BlueSCSI_initiator.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736
  1. /*
  2. * ZuluSCSI
  3. * Copyright (c) 2022 Rabbit Hole Computing
  4. *
  5. * Main program for initiator mode.
  6. */
  7. #include "BlueSCSI_config.h"
  8. #include "BlueSCSI_log.h"
  9. #include "BlueSCSI_log_trace.h"
  10. #include "BlueSCSI_initiator.h"
  11. #include <BlueSCSI_platform.h>
  12. #include "SdFat.h"
  13. #include <scsi2sd.h>
  14. extern "C" {
  15. #include <scsi.h>
  16. }
  17. #ifndef PLATFORM_HAS_INITIATOR_MODE
  18. void scsiInitiatorInit()
  19. {
  20. }
  21. void scsiInitiatorMainLoop()
  22. {
  23. }
  24. int scsiInitiatorRunCommand(const uint8_t *command, size_t cmdlen,
  25. uint8_t *bufIn, size_t bufInLen,
  26. const uint8_t *bufOut, size_t bufOutLen)
  27. {
  28. return -1;
  29. }
  30. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  31. {
  32. return false;
  33. }
  34. #else
  35. /*************************************
  36. * High level initiator mode logic *
  37. *************************************/
  38. static struct {
  39. // Bitmap of all drives that have been imaged
  40. uint32_t drives_imaged;
  41. // Is imaging a drive in progress, or are we scanning?
  42. bool imaging;
  43. // Information about currently selected drive
  44. int target_id;
  45. uint32_t sectorsize;
  46. uint32_t sectorcount;
  47. uint32_t sectorcount_all;
  48. uint32_t sectors_done;
  49. uint32_t max_sector_per_transfer;
  50. // Retry information for sector reads.
  51. // If a large read fails, retry is done sector-by-sector.
  52. int retrycount;
  53. uint32_t failposition;
  54. FsFile target_file;
  55. } g_initiator_state;
  56. extern SdFs SD;
  57. // Initialization of initiator mode
  58. void scsiInitiatorInit()
  59. {
  60. scsiHostPhyReset();
  61. g_initiator_state.drives_imaged = 0;
  62. g_initiator_state.imaging = false;
  63. g_initiator_state.target_id = -1;
  64. g_initiator_state.sectorsize = 0;
  65. g_initiator_state.sectorcount = 0;
  66. g_initiator_state.sectors_done = 0;
  67. g_initiator_state.retrycount = 0;
  68. g_initiator_state.failposition = 0;
  69. g_initiator_state.max_sector_per_transfer = 512;
  70. }
  71. // Update progress bar LED during transfers
  72. static void scsiInitiatorUpdateLed()
  73. {
  74. // Update status indicator, the led blinks every 5 seconds and is on the longer the more data has been transferred
  75. const int period = 256;
  76. int phase = (millis() % period);
  77. int duty = g_initiator_state.sectors_done * period / g_initiator_state.sectorcount;
  78. // Minimum and maximum time to verify that the blink is visible
  79. if (duty < 50) duty = 50;
  80. if (duty > period - 50) duty = period - 50;
  81. if (phase <= duty)
  82. {
  83. LED_ON();
  84. }
  85. else
  86. {
  87. LED_OFF();
  88. }
  89. }
  90. // High level logic of the initiator mode
  91. void scsiInitiatorMainLoop()
  92. {
  93. if (g_scsiHostPhyReset)
  94. {
  95. log("Executing BUS RESET after aborted command");
  96. scsiHostPhyReset();
  97. }
  98. if (!g_initiator_state.imaging)
  99. {
  100. // Scan for SCSI drives one at a time
  101. g_initiator_state.target_id = (g_initiator_state.target_id + 1) % 8;
  102. g_initiator_state.sectors_done = 0;
  103. g_initiator_state.retrycount = 0;
  104. g_initiator_state.max_sector_per_transfer = 512;
  105. if (!(g_initiator_state.drives_imaged & (1 << g_initiator_state.target_id)))
  106. {
  107. delay(1000);
  108. uint8_t inquiry_data[36];
  109. LED_ON();
  110. bool startstopok =
  111. scsiTestUnitReady(g_initiator_state.target_id) &&
  112. scsiStartStopUnit(g_initiator_state.target_id, true);
  113. bool readcapok = startstopok &&
  114. scsiInitiatorReadCapacity(g_initiator_state.target_id,
  115. &g_initiator_state.sectorcount,
  116. &g_initiator_state.sectorsize);
  117. bool inquiryok = startstopok &&
  118. scsiInquiry(g_initiator_state.target_id, inquiry_data);
  119. LED_OFF();
  120. if (readcapok)
  121. {
  122. log("SCSI id ", g_initiator_state.target_id,
  123. " capacity ", (int)g_initiator_state.sectorcount,
  124. " sectors x ", (int)g_initiator_state.sectorsize, " bytes");
  125. g_initiator_state.sectorcount_all = g_initiator_state.sectorcount;
  126. uint64_t total_bytes = (uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize;
  127. log("Drive total size is ", (int)(total_bytes / (1024 * 1024)), " MiB");
  128. if (total_bytes >= 0xFFFFFFFF && SD.fatType() != FAT_TYPE_EXFAT)
  129. {
  130. // Note: the FAT32 limit is 4 GiB - 1 byte
  131. log("Image files equal or larger than 4 GiB are only possible on exFAT filesystem");
  132. log("Please reformat the SD card with exFAT format to image this drive fully");
  133. g_initiator_state.sectorcount = (uint32_t)0xFFFFFFFF / g_initiator_state.sectorsize;
  134. log("Will image first 4 GiB - 1 = ", (int)g_initiator_state.sectorcount, " sectors");
  135. }
  136. }
  137. else if (startstopok)
  138. {
  139. log("SCSI id ", g_initiator_state.target_id, " responds but ReadCapacity command failed");
  140. log("Possibly SCSI-1 drive? Attempting to read up to 1 GB.");
  141. g_initiator_state.sectorsize = 512;
  142. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 2097152;
  143. g_initiator_state.max_sector_per_transfer = 128;
  144. }
  145. else
  146. {
  147. debuglog("Failed to connect to SCSI id ", g_initiator_state.target_id);
  148. g_initiator_state.sectorsize = 0;
  149. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  150. }
  151. const char *filename_format = "HD00_imaged.hda";
  152. if (inquiryok)
  153. {
  154. if ((inquiry_data[0] & 0x1F) == 5)
  155. {
  156. filename_format = "CD00_imaged.iso";
  157. }
  158. }
  159. if (g_initiator_state.sectorcount > 0)
  160. {
  161. char filename[32] = {0};
  162. strncpy(filename, filename_format, sizeof(filename) - 1);
  163. filename[2] += g_initiator_state.target_id;
  164. SD.remove(filename);
  165. g_initiator_state.target_file = SD.open(filename, O_RDWR | O_CREAT | O_TRUNC);
  166. if (!g_initiator_state.target_file.isOpen())
  167. {
  168. log("Failed to open file for writing: ", filename);
  169. return;
  170. }
  171. if (SD.fatType() == FAT_TYPE_EXFAT)
  172. {
  173. // Only preallocate on exFAT, on FAT32 preallocating can result in false garbage data in the
  174. // file if write is interrupted.
  175. log("Preallocating image file");
  176. g_initiator_state.target_file.preAllocate((uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize);
  177. }
  178. log("Starting to copy drive data to ", filename);
  179. g_initiator_state.imaging = true;
  180. }
  181. }
  182. }
  183. else
  184. {
  185. // Copy sectors from SCSI drive to file
  186. if (g_initiator_state.sectors_done >= g_initiator_state.sectorcount)
  187. {
  188. scsiStartStopUnit(g_initiator_state.target_id, false);
  189. log("Finished imaging drive with id ", g_initiator_state.target_id);
  190. LED_OFF();
  191. if (g_initiator_state.sectorcount != g_initiator_state.sectorcount_all)
  192. {
  193. log("NOTE: Image size was limited to first 4 GiB due to SD card filesystem limit");
  194. log("Please reformat the SD card with exFAT format to image this drive fully");
  195. }
  196. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  197. g_initiator_state.imaging = false;
  198. g_initiator_state.target_file.close();
  199. return;
  200. }
  201. scsiInitiatorUpdateLed();
  202. // How many sectors to read in one batch?
  203. int numtoread = g_initiator_state.sectorcount - g_initiator_state.sectors_done;
  204. if (numtoread > g_initiator_state.max_sector_per_transfer)
  205. numtoread = g_initiator_state.max_sector_per_transfer;
  206. // Retry sector-by-sector after failure
  207. if (g_initiator_state.sectors_done < g_initiator_state.failposition)
  208. numtoread = 1;
  209. uint32_t time_start = millis();
  210. bool status = scsiInitiatorReadDataToFile(g_initiator_state.target_id,
  211. g_initiator_state.sectors_done, numtoread, g_initiator_state.sectorsize,
  212. g_initiator_state.target_file);
  213. if (!status)
  214. {
  215. log("Failed to transfer ", numtoread, " sectors starting at ", (int)g_initiator_state.sectors_done);
  216. if (g_initiator_state.retrycount < 5)
  217. {
  218. log("Retrying.. ", g_initiator_state.retrycount, "/5");
  219. delay(200);
  220. scsiHostPhyReset();
  221. delay(200);
  222. g_initiator_state.retrycount++;
  223. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  224. if (g_initiator_state.retrycount > 1 && numtoread > 1)
  225. {
  226. log("Multiple failures, retrying sector-by-sector");
  227. g_initiator_state.failposition = g_initiator_state.sectors_done + numtoread;
  228. }
  229. }
  230. else
  231. {
  232. log("Retry limit exceeded, skipping one sector");
  233. g_initiator_state.retrycount = 0;
  234. g_initiator_state.sectors_done++;
  235. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  236. }
  237. }
  238. else
  239. {
  240. g_initiator_state.retrycount = 0;
  241. g_initiator_state.sectors_done += numtoread;
  242. g_initiator_state.target_file.flush();
  243. int speed_kbps = numtoread * g_initiator_state.sectorsize / (millis() - time_start);
  244. log("SCSI read succeeded, sectors done: ",
  245. (int)g_initiator_state.sectors_done, " / ", (int)g_initiator_state.sectorcount,
  246. " speed ", speed_kbps, " kB/s");
  247. }
  248. }
  249. }
  250. /*************************************
  251. * Low level command implementations *
  252. *************************************/
  253. int scsiInitiatorRunCommand(int target_id,
  254. const uint8_t *command, size_t cmdLen,
  255. uint8_t *bufIn, size_t bufInLen,
  256. const uint8_t *bufOut, size_t bufOutLen,
  257. bool returnDataPhase)
  258. {
  259. if (!scsiHostPhySelect(target_id))
  260. {
  261. debuglog("------ Target ", target_id, " did not respond");
  262. scsiHostPhyRelease();
  263. return -1;
  264. }
  265. SCSI_PHASE phase;
  266. int status = -1;
  267. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  268. {
  269. if (phase == MESSAGE_IN)
  270. {
  271. uint8_t dummy = 0;
  272. scsiHostRead(&dummy, 1);
  273. }
  274. else if (phase == MESSAGE_OUT)
  275. {
  276. uint8_t identify_msg = 0x80;
  277. scsiHostWrite(&identify_msg, 1);
  278. }
  279. else if (phase == COMMAND)
  280. {
  281. scsiHostWrite(command, cmdLen);
  282. }
  283. else if (phase == DATA_IN)
  284. {
  285. if (returnDataPhase) return 0;
  286. if (bufInLen == 0)
  287. {
  288. log("DATA_IN phase but no data to receive!");
  289. status = -3;
  290. break;
  291. }
  292. if (scsiHostRead(bufIn, bufInLen) == 0)
  293. {
  294. log("scsiHostRead failed, tried to read ", (int)bufInLen, " bytes");
  295. status = -2;
  296. break;
  297. }
  298. }
  299. else if (phase == DATA_OUT)
  300. {
  301. if (returnDataPhase) return 0;
  302. if (bufOutLen == 0)
  303. {
  304. log("DATA_OUT phase but no data to send!");
  305. status = -3;
  306. break;
  307. }
  308. if (scsiHostWrite(bufOut, bufOutLen) < bufOutLen)
  309. {
  310. log("scsiHostWrite failed, was writing ", bytearray(bufOut, bufOutLen));
  311. status = -2;
  312. break;
  313. }
  314. }
  315. else if (phase == STATUS)
  316. {
  317. uint8_t tmp = -1;
  318. scsiHostRead(&tmp, 1);
  319. status = tmp;
  320. debuglog("------ STATUS: ", tmp);
  321. }
  322. }
  323. scsiHostPhyRelease();
  324. return status;
  325. }
  326. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  327. {
  328. uint8_t command[10] = {0x25, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  329. uint8_t response[8] = {0};
  330. int status = scsiInitiatorRunCommand(target_id,
  331. command, sizeof(command),
  332. response, sizeof(response),
  333. NULL, 0);
  334. if (status == 0)
  335. {
  336. *sectorcount = ((uint32_t)response[0] << 24)
  337. | ((uint32_t)response[1] << 16)
  338. | ((uint32_t)response[2] << 8)
  339. | ((uint32_t)response[3] << 0);
  340. *sectorcount += 1; // SCSI reports last sector address
  341. *sectorsize = ((uint32_t)response[4] << 24)
  342. | ((uint32_t)response[5] << 16)
  343. | ((uint32_t)response[6] << 8)
  344. | ((uint32_t)response[7] << 0);
  345. return true;
  346. }
  347. else if (status == 2)
  348. {
  349. uint8_t sense_key;
  350. scsiRequestSense(target_id, &sense_key);
  351. log("READ CAPACITY on target ", target_id, " failed, sense key ", sense_key);
  352. return false;
  353. }
  354. else
  355. {
  356. *sectorcount = *sectorsize = 0;
  357. return false;
  358. }
  359. }
  360. // Execute REQUEST SENSE command to get more information about error status
  361. bool scsiRequestSense(int target_id, uint8_t *sense_key)
  362. {
  363. uint8_t command[6] = {0x03, 0, 0, 0, 18, 0};
  364. uint8_t response[18] = {0};
  365. int status = scsiInitiatorRunCommand(target_id,
  366. command, sizeof(command),
  367. response, sizeof(response),
  368. NULL, 0);
  369. debuglog("RequestSense response: ", bytearray(response, 18));
  370. *sense_key = response[2];
  371. return status == 0;
  372. }
  373. // Execute UNIT START STOP command to load/unload media
  374. bool scsiStartStopUnit(int target_id, bool start)
  375. {
  376. uint8_t command[6] = {0x1B, 0, 0, 0, 0, 0};
  377. uint8_t response[4] = {0};
  378. if (start) command[4] |= 1;
  379. int status = scsiInitiatorRunCommand(target_id,
  380. command, sizeof(command),
  381. response, sizeof(response),
  382. NULL, 0);
  383. if (status == 2)
  384. {
  385. uint8_t sense_key;
  386. scsiRequestSense(target_id, &sense_key);
  387. log("START STOP UNIT on target ", target_id, " failed, sense key ", sense_key);
  388. }
  389. return status == 0;
  390. }
  391. // Execute INQUIRY command
  392. bool scsiInquiry(int target_id, uint8_t inquiry_data[36])
  393. {
  394. uint8_t command[6] = {0x12, 0, 0, 0, 36, 0};
  395. int status = scsiInitiatorRunCommand(target_id,
  396. command, sizeof(command),
  397. inquiry_data, 36,
  398. NULL, 0);
  399. return status == 0;
  400. }
  401. // Execute TEST UNIT READY command and handle unit attention state
  402. bool scsiTestUnitReady(int target_id)
  403. {
  404. for (int retries = 0; retries < 2; retries++)
  405. {
  406. uint8_t command[6] = {0x00, 0, 0, 0, 0, 0};
  407. int status = scsiInitiatorRunCommand(target_id,
  408. command, sizeof(command),
  409. NULL, 0,
  410. NULL, 0);
  411. if (status == 0)
  412. {
  413. return true;
  414. }
  415. else if (status == -1)
  416. {
  417. // No response to select
  418. return false;
  419. }
  420. else if (status == 2)
  421. {
  422. uint8_t sense_key;
  423. scsiRequestSense(target_id, &sense_key);
  424. if (sense_key == 6)
  425. {
  426. uint8_t inquiry[36];
  427. log("Target ", target_id, " reports UNIT_ATTENTION, running INQUIRY");
  428. scsiInquiry(target_id, inquiry);
  429. }
  430. else if (sense_key == 2)
  431. {
  432. log("Target ", target_id, " reports NOT_READY, running STARTSTOPUNIT");
  433. scsiStartStopUnit(target_id, true);
  434. }
  435. }
  436. else
  437. {
  438. log("Target ", target_id, " TEST UNIT READY response: ", status);
  439. }
  440. }
  441. return false;
  442. }
  443. // This uses callbacks to run SD and SCSI transfers in parallel
  444. static struct {
  445. uint32_t bytes_sd; // Number of bytes that have been transferred on SD card side
  446. uint32_t bytes_sd_scheduled; // Number of bytes scheduled for transfer on SD card side
  447. uint32_t bytes_scsi; // Number of bytes that have been scheduled for transfer on SCSI side
  448. uint32_t bytes_scsi_done; // Number of bytes that have been transferred on SCSI side
  449. uint32_t bytes_per_sector;
  450. bool all_ok;
  451. } g_initiator_transfer;
  452. static void initiatorReadSDCallback(uint32_t bytes_complete)
  453. {
  454. if (g_initiator_transfer.bytes_scsi_done < g_initiator_transfer.bytes_scsi)
  455. {
  456. // How many bytes remaining in the transfer?
  457. uint32_t remain = g_initiator_transfer.bytes_scsi - g_initiator_transfer.bytes_scsi_done;
  458. uint32_t len = remain;
  459. // Limit maximum amount of data transferred at one go, to give enough callbacks to SD driver.
  460. // Select the limit based on total bytes in the transfer.
  461. // Transfer size is reduced towards the end of transfer to reduce the dead time between
  462. // end of SCSI transfer and the SD write completing.
  463. uint32_t limit = g_initiator_transfer.bytes_scsi / 8;
  464. uint32_t bytesPerSector = g_initiator_transfer.bytes_per_sector;
  465. if (limit < PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE;
  466. if (limit > PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE;
  467. if (limit > len) limit = PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE;
  468. if (limit < bytesPerSector) limit = bytesPerSector;
  469. if (len > limit)
  470. {
  471. len = limit;
  472. }
  473. // Split read so that it doesn't wrap around buffer edge
  474. uint32_t bufsize = sizeof(scsiDev.data);
  475. uint32_t start = (g_initiator_transfer.bytes_scsi_done % bufsize);
  476. if (start + len > bufsize)
  477. len = bufsize - start;
  478. // Don't overwrite data that has not yet been written to SD card
  479. uint32_t sd_ready_cnt = g_initiator_transfer.bytes_sd + bytes_complete;
  480. if (g_initiator_transfer.bytes_scsi_done + len > sd_ready_cnt + bufsize)
  481. len = sd_ready_cnt + bufsize - g_initiator_transfer.bytes_scsi_done;
  482. if (sd_ready_cnt == g_initiator_transfer.bytes_sd_scheduled &&
  483. g_initiator_transfer.bytes_sd_scheduled + bytesPerSector <= g_initiator_transfer.bytes_scsi_done)
  484. {
  485. // Current SD transfer is complete, it is better we return now and offer a chance for the next
  486. // transfer to begin.
  487. return;
  488. }
  489. // Keep transfers a multiple of sector size.
  490. if (remain >= bytesPerSector && len % bytesPerSector != 0)
  491. {
  492. len -= len % bytesPerSector;
  493. }
  494. if (len == 0)
  495. return;
  496. // debuglog("SCSI read ", (int)start, " + ", (int)len, ", sd ready cnt ", (int)sd_ready_cnt, " ", (int)bytes_complete, ", scsi done ", (int)g_initiator_transfer.bytes_scsi_done);
  497. if (scsiHostRead(&scsiDev.data[start], len) != len)
  498. {
  499. log("Read failed at byte ", (int)g_initiator_transfer.bytes_scsi_done);
  500. g_initiator_transfer.all_ok = false;
  501. }
  502. g_initiator_transfer.bytes_scsi_done += len;
  503. }
  504. }
  505. static void scsiInitiatorWriteDataToSd(FsFile &file, bool use_callback)
  506. {
  507. // Figure out longest continuous block in buffer
  508. uint32_t bufsize = sizeof(scsiDev.data);
  509. uint32_t start = g_initiator_transfer.bytes_sd % bufsize;
  510. uint32_t len = g_initiator_transfer.bytes_scsi_done - g_initiator_transfer.bytes_sd;
  511. if (start + len > bufsize) len = bufsize - start;
  512. // Try to do writes in multiple of 512 bytes
  513. // This allows better performance for SD card access.
  514. if (len >= 512) len &= ~511;
  515. // Start writing to SD card and simultaneously reading more from SCSI bus
  516. uint8_t *buf = &scsiDev.data[start];
  517. // debuglog("SD write ", (int)start, " + ", (int)len);
  518. if (use_callback)
  519. {
  520. platform_set_sd_callback(&initiatorReadSDCallback, buf);
  521. }
  522. g_initiator_transfer.bytes_sd_scheduled = g_initiator_transfer.bytes_sd + len;
  523. if (file.write(buf, len) != len)
  524. {
  525. log("scsiInitiatorReadDataToFile: SD card write failed");
  526. g_initiator_transfer.all_ok = false;
  527. }
  528. platform_set_sd_callback(NULL, NULL);
  529. g_initiator_transfer.bytes_sd += len;
  530. }
  531. bool scsiInitiatorReadDataToFile(int target_id, uint32_t start_sector, uint32_t sectorcount, uint32_t sectorsize,
  532. FsFile &file)
  533. {
  534. int status = -1;
  535. if (start_sector < 0xFFFFFF && sectorcount <= 256)
  536. {
  537. // Use READ6 command for compatibility with old SCSI1 drives
  538. uint8_t command[6] = {0x08,
  539. (uint8_t)(start_sector >> 16),
  540. (uint8_t)(start_sector >> 8),
  541. (uint8_t)start_sector,
  542. (uint8_t)sectorcount,
  543. 0x00
  544. };
  545. // Start executing command, return in data phase
  546. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  547. }
  548. else
  549. {
  550. // Use READ10 command for larger number of blocks
  551. uint8_t command[10] = {0x28, 0x00,
  552. (uint8_t)(start_sector >> 24), (uint8_t)(start_sector >> 16),
  553. (uint8_t)(start_sector >> 8), (uint8_t)start_sector,
  554. 0x00,
  555. (uint8_t)(sectorcount >> 8), (uint8_t)(sectorcount),
  556. 0x00
  557. };
  558. // Start executing command, return in data phase
  559. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  560. }
  561. if (status != 0)
  562. {
  563. uint8_t sense_key;
  564. scsiRequestSense(target_id, &sense_key);
  565. log("scsiInitiatorReadDataToFile: READ failed: ", status, " sense key ", sense_key);
  566. scsiHostPhyRelease();
  567. return false;
  568. }
  569. SCSI_PHASE phase;
  570. g_initiator_transfer.bytes_scsi = sectorcount * sectorsize;
  571. g_initiator_transfer.bytes_per_sector = sectorsize;
  572. g_initiator_transfer.bytes_sd = 0;
  573. g_initiator_transfer.bytes_sd_scheduled = 0;
  574. g_initiator_transfer.bytes_scsi_done = 0;
  575. g_initiator_transfer.all_ok = true;
  576. while (true)
  577. {
  578. phase = (SCSI_PHASE)scsiHostPhyGetPhase();
  579. if (phase != DATA_IN && phase != BUS_BUSY)
  580. {
  581. break;
  582. }
  583. // Read next block from SCSI bus if buffer empty
  584. if (g_initiator_transfer.bytes_sd == g_initiator_transfer.bytes_scsi_done)
  585. {
  586. initiatorReadSDCallback(0);
  587. }
  588. else
  589. {
  590. // Write data to SD card and simultaneously read more from SCSI
  591. scsiInitiatorUpdateLed();
  592. scsiInitiatorWriteDataToSd(file, true);
  593. }
  594. }
  595. // Write any remaining buffered data
  596. while (g_initiator_transfer.bytes_sd < g_initiator_transfer.bytes_scsi_done)
  597. {
  598. scsiInitiatorWriteDataToSd(file, false);
  599. }
  600. if (g_initiator_transfer.bytes_sd != g_initiator_transfer.bytes_scsi)
  601. {
  602. log("SCSI read from sector ", (int)start_sector, " was incomplete: expected ",
  603. (int)g_initiator_transfer.bytes_scsi, " got ", (int)g_initiator_transfer.bytes_sd, " bytes");
  604. g_initiator_transfer.all_ok = false;
  605. }
  606. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  607. {
  608. if (phase == MESSAGE_IN)
  609. {
  610. uint8_t dummy = 0;
  611. scsiHostRead(&dummy, 1);
  612. }
  613. else if (phase == MESSAGE_OUT)
  614. {
  615. uint8_t identify_msg = 0x80;
  616. scsiHostWrite(&identify_msg, 1);
  617. }
  618. else if (phase == STATUS)
  619. {
  620. uint8_t tmp = 0;
  621. scsiHostRead(&tmp, 1);
  622. status = tmp;
  623. debuglog("------ STATUS: ", tmp);
  624. }
  625. }
  626. scsiHostPhyRelease();
  627. return status == 0 && g_initiator_transfer.all_ok;
  628. }
  629. #endif