scsiPhy.cpp 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. // Implements the low level interface to SCSI bus
  2. // Partially derived from scsiPhy.c from SCSI2SD-V6
  3. #include "scsiPhy.h"
  4. #include "ZuluSCSI_platform.h"
  5. #include "ZuluSCSI_log.h"
  6. #include "ZuluSCSI_log_trace.h"
  7. #include "ZuluSCSI_config.h"
  8. #include "scsi_accel_rp2040.h"
  9. #include <scsi2sd.h>
  10. extern "C" {
  11. #include <scsi.h>
  12. #include <scsi2sd_time.h>
  13. }
  14. /***********************/
  15. /* SCSI status signals */
  16. /***********************/
  17. extern "C" bool scsiStatusATN()
  18. {
  19. return SCSI_IN(ATN);
  20. }
  21. extern "C" bool scsiStatusBSY()
  22. {
  23. return SCSI_IN(BSY);
  24. }
  25. /************************/
  26. /* SCSI selection logic */
  27. /************************/
  28. volatile uint8_t g_scsi_sts_selection;
  29. volatile uint8_t g_scsi_ctrl_bsy;
  30. void scsi_bsy_deassert_interrupt()
  31. {
  32. if (SCSI_IN(SEL) && !SCSI_IN(BSY))
  33. {
  34. // Check if any of the targets we simulate is selected
  35. uint8_t sel_bits = SCSI_IN_DATA();
  36. int sel_id = -1;
  37. for (int i = 0; i < S2S_MAX_TARGETS; i++)
  38. {
  39. if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
  40. {
  41. if (sel_bits & (1 << scsiDev.targets[i].targetId))
  42. {
  43. sel_id = scsiDev.targets[i].targetId;
  44. break;
  45. }
  46. }
  47. }
  48. if (sel_id >= 0)
  49. {
  50. uint8_t atn_flag = SCSI_IN(ATN) ? SCSI_STS_SELECTION_ATN : 0;
  51. g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | atn_flag | sel_id;
  52. }
  53. // selFlag is required for Philips P2000C which releases it after 600ns
  54. // without waiting for BSY.
  55. // Also required for some early Mac Plus roms
  56. scsiDev.selFlag = *SCSI_STS_SELECTED;
  57. }
  58. }
  59. extern "C" bool scsiStatusSEL()
  60. {
  61. if (g_scsi_ctrl_bsy)
  62. {
  63. // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
  64. // Instead update the state here.
  65. // Releasing happens with bus release.
  66. g_scsi_ctrl_bsy = 0;
  67. SCSI_OUT(BSY, 1);
  68. // On RP2040 hardware the ATN signal is only available after OUT_BSY enables
  69. // the IO buffer U105, so check the signal status here.
  70. delay_100ns();
  71. scsiDev.atnFlag |= scsiStatusATN();
  72. }
  73. return SCSI_IN(SEL);
  74. }
  75. /************************/
  76. /* SCSI bus reset logic */
  77. /************************/
  78. static void scsi_rst_assert_interrupt()
  79. {
  80. // Glitch filtering
  81. bool rst1 = SCSI_IN(RST);
  82. delay_ns(500);
  83. bool rst2 = SCSI_IN(RST);
  84. if (rst1 && rst2)
  85. {
  86. azdbg("BUS RESET");
  87. scsiDev.resetFlag = 1;
  88. }
  89. }
  90. static void scsiPhyIRQ(uint gpio, uint32_t events)
  91. {
  92. if (gpio == SCSI_IN_BSY)
  93. {
  94. // Note BSY interrupts only when we are not driving OUT_BSY low ourselves.
  95. // The BSY input pin may be shared with other signals.
  96. if (sio_hw->gpio_out & (1 << SCSI_OUT_BSY))
  97. {
  98. scsi_bsy_deassert_interrupt();
  99. }
  100. }
  101. else if (gpio == SCSI_IN_RST)
  102. {
  103. scsi_rst_assert_interrupt();
  104. }
  105. }
  106. // This function is called to initialize the phy code.
  107. // It is called after power-on and after SCSI bus reset.
  108. extern "C" void scsiPhyReset(void)
  109. {
  110. SCSI_RELEASE_OUTPUTS();
  111. g_scsi_sts_selection = 0;
  112. g_scsi_ctrl_bsy = 0;
  113. scsi_accel_rp2040_init();
  114. // Enable BSY and RST interrupts
  115. // Note: RP2040 library currently supports only one callback,
  116. // so it has to be same for both pins.
  117. gpio_set_irq_enabled_with_callback(SCSI_IN_BSY, GPIO_IRQ_EDGE_RISE, true, scsiPhyIRQ);
  118. gpio_set_irq_enabled_with_callback(SCSI_IN_RST, GPIO_IRQ_EDGE_FALL, true, scsiPhyIRQ);
  119. }
  120. /************************/
  121. /* SCSI bus phase logic */
  122. /************************/
  123. static SCSI_PHASE g_scsi_phase;
  124. extern "C" void scsiEnterPhase(int phase)
  125. {
  126. int delay = scsiEnterPhaseImmediate(phase);
  127. if (delay > 0)
  128. {
  129. s2s_delay_ns(delay);
  130. }
  131. }
  132. // Change state and return nanosecond delay to wait
  133. extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
  134. {
  135. // ANSI INCITS 362-2002 SPI-3 10.7.1:
  136. // Phase changes are not allowed while REQ or ACK is asserted.
  137. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
  138. if (phase != g_scsi_phase)
  139. {
  140. int oldphase = g_scsi_phase;
  141. g_scsi_phase = (SCSI_PHASE)phase;
  142. scsiLogPhaseChange(phase);
  143. if (phase < 0)
  144. {
  145. // Other communication on bus or reset state
  146. SCSI_RELEASE_OUTPUTS();
  147. return 0;
  148. }
  149. else
  150. {
  151. SCSI_OUT(MSG, phase & __scsiphase_msg);
  152. SCSI_OUT(CD, phase & __scsiphase_cd);
  153. SCSI_OUT(IO, phase & __scsiphase_io);
  154. SCSI_ENABLE_CONTROL_OUT();
  155. int delayNs = 400; // Bus settle delay
  156. if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
  157. {
  158. delayNs += 400; // Data release delay
  159. }
  160. if (scsiDev.compatMode < COMPAT_SCSI2)
  161. {
  162. // EMU EMAX needs 100uS ! 10uS is not enough.
  163. delayNs += 100000;
  164. }
  165. return delayNs;
  166. }
  167. }
  168. else
  169. {
  170. return 0;
  171. }
  172. }
  173. // Release all signals
  174. void scsiEnterBusFree(void)
  175. {
  176. g_scsi_phase = BUS_FREE;
  177. g_scsi_sts_selection = 0;
  178. g_scsi_ctrl_bsy = 0;
  179. scsiDev.cdbLen = 0;
  180. SCSI_RELEASE_OUTPUTS();
  181. }
  182. /********************/
  183. /* Transmit to host */
  184. /********************/
  185. #define SCSI_WAIT_ACTIVE(pin) \
  186. if (!SCSI_IN(pin)) { \
  187. if (!SCSI_IN(pin)) { \
  188. while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
  189. } \
  190. }
  191. #define SCSI_WAIT_INACTIVE(pin) \
  192. if (SCSI_IN(pin)) { \
  193. if (SCSI_IN(pin)) { \
  194. while(SCSI_IN(pin) && !scsiDev.resetFlag); \
  195. } \
  196. }
  197. // Write one byte to SCSI host using the handshake mechanism
  198. static inline void scsiWriteOneByte(uint8_t value)
  199. {
  200. SCSI_OUT_DATA(value);
  201. delay_100ns(); // DB setup time before REQ
  202. SCSI_OUT(REQ, 1);
  203. SCSI_WAIT_ACTIVE(ACK);
  204. SCSI_RELEASE_DATA_REQ();
  205. SCSI_WAIT_INACTIVE(ACK);
  206. }
  207. extern "C" void scsiWriteByte(uint8_t value)
  208. {
  209. scsiLogDataIn(&value, 1);
  210. scsiWriteOneByte(value);
  211. }
  212. extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
  213. {
  214. scsiStartWrite(data, count);
  215. scsiFinishWrite();
  216. }
  217. extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
  218. {
  219. scsiLogDataIn(data, count);
  220. if ((count & 1) != 0)
  221. {
  222. // Unaligned write, do it byte-by-byte
  223. scsiFinishWrite();
  224. for (uint32_t i = 0; i < count; i++)
  225. {
  226. if (scsiDev.resetFlag) break;
  227. scsiWriteOneByte(data[i]);
  228. }
  229. }
  230. else
  231. {
  232. // Use accelerated routine
  233. scsi_accel_rp2040_startWrite(data, count, &scsiDev.resetFlag);
  234. }
  235. }
  236. extern "C" bool scsiIsWriteFinished(const uint8_t *data)
  237. {
  238. return scsi_accel_rp2040_isWriteFinished(data);
  239. }
  240. extern "C" void scsiFinishWrite()
  241. {
  242. scsi_accel_rp2040_finishWrite(&scsiDev.resetFlag);
  243. }
  244. /*********************/
  245. /* Receive from host */
  246. /*********************/
  247. // Read one byte from SCSI host using the handshake mechanism.
  248. static inline uint8_t scsiReadOneByte(int* parityError)
  249. {
  250. SCSI_OUT(REQ, 1);
  251. SCSI_WAIT_ACTIVE(ACK);
  252. delay_100ns();
  253. uint16_t r = SCSI_IN_DATA();
  254. SCSI_OUT(REQ, 0);
  255. SCSI_WAIT_INACTIVE(ACK);
  256. if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ SCSI_IO_DATA_MASK))
  257. {
  258. azlog("Parity error in scsiReadOneByte(): ", (uint32_t)r);
  259. *parityError = 1;
  260. }
  261. return (uint8_t)r;
  262. }
  263. extern "C" uint8_t scsiReadByte(void)
  264. {
  265. uint8_t r = scsiReadOneByte(NULL);
  266. scsiLogDataOut(&r, 1);
  267. return r;
  268. }
  269. extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
  270. {
  271. *parityError = 0;
  272. if ((count & 1) != 0)
  273. {
  274. // Unaligned transfer, do byte by byte
  275. for (uint32_t i = 0; i < count; i++)
  276. {
  277. if (scsiDev.resetFlag) break;
  278. data[i] = scsiReadOneByte(parityError);
  279. }
  280. }
  281. else
  282. {
  283. // Use accelerated routine
  284. scsi_accel_rp2040_read(data, count, parityError, &scsiDev.resetFlag);
  285. }
  286. scsiLogDataOut(data, count);
  287. }