| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 | 
							- 1. Compression algorithm (deflate)
 
- The deflation algorithm used by gzip (also zip and zlib) is a variation of
 
- LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
 
- the input data.  The second occurrence of a string is replaced by a
 
- pointer to the previous string, in the form of a pair (distance,
 
- length).  Distances are limited to 32K bytes, and lengths are limited
 
- to 258 bytes. When a string does not occur anywhere in the previous
 
- 32K bytes, it is emitted as a sequence of literal bytes.  (In this
 
- description, `string' must be taken as an arbitrary sequence of bytes,
 
- and is not restricted to printable characters.)
 
- Literals or match lengths are compressed with one Huffman tree, and
 
- match distances are compressed with another tree. The trees are stored
 
- in a compact form at the start of each block. The blocks can have any
 
- size (except that the compressed data for one block must fit in
 
- available memory). A block is terminated when deflate() determines that
 
- it would be useful to start another block with fresh trees. (This is
 
- somewhat similar to the behavior of LZW-based _compress_.)
 
- Duplicated strings are found using a hash table. All input strings of
 
- length 3 are inserted in the hash table. A hash index is computed for
 
- the next 3 bytes. If the hash chain for this index is not empty, all
 
- strings in the chain are compared with the current input string, and
 
- the longest match is selected.
 
- The hash chains are searched starting with the most recent strings, to
 
- favor small distances and thus take advantage of the Huffman encoding.
 
- The hash chains are singly linked. There are no deletions from the
 
- hash chains, the algorithm simply discards matches that are too old.
 
- To avoid a worst-case situation, very long hash chains are arbitrarily
 
- truncated at a certain length, determined by a runtime option (level
 
- parameter of deflateInit). So deflate() does not always find the longest
 
- possible match but generally finds a match which is long enough.
 
- deflate() also defers the selection of matches with a lazy evaluation
 
- mechanism. After a match of length N has been found, deflate() searches for
 
- a longer match at the next input byte. If a longer match is found, the
 
- previous match is truncated to a length of one (thus producing a single
 
- literal byte) and the process of lazy evaluation begins again. Otherwise,
 
- the original match is kept, and the next match search is attempted only N
 
- steps later.
 
- The lazy match evaluation is also subject to a runtime parameter. If
 
- the current match is long enough, deflate() reduces the search for a longer
 
- match, thus speeding up the whole process. If compression ratio is more
 
- important than speed, deflate() attempts a complete second search even if
 
- the first match is already long enough.
 
- The lazy match evaluation is not performed for the fastest compression
 
- modes (level parameter 1 to 3). For these fast modes, new strings
 
- are inserted in the hash table only when no match was found, or
 
- when the match is not too long. This degrades the compression ratio
 
- but saves time since there are both fewer insertions and fewer searches.
 
- 2. Decompression algorithm (inflate)
 
- 2.1 Introduction
 
- The key question is how to represent a Huffman code (or any prefix code) so
 
- that you can decode fast.  The most important characteristic is that shorter
 
- codes are much more common than longer codes, so pay attention to decoding the
 
- short codes fast, and let the long codes take longer to decode.
 
- inflate() sets up a first level table that covers some number of bits of
 
- input less than the length of longest code.  It gets that many bits from the
 
- stream, and looks it up in the table.  The table will tell if the next
 
- code is that many bits or less and how many, and if it is, it will tell
 
- the value, else it will point to the next level table for which inflate()
 
- grabs more bits and tries to decode a longer code.
 
- How many bits to make the first lookup is a tradeoff between the time it
 
- takes to decode and the time it takes to build the table.  If building the
 
- table took no time (and if you had infinite memory), then there would only
 
- be a first level table to cover all the way to the longest code.  However,
 
- building the table ends up taking a lot longer for more bits since short
 
- codes are replicated many times in such a table.  What inflate() does is
 
- simply to make the number of bits in the first table a variable, and  then
 
- to set that variable for the maximum speed.
 
- For inflate, which has 286 possible codes for the literal/length tree, the size
 
- of the first table is nine bits.  Also the distance trees have 30 possible
 
- values, and the size of the first table is six bits.  Note that for each of
 
- those cases, the table ended up one bit longer than the ``average'' code
 
- length, i.e. the code length of an approximately flat code which would be a
 
- little more than eight bits for 286 symbols and a little less than five bits
 
- for 30 symbols.
 
- 2.2 More details on the inflate table lookup
 
- Ok, you want to know what this cleverly obfuscated inflate tree actually
 
- looks like.  You are correct that it's not a Huffman tree.  It is simply a
 
- lookup table for the first, let's say, nine bits of a Huffman symbol.  The
 
- symbol could be as short as one bit or as long as 15 bits.  If a particular
 
- symbol is shorter than nine bits, then that symbol's translation is duplicated
 
- in all those entries that start with that symbol's bits.  For example, if the
 
- symbol is four bits, then it's duplicated 32 times in a nine-bit table.  If a
 
- symbol is nine bits long, it appears in the table once.
 
- If the symbol is longer than nine bits, then that entry in the table points
 
- to another similar table for the remaining bits.  Again, there are duplicated
 
- entries as needed.  The idea is that most of the time the symbol will be short
 
- and there will only be one table look up.  (That's whole idea behind data
 
- compression in the first place.)  For the less frequent long symbols, there
 
- will be two lookups.  If you had a compression method with really long
 
- symbols, you could have as many levels of lookups as is efficient.  For
 
- inflate, two is enough.
 
- So a table entry either points to another table (in which case nine bits in
 
- the above example are gobbled), or it contains the translation for the symbol
 
- and the number of bits to gobble.  Then you start again with the next
 
- ungobbled bit.
 
- You may wonder: why not just have one lookup table for how ever many bits the
 
- longest symbol is?  The reason is that if you do that, you end up spending
 
- more time filling in duplicate symbol entries than you do actually decoding.
 
- At least for deflate's output that generates new trees every several 10's of
 
- kbytes.  You can imagine that filling in a 2^15 entry table for a 15-bit code
 
- would take too long if you're only decoding several thousand symbols.  At the
 
- other extreme, you could make a new table for every bit in the code.  In fact,
 
- that's essentially a Huffman tree.  But then you spend too much time
 
- traversing the tree while decoding, even for short symbols.
 
- So the number of bits for the first lookup table is a trade of the time to
 
- fill out the table vs. the time spent looking at the second level and above of
 
- the table.
 
- Here is an example, scaled down:
 
- The code being decoded, with 10 symbols, from 1 to 6 bits long:
 
- A: 0
 
- B: 10
 
- C: 1100
 
- D: 11010
 
- E: 11011
 
- F: 11100
 
- G: 11101
 
- H: 11110
 
- I: 111110
 
- J: 111111
 
- Let's make the first table three bits long (eight entries):
 
- 000: A,1
 
- 001: A,1
 
- 010: A,1
 
- 011: A,1
 
- 100: B,2
 
- 101: B,2
 
- 110: -> table X (gobble 3 bits)
 
- 111: -> table Y (gobble 3 bits)
 
- Each entry is what the bits decode as and how many bits that is, i.e. how
 
- many bits to gobble.  Or the entry points to another table, with the number of
 
- bits to gobble implicit in the size of the table.
 
- Table X is two bits long since the longest code starting with 110 is five bits
 
- long:
 
- 00: C,1
 
- 01: C,1
 
- 10: D,2
 
- 11: E,2
 
- Table Y is three bits long since the longest code starting with 111 is six
 
- bits long:
 
- 000: F,2
 
- 001: F,2
 
- 010: G,2
 
- 011: G,2
 
- 100: H,2
 
- 101: H,2
 
- 110: I,3
 
- 111: J,3
 
- So what we have here are three tables with a total of 20 entries that had to
 
- be constructed.  That's compared to 64 entries for a single table.  Or
 
- compared to 16 entries for a Huffman tree (six two entry tables and one four
 
- entry table).  Assuming that the code ideally represents the probability of
 
- the symbols, it takes on the average 1.25 lookups per symbol.  That's compared
 
- to one lookup for the single table, or 1.66 lookups per symbol for the
 
- Huffman tree.
 
- There, I think that gives you a picture of what's going on.  For inflate, the
 
- meaning of a particular symbol is often more than just a letter.  It can be a
 
- byte (a "literal"), or it can be either a length or a distance which
 
- indicates a base value and a number of bits to fetch after the code that is
 
- added to the base value.  Or it might be the special end-of-block code.  The
 
- data structures created in inftrees.c try to encode all that information
 
- compactly in the tables.
 
- Jean-loup Gailly        Mark Adler
 
- jloup@gzip.org          madler@alumni.caltech.edu
 
- References:
 
- [LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
 
- Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
 
- pp. 337-343.
 
- ``DEFLATE Compressed Data Format Specification'' available in
 
- http://tools.ietf.org/html/rfc1951
 
 
  |