. // Try to reinitialize
  330. int max_retry = 10;
  331. while (max_retry-- > 0 && !SD.begin(SD_CONFIG_CRASH));
  332. crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  333. }
  334. uint32_t startpos = 0;
  335. crashfile.write(log_get_buffer(&startpos));
  336. crashfile.write(log_get_buffer(&startpos));
  337. crashfile.flush();
  338. crashfile.close();
  339. }
  340. extern uint32_t _estack;
  341. __attribute__((noinline))
  342. void show_hardfault(uint32_t *sp)
  343. {
  344. uint32_t pc = sp[6];
  345. uint32_t lr = sp[5];
  346. uint32_t cfsr = SCB->CFSR;
  347. logmsg("--------------");
  348. logmsg("CRASH!");
  349. logmsg("Platform: ", g_platform_name);
  350. logmsg("FW Version: ", g_log_firmwareversion);
  351. logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  352. logmsg("scsiDev.phase: ", (int)scsiDev.phase);
  353. logmsg("CFSR: ", cfsr);
  354. logmsg("SP: ", (uint32_t)sp);
  355. logmsg("PC: ", pc);
  356. logmsg("LR: ", lr);
  357. logmsg("R0: ", sp[0]);
  358. logmsg("R1: ", sp[1]);
  359. logmsg("R2: ", sp[2]);
  360. logmsg("R3: ", sp[3]);
  361. uint32_t *p = (uint32_t*)((uint32_t)sp & ~3);
  362. for (int i = 0; i < 8; i++)
  363. {
  364. if (p == &_estack) break; // End of stack
  365. logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  366. p += 4;
  367. }
  368. platform_emergency_log_save();
  369. while (1)
  370. {
  371. // Flash the crash address on the LED
  372. // Short pulse means 0, long pulse means 1
  373. int base_delay = 1000;
  374. for (int i = 31; i >= 0; i--)
  375. {
  376. LED_OFF();
  377. for (int j = 0; j < base_delay; j++) delay_ns(100000);
  378. int delay = (pc & (1 << i)) ? (3 * base_delay) : base_delay;
  379. LED_ON();
  380. for (int j = 0; j < delay; j++) delay_ns(100000);
  381. LED_OFF();
  382. }
  383. for (int j = 0; j < base_delay * 10; j++) delay_ns(100000);
  384. }
  385. }
  386. __attribute__((naked, interrupt))
  387. void HardFault_Handler(void)
  388. {
  389. // Copies stack pointer into first argument
  390. asm("mrs r0, msp\n"
  391. "b show_hardfault": : : "r0");
  392. }
  393. __attribute__((naked, interrupt))
  394. void MemManage_Handler(void)
  395. {
  396. asm("mrs r0, msp\n"
  397. "b show_hardfault": : : "r0");
  398. }
  399. __attribute__((naked, interrupt))
  400. void BusFault_Handler(void)
  401. {
  402. asm("mrs r0, msp\n"
  403. "b show_hardfault": : : "r0");
  404. }
  405. __attribute__((naked, interrupt))
  406. void UsageFault_Handler(void)
  407. {
  408. asm("mrs r0, msp\n"
  409. "b show_hardfault": : : "r0");
  410. }
  411. void __assert_func(const char *file, int line, const char *func, const char *expr)
  412. {
  413. uint32_t dummy = 0;
  414. logmsg("--------------");
  415. logmsg("ASSERT FAILED!");
  416. logmsg("Platform: ", g_platform_name);
  417. logmsg("FW Version: ", g_log_firmwareversion);
  418. logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  419. logmsg("scsiDev.phase: ", (int)scsiDev.phase);
  420. logmsg("Assert failed: ", file , ":", line, " in ", func, ":", expr);
  421. uint32_t *p = (uint32_t*)((uint32_t)&dummy & ~3);
  422. for (int i = 0; i < 8; i++)
  423. {
  424. if (p == &_estack) break; // End of stack
  425. logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  426. p += 4;
  427. }
  428. platform_emergency_log_save();
  429. while(1)
  430. {
  431. LED_OFF();
  432. for (int j = 0; j < 1000; j++) delay_ns(100000);
  433. LED_ON();
  434. for (int j = 0; j < 1000; j++) delay_ns(100000);
  435. }
  436. }
  437. } /* extern "C" */
  438. static void watchdog_handler(uint32_t *sp)
  439. {
  440. logmsg("-------------- WATCHDOG TIMEOUT");
  441. show_hardfault(sp);
  442. }
  443. void platform_reset_watchdog()
  444. {
  445. // This uses a software watchdog based on systick timer interrupt.
  446. // It gives us opportunity to collect better debug info than the
  447. // full hardware reset that would be caused by hardware watchdog.
  448. g_watchdog_timeout = WATCHDOG_CRASH_TIMEOUT;
  449. }
  450. void platform_reset_mcu()
  451. {
  452. // reset in 2 sec ( 1 / (32KHz / 32) * 2000 == 2sec)
  453. fwdgt_config(2000, FWDGT_PSC_DIV32);
  454. fwdgt_enable();
  455. }
  456. // Poll function that is called every few milliseconds.
  457. // Can be left empty or used for platform-specific processing.
  458. void platform_poll()
  459. {
  460. // adc_poll();
  461. usb_log_poll();
  462. }
  463. uint8_t platform_get_buttons()
  464. {
  465. return 0;
  466. }
  467. /***********************/
  468. /* Flash reprogramming */
  469. /***********************/
  470. #define SECTOR_NUMBER_TO_ID_ERROR 0xFFFFFFFF
  471. static uint32_t sector_number_to_id(uint32_t sector_number)
  472. {
  473. if(11 >= sector_number){
  474. return CTL_SN(sector_number);
  475. }else if(23 >= sector_number){
  476. return CTL_SN(sector_number + 4);
  477. }else if(27 >= sector_number){
  478. return CTL_SN(sector_number - 12);
  479. }
  480. return SECTOR_NUMBER_TO_ID_ERROR;
  481. }
  482. static bool erase_flash_sector(uint32_t sector)
  483. {
  484. fmc_unlock();
  485. fmc_flag_clear(FMC_FLAG_END | FMC_FLAG_OPERR | FMC_FLAG_WPERR | FMC_FLAG_PGMERR | FMC_FLAG_PGSERR);
  486. uint32_t sector_id = sector_number_to_id(sector);
  487. if (sector_id == SECTOR_NUMBER_TO_ID_ERROR)
  488. {
  489. logmsg("Sector ", (int) sector, " does not exist");
  490. return false;
  491. }
  492. if (FMC_READY != fmc_sector_erase(sector_id))
  493. {
  494. logmsg("Failed flash failed to erase sector, ", (int) sector);
  495. LED_OFF();
  496. return false;
  497. }
  498. fmc_lock();
  499. return true;
  500. }
  501. static bool write_flash(uint32_t offset, uint32_t length, uint8_t buffer[PLATFORM_FLASH_WRITE_BUFFER_SIZE])
  502. {
  503. fmc_unlock();
  504. fmc_flag_clear(FMC_FLAG_END | FMC_FLAG_OPERR | FMC_FLAG_WPERR | FMC_FLAG_PGMERR | FMC_FLAG_PGSERR);
  505. fmc_state_enum status;
  506. uint32_t *buf32 = (uint32_t*)buffer;
  507. uint32_t memory_address = FLASH_BASE + offset;
  508. uint32_t num_words = length / 4;
  509. if (length % 4 == 0)
  510. {
  511. for (int i = 0; i < num_words; i++)
  512. {
  513. status = fmc_word_program(memory_address, buf32[i]);
  514. if (status != FMC_READY)
  515. {
  516. logmsg("Flash write failed at address: ", memory_address, " with code ", (int)status);
  517. return false;
  518. }
  519. memory_address += 4;
  520. }
  521. }
  522. else
  523. {
  524. logmsg("Firmware size expected to be word (4byte) aligned");
  525. }
  526. fmc_lock();
  527. memory_address = FLASH_BASE + offset;
  528. for (int i = 0; i < num_words; i++)
  529. {
  530. uint32_t expected = buf32[i];
  531. uint32_t actual = *(volatile uint32_t*)(memory_address);
  532. if (actual != expected)
  533. {
  534. logmsg("Flash word verify failed memory address ", memory_address, " got ", actual, " expected ", expected);
  535. return false;
  536. }
  537. memory_address += 4;
  538. }
  539. return true;
  540. }
  541. // the size of the main code without the bootloader
  542. static uint32_t firmware_size(FsFile &file)
  543. {
  544. uint32_t fwsize = file.size();
  545. if (fwsize <= PLATFORM_BOOTLOADER_SIZE )
  546. {
  547. logmsg("Firmware file size too small: ", fwsize, " bootloader fits in the first : ", PLATFORM_BOOTLOADER_SIZE, " bytes");
  548. return false;
  549. }
  550. return fwsize - PLATFORM_BOOTLOADER_SIZE;
  551. }
  552. bool platform_firmware_erase(FsFile &file)
  553. {
  554. uint32_t bootloader_sector_index = 0;
  555. uint32_t bootloader_sector_byte_count = 0;
  556. const uint32_t map_length = sizeof(platform_flash_sector_map)/sizeof(platform_flash_sector_map[0]);
  557. // Find at which sector the bootloader ends so it isn't overwritten
  558. for(;;)
  559. {
  560. if (bootloader_sector_index < map_length)
  561. {
  562. bootloader_sector_byte_count += platform_flash_sector_map[bootloader_sector_index];
  563. if (bootloader_sector_byte_count < PLATFORM_BOOTLOADER_SIZE)
  564. {
  565. bootloader_sector_index++;
  566. }
  567. else
  568. {
  569. break;
  570. }
  571. }
  572. else
  573. {
  574. logmsg("Bootloader does not fit in flash");
  575. return false;
  576. }
  577. }
  578. // find the last sector the mainline firmware ends
  579. uint32_t fwsize = firmware_size(file);
  580. uint32_t firmware_sector_start = bootloader_sector_index + 1;
  581. uint32_t last_sector_index = firmware_sector_start;
  582. uint32_t last_sector_byte_count = 0;
  583. for(;;)
  584. {
  585. if (last_sector_index < map_length)
  586. {
  587. last_sector_byte_count += platform_flash_sector_map[last_sector_index];
  588. if (fwsize > last_sector_byte_count)
  589. {
  590. last_sector_index++;
  591. }
  592. else
  593. {
  594. break;
  595. }
  596. }
  597. else
  598. {
  599. logmsg("Firmware too large: ", (int) fwsize,
  600. " space left after the bootloader ", last_sector_byte_count,
  601. " total flash size ", (int)PLATFORM_FLASH_TOTAL_SIZE);
  602. return false;
  603. }
  604. }
  605. // Erase the sectors the mainline firmware will be written to
  606. for (int i = firmware_sector_start; i <= last_sector_index; i++)
  607. {
  608. if (i % 2 == 0)
  609. {
  610. LED_ON();
  611. }
  612. else
  613. {
  614. LED_OFF();
  615. }
  616. if (!erase_flash_sector(i))
  617. {
  618. logmsg("Flash failed to erase sector ", i);
  619. return false;
  620. }
  621. }
  622. LED_OFF();
  623. return true;
  624. }
  625. bool platform_firmware_program(FsFile &file)
  626. {
  627. // write the mainline firmware to flash
  628. int32_t bytes_read = 0;
  629. uint32_t address_offset = PLATFORM_BOOTLOADER_SIZE;
  630. // Make sure the buffer is aligned to word boundary
  631. static uint32_t buffer32[PLATFORM_FLASH_WRITE_BUFFER_SIZE / 4];
  632. uint8_t *buffer = (uint8_t*)buffer32;
  633. if (!file.seek(PLATFORM_BOOTLOADER_SIZE))
  634. {
  635. logmsg("Seek failed");
  636. return false;
  637. }
  638. dbgmsg("Writing flash at firmware offset ", address_offset, " data ", bytearray(buffer, 4));
  639. for(;;)
  640. {
  641. if ((address_offset - PLATFORM_BOOTLOADER_SIZE) / PLATFORM_FLASH_WRITE_BUFFER_SIZE % 2)
  642. {
  643. LED_ON();
  644. }
  645. else
  646. {
  647. LED_OFF();
  648. }
  649. bytes_read = file.read(buffer, PLATFORM_FLASH_WRITE_BUFFER_SIZE);
  650. if ( bytes_read < 0)
  651. {
  652. logmsg("Firmware file read failed, error code ", (int) bytes_read);
  653. return false;
  654. }
  655. if (!write_flash(address_offset, bytes_read, buffer))
  656. {
  657. logmsg("Failed to write flash at offset: ", address_offset, " bytes read: ",(int) bytes_read);
  658. return false;
  659. }
  660. // check the mainline firmware is valid
  661. if (address_offset == PLATFORM_BOOTLOADER_SIZE)
  662. {
  663. if (buffer[3] != 0x20 || buffer[7] != 0x08)
  664. {
  665. logmsg("Invalid firmware file, starts with: ", bytearray(buffer, 16));
  666. return false;
  667. }
  668. }
  669. if (bytes_read < PLATFORM_FLASH_WRITE_BUFFER_SIZE)
  670. {
  671. break;
  672. }
  673. address_offset += bytes_read;
  674. }
  675. LED_OFF();
  676. return true;
  677. }
  678. void platform_boot_to_main_firmware()
  679. {
  680. uint32_t *mainprogram_start = (uint32_t*)(0x08000000 + PLATFORM_BOOTLOADER_SIZE);
  681. SCB->VTOR = (uint32_t)mainprogram_start;
  682. __asm__(
  683. "msr msp, %0\n\t"
  684. "bx %1" : : "r" (mainprogram_start[0]),
  685. "r" (mainprogram_start[1]) : "memory");
  686. }
  687. /**************************************/
  688. /* SCSI configuration based on DIPSW1 */
  689. /**************************************/
  690. void platform_config_hook(S2S_TargetCfg *config)
  691. {
  692. // Enable Apple quirks by dip switch
  693. if (g_enable_apple_quirks)
  694. {
  695. if (config->quirks == S2S_CFG_QUIRKS_NONE)
  696. {
  697. config->quirks = S2S_CFG_QUIRKS_APPLE;
  698. }
  699. }
  700. }
  701. /**********************************************/
  702. /* Mapping from data bytes to GPIO BOP values */
  703. /**********************************************/
  704. #define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1)
  705. #define X(n) (\
  706. ((n & 0x01) ? (SCSI_OUT_DB0 << 16) : SCSI_OUT_DB0) | \
  707. ((n & 0x02) ? (SCSI_OUT_DB1 << 16) : SCSI_OUT_DB1) | \
  708. ((n & 0x04) ? (SCSI_OUT_DB2 << 16) : SCSI_OUT_DB2) | \
  709. ((n & 0x08) ? (SCSI_OUT_DB3 << 16) : SCSI_OUT_DB3) | \
  710. ((n & 0x10) ? (SCSI_OUT_DB4 << 16) : SCSI_OUT_DB4) | \
  711. ((n & 0x20) ? (SCSI_OUT_DB5 << 16) : SCSI_OUT_DB5) | \
  712. ((n & 0x40) ? (SCSI_OUT_DB6 << 16) : SCSI_OUT_DB6) | \
  713. ((n & 0x80) ? (SCSI_OUT_DB7 << 16) : SCSI_OUT_DB7) | \
  714. (PARITY(n) ? (SCSI_OUT_DBP << 16) : SCSI_OUT_DBP) | \
  715. (SCSI_OUT_REQ) \
  716. )
  717. const uint32_t g_scsi_out_byte_to_bop[256] =
  718. {
  719. X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f),
  720. X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f),
  721. X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f),
  722. X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f),
  723. X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f),
  724. X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f),
  725. X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f),
  726. X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f),
  727. X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f),
  728. X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f),
  729. X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf),
  730. X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf),
  731. X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf),
  732. X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf),
  733. X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef),
  734. X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff)
  735. };
  736. #undef X