ZuluSCSI_platform.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
  3. *
  4. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
  5. *
  6. * https://www.gnu.org/licenses/gpl-3.0.html
  7. * ----
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version. 
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16. * GNU General Public License for more details. 
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  20. **/
  21. #include "ZuluSCSI_platform.h"
  22. #include "gd32f20x_sdio.h"
  23. #include "gd32f20x_fmc.h"
  24. #include "ZuluSCSI_log.h"
  25. #include "ZuluSCSI_config.h"
  26. #include "greenpak.h"
  27. #include <SdFat.h>
  28. #include <scsi.h>
  29. #include <assert.h>
  30. extern "C" {
  31. const char *g_platform_name = PLATFORM_NAME;
  32. static bool g_enable_apple_quirks = false;
  33. // hw_config.cpp c functions
  34. #ifdef ZULUSCSI_HARDWARE_CONFIG
  35. #include "platform_hw_config.h"
  36. #endif
  37. /*************************/
  38. /* Timing functions */
  39. /*************************/
  40. static volatile uint32_t g_millisecond_counter;
  41. static volatile uint32_t g_watchdog_timeout;
  42. static uint32_t g_ns_to_cycles; // Q0.32 fixed point format
  43. static void watchdog_handler(uint32_t *sp);
  44. unsigned long millis()
  45. {
  46. return g_millisecond_counter;
  47. }
  48. void delay(unsigned long ms)
  49. {
  50. uint32_t start = g_millisecond_counter;
  51. while ((uint32_t)(g_millisecond_counter - start) < ms);
  52. }
  53. void delay_ns(unsigned long ns)
  54. {
  55. uint32_t CNT_start = DWT->CYCCNT;
  56. if (ns <= 100) return; // Approximate call overhead
  57. ns -= 100;
  58. uint32_t cycles = ((uint64_t)ns * g_ns_to_cycles) >> 32;
  59. while ((uint32_t)(DWT->CYCCNT - CNT_start) < cycles);
  60. }
  61. void SysTick_Handler_inner(uint32_t *sp)
  62. {
  63. g_millisecond_counter++;
  64. if (g_watchdog_timeout > 0)
  65. {
  66. g_watchdog_timeout--;
  67. const uint32_t busreset_time = WATCHDOG_CRASH_TIMEOUT - WATCHDOG_BUS_RESET_TIMEOUT;
  68. if (g_watchdog_timeout <= busreset_time)
  69. {
  70. if (!scsiDev.resetFlag)
  71. {
  72. logmsg("WATCHDOG TIMEOUT at PC ", sp[6], " LR ", sp[5], " attempting bus reset");
  73. scsiDev.resetFlag = 1;
  74. }
  75. if (g_watchdog_timeout == 0)
  76. {
  77. watchdog_handler(sp);
  78. }
  79. }
  80. }
  81. }
  82. __attribute__((interrupt, naked))
  83. void SysTick_Handler(void)
  84. {
  85. // Take note of stack pointer so that we can print debug
  86. // info in watchdog handler.
  87. asm("mrs r0, msp\n"
  88. "b SysTick_Handler_inner": : : "r0");
  89. }
  90. // This function is called by scsiPhy.cpp.
  91. // It resets the systick counter to give 1 millisecond of uninterrupted transfer time.
  92. // The total number of skips is kept track of to keep the correct time on average.
  93. void SysTick_Handle_PreEmptively()
  94. {
  95. static int skipped_clocks = 0;
  96. __disable_irq();
  97. uint32_t loadval = SysTick->LOAD;
  98. skipped_clocks += loadval - SysTick->VAL;
  99. SysTick->VAL = 0;
  100. if (skipped_clocks > loadval)
  101. {
  102. // We have skipped enough ticks that it is time to fake a call
  103. // to SysTick interrupt handler.
  104. skipped_clocks -= loadval;
  105. uint32_t stack_frame[8] = {0};
  106. stack_frame[6] = (uint32_t)__builtin_return_address(0);
  107. SysTick_Handler_inner(stack_frame);
  108. }
  109. __enable_irq();
  110. }
  111. /***************/
  112. /* GPIO init */
  113. /***************/
  114. // Initialize SPI and GPIO configuration
  115. // Clock has already been initialized by system_gd32f20x.c
  116. void platform_init()
  117. {
  118. SystemCoreClockUpdate();
  119. // Enable SysTick to drive millis()
  120. g_millisecond_counter = 0;
  121. SysTick_Config(SystemCoreClock / 1000U);
  122. NVIC_SetPriority(SysTick_IRQn, 0x00U);
  123. // Enable DWT counter to drive delay_ns()
  124. g_ns_to_cycles = ((uint64_t)SystemCoreClock << 32) / 1000000000;
  125. CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
  126. DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;
  127. // Enable debug output on SWO pin
  128. DBG_CTL |= DBG_CTL_TRACE_IOEN;
  129. if (TPI->ACPR == 0)
  130. {
  131. CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
  132. TPI->ACPR = SystemCoreClock / 2000000 - 1; // 2 Mbps baudrate for SWO
  133. // TPI->ACPR = SystemCoreClock / 30000000 - 1; // 30 Mbps baudrate for SWO
  134. TPI->SPPR = 2;
  135. TPI->FFCR = 0x100; // TPIU packet framing disabled
  136. // DWT->CTRL |= (1 << DWT_CTRL_EXCTRCENA_Pos);
  137. // DWT->CTRL |= (1 << DWT_CTRL_CYCTAP_Pos)
  138. // | (15 << DWT_CTRL_POSTPRESET_Pos)
  139. // | (1 << DWT_CTRL_PCSAMPLENA_Pos)
  140. // | (3 << DWT_CTRL_SYNCTAP_Pos)
  141. // | (1 << DWT_CTRL_CYCCNTENA_Pos);
  142. ITM->LAR = 0xC5ACCE55;
  143. ITM->TCR = (1 << ITM_TCR_DWTENA_Pos)
  144. | (1 << ITM_TCR_SYNCENA_Pos)
  145. | (1 << ITM_TCR_ITMENA_Pos);
  146. ITM->TER = 0xFFFFFFFF; // Enable all stimulus ports
  147. }
  148. // Enable needed clocks for GPIO
  149. rcu_periph_clock_enable(RCU_AF);
  150. rcu_periph_clock_enable(RCU_GPIOA);
  151. rcu_periph_clock_enable(RCU_GPIOB);
  152. rcu_periph_clock_enable(RCU_GPIOC);
  153. rcu_periph_clock_enable(RCU_GPIOD);
  154. rcu_periph_clock_enable(RCU_GPIOE);
  155. // Switch to SWD debug port (disable JTAG) to release PB4 as GPIO
  156. gpio_pin_remap_config(GPIO_SWJ_SWDPENABLE_REMAP, ENABLE);
  157. // SCSI pins.
  158. // Initialize open drain outputs to high.
  159. SCSI_RELEASE_OUTPUTS();
  160. gpio_init(SCSI_OUT_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_DATA_MASK | SCSI_OUT_REQ);
  161. gpio_init(SCSI_OUT_IO_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_IO_PIN);
  162. gpio_init(SCSI_OUT_CD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_CD_PIN);
  163. gpio_init(SCSI_OUT_SEL_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_SEL_PIN);
  164. gpio_init(SCSI_OUT_MSG_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_MSG_PIN);
  165. gpio_init(SCSI_OUT_RST_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_RST_PIN);
  166. gpio_init(SCSI_OUT_BSY_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_BSY_PIN);
  167. gpio_init(SCSI_IN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_IN_MASK);
  168. gpio_init(SCSI_ATN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ATN_PIN);
  169. gpio_init(SCSI_BSY_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_BSY_PIN);
  170. gpio_init(SCSI_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_SEL_PIN);
  171. gpio_init(SCSI_ACK_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ACK_PIN);
  172. gpio_init(SCSI_RST_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_RST_PIN);
  173. // Terminator enable
  174. gpio_bit_set(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
  175. gpio_init(SCSI_TERM_EN_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, SCSI_TERM_EN_PIN);
  176. #ifndef SD_USE_SDIO
  177. // SD card pins using SPI
  178. gpio_init(SD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SD_CS_PIN);
  179. gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_CLK_PIN);
  180. gpio_init(SD_PORT, GPIO_MODE_IPU, 0, SD_MISO_PIN);
  181. gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_MOSI_PIN);
  182. #else
  183. // SD card pins using SDIO
  184. gpio_init(SD_SDIO_DATA_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_SDIO_D0 | SD_SDIO_D1 | SD_SDIO_D2 | SD_SDIO_D3);
  185. gpio_init(SD_SDIO_CLK_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_SDIO_CLK);
  186. gpio_init(SD_SDIO_CMD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_SDIO_CMD);
  187. #endif
  188. // DIP switches
  189. #ifdef DIPSW1_PIN
  190. gpio_init(DIP_PORT, GPIO_MODE_IPD, 0, DIPSW1_PIN | DIPSW2_PIN | DIPSW3_PIN);
  191. #else
  192. // Some boards do not have an Apple quirks dip switch
  193. gpio_init(DIP_PORT, GPIO_MODE_IPD, 0, DIPSW2_PIN | DIPSW3_PIN);
  194. #endif
  195. // LED pins
  196. gpio_bit_set(LED_PORT, LED_PINS);
  197. gpio_init(LED_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, LED_PINS);
  198. // Ejection buttons
  199. #ifdef ZULUSCSI_HARDWARE_CONFIG
  200. gpio_init(EJECT_BTN_PORT, GPIO_MODE_IPU, 0, EJECT_BTN_PIN);
  201. gpio_init(USER_BTN_PORT, GPIO_MODE_IPU, 0, USER_BTN_PIN);
  202. hw_config_init_gpios();
  203. #else
  204. gpio_init(EJECT_1_PORT, GPIO_MODE_IPU, 0, EJECT_1_PIN);
  205. gpio_init(EJECT_2_PORT, GPIO_MODE_IPU, 0, EJECT_2_PIN);
  206. #endif
  207. // SWO trace pin on PB3
  208. gpio_init(GPIOB, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_3);
  209. }
  210. void platform_late_init()
  211. {
  212. logmsg("Platform: ", g_platform_name);
  213. logmsg("FW Version: ", g_log_firmwareversion);
  214. #ifdef ZULUSCSI_V1_0_mini
  215. logmsg("DIPSW3 is ON: Enabling SCSI termination");
  216. #else
  217. if (gpio_input_bit_get(DIP_PORT, DIPSW3_PIN))
  218. {
  219. logmsg("DIPSW3 is ON: Enabling SCSI termination");
  220. gpio_bit_reset(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
  221. }
  222. else
  223. {
  224. logmsg("DIPSW3 is OFF: SCSI termination disabled");
  225. }
  226. #endif // ZULUSCSI_V1_0_mini
  227. if (gpio_input_bit_get(DIP_PORT, DIPSW2_PIN))
  228. {
  229. logmsg("DIPSW2 is ON: enabling debug messages");
  230. g_log_debug = true;
  231. }
  232. else
  233. {
  234. g_log_debug = false;
  235. }
  236. #ifdef DIPSW1_PIN
  237. if (gpio_input_bit_get(DIP_PORT, DIPSW1_PIN))
  238. {
  239. logmsg("DIPSW1 is ON: enabling Apple quirks by default");
  240. g_enable_apple_quirks = true;
  241. }
  242. #endif
  243. #ifdef ZULUSCSI_HARDWARE_CONFIG
  244. hw_config_init_state();
  245. #else
  246. greenpak_load_firmware();
  247. #endif
  248. }
  249. void platform_disable_led(void)
  250. {
  251. gpio_init(LED_PORT, GPIO_MODE_IPU, 0, LED_PINS);
  252. logmsg("Disabling status LED");
  253. }
  254. /*****************************************/
  255. /* Supply voltage monitor */
  256. /*****************************************/
  257. // Use ADC to implement supply voltage monitoring for the +3.0V rail.
  258. // This works by sampling the Vrefint, which has
  259. // a voltage of 1.2 V, allowing to calculate the VDD voltage.
  260. static void adc_poll()
  261. {
  262. #if PLATFORM_VDD_WARNING_LIMIT_mV > 0
  263. static bool initialized = false;
  264. static int lowest_vdd_seen = PLATFORM_VDD_WARNING_LIMIT_mV;
  265. if (!initialized)
  266. {
  267. rcu_periph_clock_enable(RCU_ADC0);
  268. adc_enable(ADC0);
  269. adc_calibration_enable(ADC0);
  270. adc_tempsensor_vrefint_enable();
  271. adc_inserted_channel_config(ADC0, 0, ADC_CHANNEL_17, ADC_SAMPLETIME_239POINT5);
  272. adc_external_trigger_source_config(ADC0, ADC_INSERTED_CHANNEL, ADC0_1_2_EXTTRIG_INSERTED_NONE);
  273. adc_external_trigger_config(ADC0, ADC_INSERTED_CHANNEL, ENABLE);
  274. adc_software_trigger_enable(ADC0, ADC_INSERTED_CHANNEL);
  275. initialized = true;
  276. }
  277. // Read previous result and start new one
  278. int adc_value = ADC_IDATA0(ADC0);
  279. adc_software_trigger_enable(ADC0, ADC_INSERTED_CHANNEL);
  280. // adc_value = 1200mV * 4096 / Vdd
  281. // => Vdd = 1200mV * 4096 / adc_value
  282. // To avoid wasting time on division, compare against
  283. // limit directly.
  284. const int limit = (1200 * 4096) / PLATFORM_VDD_WARNING_LIMIT_mV;
  285. if (adc_value > limit)
  286. {
  287. // Warn once, and then again if we detect even a lower drop.
  288. int vdd_mV = (1200 * 4096) / adc_value;
  289. if (vdd_mV < lowest_vdd_seen)
  290. {
  291. logmsg("WARNING: Detected supply voltage drop to ", vdd_mV, "mV. Verify power supply is adequate.");
  292. lowest_vdd_seen = vdd_mV - 50; // Small hysteresis to avoid excessive warnings
  293. }
  294. }
  295. #endif
  296. }
  297. /*****************************************/
  298. /* Crash handlers */
  299. /*****************************************/
  300. extern SdFs SD;
  301. // Writes log data to the PB3 SWO pin
  302. void platform_log(const char *s)
  303. {
  304. while (*s)
  305. {
  306. // Write to SWO pin
  307. while (ITM->PORT[0].u32 == 0);
  308. ITM->PORT[0].u8 = *s++;
  309. }
  310. }
  311. void platform_emergency_log_save()
  312. {
  313. platform_set_sd_callback(NULL, NULL);
  314. SD.begin(SD_CONFIG_CRASH);
  315. FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  316. if (!crashfile.isOpen())
  317. {
  318. // Try to reinitialize
  319. int max_retry = 10;
  320. while (max_retry-- > 0 && !SD.begin(SD_CONFIG_CRASH));
  321. crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  322. }
  323. uint32_t startpos = 0;
  324. crashfile.write(log_get_buffer(&startpos));
  325. crashfile.write(log_get_buffer(&startpos));
  326. crashfile.flush();
  327. crashfile.close();
  328. }
  329. extern uint32_t _estack;
  330. __attribute__((noinline))
  331. void show_hardfault(uint32_t *sp)
  332. {
  333. uint32_t pc = sp[6];
  334. uint32_t lr = sp[5];
  335. uint32_t cfsr = SCB->CFSR;
  336. logmsg("--------------");
  337. logmsg("CRASH!");
  338. logmsg("Platform: ", g_platform_name);
  339. logmsg("FW Version: ", g_log_firmwareversion);
  340. logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  341. logmsg("scsiDev.phase: ", (int)scsiDev.phase);
  342. logmsg("CFSR: ", cfsr);
  343. logmsg("SP: ", (uint32_t)sp);
  344. logmsg("PC: ", pc);
  345. logmsg("LR: ", lr);
  346. logmsg("R0: ", sp[0]);
  347. logmsg("R1: ", sp[1]);
  348. logmsg("R2: ", sp[2]);
  349. logmsg("R3: ", sp[3]);
  350. uint32_t *p = (uint32_t*)((uint32_t)sp & ~3);
  351. for (int i = 0; i < 8; i++)
  352. {
  353. if (p == &_estack) break; // End of stack
  354. logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  355. p += 4;
  356. }
  357. platform_emergency_log_save();
  358. while (1)
  359. {
  360. // Flash the crash address on the LED
  361. // Short pulse means 0, long pulse means 1
  362. int base_delay = 1000;
  363. for (int i = 31; i >= 0; i--)
  364. {
  365. LED_OFF();
  366. for (int j = 0; j < base_delay; j++) delay_ns(100000);
  367. int delay = (pc & (1 << i)) ? (3 * base_delay) : base_delay;
  368. LED_ON();
  369. for (int j = 0; j < delay; j++) delay_ns(100000);
  370. LED_OFF();
  371. }
  372. for (int j = 0; j < base_delay * 10; j++) delay_ns(100000);
  373. }
  374. }
  375. __attribute__((naked, interrupt))
  376. void HardFault_Handler(void)
  377. {
  378. // Copies stack pointer into first argument
  379. asm("mrs r0, msp\n"
  380. "b show_hardfault": : : "r0");
  381. }
  382. __attribute__((naked, interrupt))
  383. void MemManage_Handler(void)
  384. {
  385. asm("mrs r0, msp\n"
  386. "b show_hardfault": : : "r0");
  387. }
  388. __attribute__((naked, interrupt))
  389. void BusFault_Handler(void)
  390. {
  391. asm("mrs r0, msp\n"
  392. "b show_hardfault": : : "r0");
  393. }
  394. __attribute__((naked, interrupt))
  395. void UsageFault_Handler(void)
  396. {
  397. asm("mrs r0, msp\n"
  398. "b show_hardfault": : : "r0");
  399. }
  400. void __assert_func(const char *file, int line, const char *func, const char *expr)
  401. {
  402. uint32_t dummy = 0;
  403. logmsg("--------------");
  404. logmsg("ASSERT FAILED!");
  405. logmsg("Platform: ", g_platform_name);
  406. logmsg("FW Version: ", g_log_firmwareversion);
  407. logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  408. logmsg("scsiDev.phase: ", (int)scsiDev.phase);
  409. logmsg("Assert failed: ", file , ":", line, " in ", func, ":", expr);
  410. uint32_t *p = (uint32_t*)((uint32_t)&dummy & ~3);
  411. for (int i = 0; i < 8; i++)
  412. {
  413. if (p == &_estack) break; // End of stack
  414. logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  415. p += 4;
  416. }
  417. platform_emergency_log_save();
  418. while(1)
  419. {
  420. LED_OFF();
  421. for (int j = 0; j < 1000; j++) delay_ns(100000);
  422. LED_ON();
  423. for (int j = 0; j < 1000; j++) delay_ns(100000);
  424. }
  425. }
  426. } /* extern "C" */
  427. static void watchdog_handler(uint32_t *sp)
  428. {
  429. logmsg("-------------- WATCHDOG TIMEOUT");
  430. show_hardfault(sp);
  431. }
  432. void platform_reset_watchdog()
  433. {
  434. // This uses a software watchdog based on systick timer interrupt.
  435. // It gives us opportunity to collect better debug info than the
  436. // full hardware reset that would be caused by hardware watchdog.
  437. g_watchdog_timeout = WATCHDOG_CRASH_TIMEOUT;
  438. }
  439. // Poll function that is called every few milliseconds.
  440. // Can be left empty or used for platform-specific processing.
  441. void platform_poll()
  442. {
  443. adc_poll();
  444. }
  445. uint8_t platform_get_buttons()
  446. {
  447. // Buttons are active low: internal pull-up is enabled,
  448. // and when button is pressed the pin goes low.
  449. uint8_t buttons = 0;
  450. #ifdef ZULUSCSI_HARDWARE_CONFIG
  451. if (!gpio_input_bit_get(EJECT_BTN_PORT, EJECT_BTN_PIN)) buttons |= 1;
  452. if (!gpio_input_bit_get(USER_BTN_PORT, USER_BTN_PIN)) buttons |= 4;
  453. #else
  454. if (!gpio_input_bit_get(EJECT_1_PORT, EJECT_1_PIN)) buttons |= 1;
  455. if (!gpio_input_bit_get(EJECT_2_PORT, EJECT_2_PIN)) buttons |= 2;
  456. #endif
  457. // Simple debouncing logic: handle button releases after 100 ms delay.
  458. static uint32_t debounce;
  459. static uint8_t buttons_debounced = 0;
  460. if (buttons != 0)
  461. {
  462. buttons_debounced = buttons;
  463. debounce = millis();
  464. }
  465. else if ((uint32_t)(millis() - debounce) > 100)
  466. {
  467. buttons_debounced = 0;
  468. }
  469. return buttons_debounced;
  470. }
  471. /***********************/
  472. /* Flash reprogramming */
  473. /***********************/
  474. bool platform_rewrite_flash_page(uint32_t offset, uint8_t buffer[PLATFORM_FLASH_PAGE_SIZE])
  475. {
  476. if (offset == 0)
  477. {
  478. if (buffer[3] != 0x20 || buffer[7] != 0x08)
  479. {
  480. logmsg("Invalid firmware file, starts with: ", bytearray(buffer, 16));
  481. return false;
  482. }
  483. }
  484. dbgmsg("Writing flash at offset ", offset, " data ", bytearray(buffer, 4));
  485. assert(offset % PLATFORM_FLASH_PAGE_SIZE == 0);
  486. assert(offset >= PLATFORM_BOOTLOADER_SIZE);
  487. fmc_unlock();
  488. fmc_bank0_unlock();
  489. fmc_state_enum status;
  490. status = fmc_page_erase(FLASH_BASE + offset);
  491. if (status != FMC_READY)
  492. {
  493. logmsg("Erase failed: ", (int)status);
  494. return false;
  495. }
  496. uint32_t *buf32 = (uint32_t*)buffer;
  497. uint32_t num_words = PLATFORM_FLASH_PAGE_SIZE / 4;
  498. for (int i = 0; i < num_words; i++)
  499. {
  500. status = fmc_word_program(FLASH_BASE + offset + i * 4, buf32[i]);
  501. if (status != FMC_READY)
  502. {
  503. logmsg("Flash write failed: ", (int)status);
  504. return false;
  505. }
  506. }
  507. fmc_lock();
  508. for (int i = 0; i < num_words; i++)
  509. {
  510. uint32_t expected = buf32[i];
  511. uint32_t actual = *(volatile uint32_t*)(FLASH_BASE + offset + i * 4);
  512. if (actual != expected)
  513. {
  514. logmsg("Flash verify failed at offset ", offset + i * 4, " got ", actual, " expected ", expected);
  515. return false;
  516. }
  517. }
  518. return true;
  519. }
  520. void platform_boot_to_main_firmware()
  521. {
  522. uint32_t *mainprogram_start = (uint32_t*)(0x08000000 + PLATFORM_BOOTLOADER_SIZE);
  523. SCB->VTOR = (uint32_t)mainprogram_start;
  524. __asm__(
  525. "msr msp, %0\n\t"
  526. "bx %1" : : "r" (mainprogram_start[0]),
  527. "r" (mainprogram_start[1]) : "memory");
  528. }
  529. /**************************************/
  530. /* SCSI configuration based on DIPSW1 */
  531. /**************************************/
  532. void platform_config_hook(S2S_TargetCfg *config)
  533. {
  534. // Enable Apple quirks by dip switch
  535. if (g_enable_apple_quirks)
  536. {
  537. if (config->quirks == S2S_CFG_QUIRKS_NONE)
  538. {
  539. config->quirks = S2S_CFG_QUIRKS_APPLE;
  540. }
  541. }
  542. }
  543. /**********************************************/
  544. /* Mapping from data bytes to GPIO BOP values */
  545. /**********************************************/
  546. #define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1)
  547. #define X(n) (\
  548. ((n & 0x01) ? (SCSI_OUT_DB0 << 16) : SCSI_OUT_DB0) | \
  549. ((n & 0x02) ? (SCSI_OUT_DB1 << 16) : SCSI_OUT_DB1) | \
  550. ((n & 0x04) ? (SCSI_OUT_DB2 << 16) : SCSI_OUT_DB2) | \
  551. ((n & 0x08) ? (SCSI_OUT_DB3 << 16) : SCSI_OUT_DB3) | \
  552. ((n & 0x10) ? (SCSI_OUT_DB4 << 16) : SCSI_OUT_DB4) | \
  553. ((n & 0x20) ? (SCSI_OUT_DB5 << 16) : SCSI_OUT_DB5) | \
  554. ((n & 0x40) ? (SCSI_OUT_DB6 << 16) : SCSI_OUT_DB6) | \
  555. ((n & 0x80) ? (SCSI_OUT_DB7 << 16) : SCSI_OUT_DB7) | \
  556. (PARITY(n) ? (SCSI_OUT_DBP << 16) : SCSI_OUT_DBP) | \
  557. (SCSI_OUT_REQ) \
  558. )
  559. const uint32_t g_scsi_out_byte_to_bop[256] =
  560. {
  561. X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f),
  562. X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f),
  563. X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f),
  564. X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f),
  565. X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f),
  566. X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f),
  567. X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f),
  568. X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f),
  569. X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f),
  570. X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f),
  571. X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf),
  572. X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf),
  573. X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf),
  574. X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf),
  575. X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef),
  576. X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff)
  577. };
  578. #undef X