scsiPhy.cpp 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. // Implements the low level interface to SCSI bus
  2. // Partially derived from scsiPhy.c from SCSI2SD-V6
  3. #include "scsiPhy.h"
  4. #include "ZuluSCSI_platform.h"
  5. #include "ZuluSCSI_log.h"
  6. #include "ZuluSCSI_log_trace.h"
  7. #include "ZuluSCSI_config.h"
  8. #include "scsi_accel_rp2040.h"
  9. #include <scsi2sd.h>
  10. extern "C" {
  11. #include <scsi.h>
  12. #include <scsi2sd_time.h>
  13. }
  14. /***********************/
  15. /* SCSI status signals */
  16. /***********************/
  17. extern "C" bool scsiStatusATN()
  18. {
  19. return SCSI_IN(ATN);
  20. }
  21. extern "C" bool scsiStatusBSY()
  22. {
  23. return SCSI_IN(BSY);
  24. }
  25. /************************/
  26. /* SCSI selection logic */
  27. /************************/
  28. volatile uint8_t g_scsi_sts_selection;
  29. volatile uint8_t g_scsi_ctrl_bsy;
  30. void scsi_bsy_deassert_interrupt()
  31. {
  32. if (SCSI_IN(SEL) && !SCSI_IN(BSY))
  33. {
  34. // Check if any of the targets we simulate is selected
  35. uint8_t sel_bits = SCSI_IN_DATA();
  36. int sel_id = -1;
  37. for (int i = 0; i < S2S_MAX_TARGETS; i++)
  38. {
  39. if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
  40. {
  41. if (sel_bits & (1 << scsiDev.targets[i].targetId))
  42. {
  43. sel_id = scsiDev.targets[i].targetId;
  44. break;
  45. }
  46. }
  47. }
  48. if (sel_id >= 0)
  49. {
  50. // Set ATN flag here unconditionally, real value is only known after
  51. // OUT_BSY is enabled in scsiStatusSEL() below.
  52. g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | SCSI_STS_SELECTION_ATN | sel_id;
  53. }
  54. // selFlag is required for Philips P2000C which releases it after 600ns
  55. // without waiting for BSY.
  56. // Also required for some early Mac Plus roms
  57. scsiDev.selFlag = *SCSI_STS_SELECTED;
  58. }
  59. }
  60. extern "C" bool scsiStatusSEL()
  61. {
  62. if (g_scsi_ctrl_bsy)
  63. {
  64. // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
  65. // Instead update the state here.
  66. // Releasing happens with bus release.
  67. g_scsi_ctrl_bsy = 0;
  68. SCSI_OUT(BSY, 1);
  69. // On RP2040 hardware the ATN signal is only available after OUT_BSY enables
  70. // the IO buffer U105, so check the signal status here.
  71. delay_100ns();
  72. if (!scsiStatusATN())
  73. {
  74. // This is a SCSI1 host that does send IDENTIFY message
  75. scsiDev.atnFlag = 0;
  76. scsiDev.target->unitAttention = 0;
  77. scsiDev.compatMode = COMPAT_SCSI1;
  78. }
  79. }
  80. return SCSI_IN(SEL);
  81. }
  82. /************************/
  83. /* SCSI bus reset logic */
  84. /************************/
  85. static void scsi_rst_assert_interrupt()
  86. {
  87. // Glitch filtering
  88. bool rst1 = SCSI_IN(RST);
  89. delay_ns(500);
  90. bool rst2 = SCSI_IN(RST);
  91. if (rst1 && rst2)
  92. {
  93. azdbg("BUS RESET");
  94. scsiDev.resetFlag = 1;
  95. }
  96. }
  97. static void scsiPhyIRQ(uint gpio, uint32_t events)
  98. {
  99. if (gpio == SCSI_IN_BSY || gpio == SCSI_IN_SEL)
  100. {
  101. // Note BSY / SEL interrupts only when we are not driving OUT_BSY low ourselves.
  102. // The BSY input pin may be shared with other signals.
  103. if (sio_hw->gpio_out & (1 << SCSI_OUT_BSY))
  104. {
  105. scsi_bsy_deassert_interrupt();
  106. }
  107. }
  108. else if (gpio == SCSI_IN_RST)
  109. {
  110. scsi_rst_assert_interrupt();
  111. }
  112. }
  113. // This function is called to initialize the phy code.
  114. // It is called after power-on and after SCSI bus reset.
  115. extern "C" void scsiPhyReset(void)
  116. {
  117. SCSI_RELEASE_OUTPUTS();
  118. g_scsi_sts_selection = 0;
  119. g_scsi_ctrl_bsy = 0;
  120. scsi_accel_rp2040_init();
  121. // Enable BSY, RST and SEL interrupts
  122. // Note: RP2040 library currently supports only one callback,
  123. // so it has to be same for both pins.
  124. gpio_set_irq_enabled_with_callback(SCSI_IN_BSY, GPIO_IRQ_EDGE_RISE, true, scsiPhyIRQ);
  125. gpio_set_irq_enabled(SCSI_IN_RST, GPIO_IRQ_EDGE_FALL, true);
  126. // Check BSY line status when SEL goes active.
  127. // This is needed to handle SCSI-1 hosts that use the single initiator mode.
  128. // The host will just assert the SEL directly, without asserting BSY first.
  129. gpio_set_irq_enabled(SCSI_IN_SEL, GPIO_IRQ_EDGE_FALL, true);
  130. }
  131. /************************/
  132. /* SCSI bus phase logic */
  133. /************************/
  134. static SCSI_PHASE g_scsi_phase;
  135. extern "C" void scsiEnterPhase(int phase)
  136. {
  137. int delay = scsiEnterPhaseImmediate(phase);
  138. if (delay > 0)
  139. {
  140. s2s_delay_ns(delay);
  141. }
  142. }
  143. // Change state and return nanosecond delay to wait
  144. extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
  145. {
  146. if (phase != g_scsi_phase)
  147. {
  148. // ANSI INCITS 362-2002 SPI-3 10.7.1:
  149. // Phase changes are not allowed while REQ or ACK is asserted.
  150. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
  151. if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT))
  152. {
  153. // Akai S1000/S3000 seems to need extra delay before changing to data phase
  154. // after a command. The code in ZuluSCSI_disk.cpp tries to do this while waiting
  155. // for SD card, to avoid any extra latency.
  156. s2s_delay_ns(400000);
  157. }
  158. int oldphase = g_scsi_phase;
  159. g_scsi_phase = (SCSI_PHASE)phase;
  160. scsiLogPhaseChange(phase);
  161. // Select between synchronous vs. asynchronous SCSI writes
  162. if (g_scsi_phase == DATA_IN && scsiDev.target->syncOffset > 0)
  163. {
  164. scsi_accel_rp2040_setWriteMode(scsiDev.target->syncOffset, scsiDev.target->syncPeriod);
  165. }
  166. else
  167. {
  168. scsi_accel_rp2040_setWriteMode(0, 0);
  169. }
  170. if (phase < 0)
  171. {
  172. // Other communication on bus or reset state
  173. SCSI_RELEASE_OUTPUTS();
  174. return 0;
  175. }
  176. else
  177. {
  178. SCSI_OUT(MSG, phase & __scsiphase_msg);
  179. SCSI_OUT(CD, phase & __scsiphase_cd);
  180. SCSI_OUT(IO, phase & __scsiphase_io);
  181. SCSI_ENABLE_CONTROL_OUT();
  182. int delayNs = 400; // Bus settle delay
  183. if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
  184. {
  185. delayNs += 400; // Data release delay
  186. }
  187. if (scsiDev.compatMode < COMPAT_SCSI2)
  188. {
  189. // EMU EMAX needs 100uS ! 10uS is not enough.
  190. delayNs += 100000;
  191. }
  192. return delayNs;
  193. }
  194. }
  195. else
  196. {
  197. return 0;
  198. }
  199. }
  200. // Release all signals
  201. void scsiEnterBusFree(void)
  202. {
  203. g_scsi_phase = BUS_FREE;
  204. g_scsi_sts_selection = 0;
  205. g_scsi_ctrl_bsy = 0;
  206. scsiDev.cdbLen = 0;
  207. SCSI_RELEASE_OUTPUTS();
  208. }
  209. /********************/
  210. /* Transmit to host */
  211. /********************/
  212. #define SCSI_WAIT_ACTIVE(pin) \
  213. if (!SCSI_IN(pin)) { \
  214. if (!SCSI_IN(pin)) { \
  215. while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
  216. } \
  217. }
  218. #define SCSI_WAIT_INACTIVE(pin) \
  219. if (SCSI_IN(pin)) { \
  220. if (SCSI_IN(pin)) { \
  221. while(SCSI_IN(pin) && !scsiDev.resetFlag); \
  222. } \
  223. }
  224. // Write one byte to SCSI host using the handshake mechanism
  225. static inline void scsiWriteOneByte(uint8_t value)
  226. {
  227. SCSI_OUT_DATA(value);
  228. delay_100ns(); // DB setup time before REQ
  229. SCSI_OUT(REQ, 1);
  230. SCSI_WAIT_ACTIVE(ACK);
  231. SCSI_RELEASE_DATA_REQ();
  232. SCSI_WAIT_INACTIVE(ACK);
  233. }
  234. extern "C" void scsiWriteByte(uint8_t value)
  235. {
  236. scsiLogDataIn(&value, 1);
  237. scsiWriteOneByte(value);
  238. }
  239. extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
  240. {
  241. scsiStartWrite(data, count);
  242. scsiFinishWrite();
  243. }
  244. extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
  245. {
  246. scsiLogDataIn(data, count);
  247. if ((count & 1) != 0 || ((uint32_t)data & 1) != 0)
  248. {
  249. // Unaligned write, do it byte-by-byte
  250. scsiFinishWrite();
  251. for (uint32_t i = 0; i < count; i++)
  252. {
  253. if (scsiDev.resetFlag) break;
  254. scsiWriteOneByte(data[i]);
  255. }
  256. }
  257. else
  258. {
  259. // Use accelerated routine
  260. scsi_accel_rp2040_startWrite(data, count, &scsiDev.resetFlag);
  261. }
  262. }
  263. extern "C" bool scsiIsWriteFinished(const uint8_t *data)
  264. {
  265. return scsi_accel_rp2040_isWriteFinished(data);
  266. }
  267. extern "C" void scsiFinishWrite()
  268. {
  269. scsi_accel_rp2040_finishWrite(&scsiDev.resetFlag);
  270. }
  271. /*********************/
  272. /* Receive from host */
  273. /*********************/
  274. // Read one byte from SCSI host using the handshake mechanism.
  275. static inline uint8_t scsiReadOneByte(int* parityError)
  276. {
  277. SCSI_OUT(REQ, 1);
  278. SCSI_WAIT_ACTIVE(ACK);
  279. delay_100ns();
  280. uint16_t r = SCSI_IN_DATA();
  281. SCSI_OUT(REQ, 0);
  282. SCSI_WAIT_INACTIVE(ACK);
  283. if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ SCSI_IO_DATA_MASK))
  284. {
  285. azlog("Parity error in scsiReadOneByte(): ", (uint32_t)r);
  286. *parityError = 1;
  287. }
  288. return (uint8_t)r;
  289. }
  290. extern "C" uint8_t scsiReadByte(void)
  291. {
  292. uint8_t r = scsiReadOneByte(NULL);
  293. scsiLogDataOut(&r, 1);
  294. return r;
  295. }
  296. extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
  297. {
  298. *parityError = 0;
  299. if ((count & 1) != 0 || ((uint32_t)data & 1) != 0)
  300. {
  301. // Unaligned transfer, do byte by byte
  302. for (uint32_t i = 0; i < count; i++)
  303. {
  304. if (scsiDev.resetFlag) break;
  305. data[i] = scsiReadOneByte(parityError);
  306. }
  307. }
  308. else
  309. {
  310. // Use accelerated routine
  311. scsi_accel_rp2040_read(data, count, parityError, &scsiDev.resetFlag);
  312. }
  313. scsiLogDataOut(data, count);
  314. }