| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226 | /* trees.c -- output deflated data using Huffman coding * Copyright (C) 1995-2012 Jean-loup Gailly * detect_data_type() function provided freely by Cosmin Truta, 2006 * For conditions of distribution and use, see copyright notice in zlib.h *//* *  ALGORITHM * *      The "deflation" process uses several Huffman trees. The more *      common source values are represented by shorter bit sequences. * *      Each code tree is stored in a compressed form which is itself * a Huffman encoding of the lengths of all the code strings (in * ascending order by source values).  The actual code strings are * reconstructed from the lengths in the inflate process, as described * in the deflate specification. * *  REFERENCES * *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * *      Storer, James A. *          Data Compression:  Methods and Theory, pp. 49-50. *          Computer Science Press, 1988.  ISBN 0-7167-8156-5. * *      Sedgewick, R. *          Algorithms, p290. *          Addison-Wesley, 1983. ISBN 0-201-06672-6. *//* @(#) $Id$ *//* #define GEN_TREES_H */#include "deflate.h"#ifdef DEBUG#  include <ctype.h>#endif/* =========================================================================== * Constants */#define MAX_BL_BITS 7/* Bit length codes must not exceed MAX_BL_BITS bits */#define END_BLOCK 256/* end of block literal code */#define REP_3_6      16/* repeat previous bit length 3-6 times (2 bits of repeat count) */#define REPZ_3_10    17/* repeat a zero length 3-10 times  (3 bits of repeat count) */#define REPZ_11_138  18/* repeat a zero length 11-138 times  (7 bits of repeat count) */local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};local const int extra_dbits[D_CODES] /* extra bits for each distance code */   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};local const uch bl_order[BL_CODES]   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};/* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. *//* =========================================================================== * Local data. These are initialized only once. */#define DIST_CODE_LEN  512 /* see definition of array dist_code below */#if defined(GEN_TREES_H) || !defined(STDC)/* non ANSI compilers may not accept trees.h */local ct_data static_ltree[L_CODES+2];/* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */local ct_data static_dtree[D_CODES];/* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */uch _dist_code[DIST_CODE_LEN];/* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */uch _length_code[MAX_MATCH-MIN_MATCH+1];/* length code for each normalized match length (0 == MIN_MATCH) */local int base_length[LENGTH_CODES];/* First normalized length for each code (0 = MIN_MATCH) */local int base_dist[D_CODES];/* First normalized distance for each code (0 = distance of 1) */#else#  include "trees.h"#endif /* GEN_TREES_H */struct static_tree_desc_s {    const ct_data *static_tree;  /* static tree or NULL */    const intf *extra_bits;      /* extra bits for each code or NULL */    int     extra_base;          /* base index for extra_bits */    int     elems;               /* max number of elements in the tree */    int     max_length;          /* max bit length for the codes */};local static_tree_desc  static_l_desc ={static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};local static_tree_desc  static_d_desc ={static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};local static_tree_desc  static_bl_desc ={(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};/* =========================================================================== * Local (static) routines in this file. */local void tr_static_init OF((void));local void init_block     OF((deflate_state *s));local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));local void build_tree     OF((deflate_state *s, tree_desc *desc));local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));local int  build_bl_tree  OF((deflate_state *s));local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,                              int blcodes));local void compress_block OF((deflate_state *s, const ct_data *ltree,                              const ct_data *dtree));local int  detect_data_type OF((deflate_state *s));local unsigned bi_reverse OF((unsigned value, int length));local void bi_windup      OF((deflate_state *s));local void bi_flush       OF((deflate_state *s));local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,                              int header));#ifdef GEN_TREES_Hlocal void gen_trees_header OF((void));#endif#ifndef DEBUG#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)   /* Send a code of the given tree. c and tree must not have side effects */#else /* DEBUG */#  define send_code(s, c, tree) \     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \       send_bits(s, tree[c].Code, tree[c].Len); }#endif/* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */#define put_short(s, w) { \    put_byte(s, (uch)((w) & 0xff)); \    put_byte(s, (uch)((ush)(w) >> 8)); \}/* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */#ifdef DEBUGlocal void send_bits      OF((deflate_state *s, int value, int length));local void send_bits(s, value, length)    deflate_state *s;    int value;  /* value to send */    int length; /* number of bits */{    Tracevv((stderr," l %2d v %4x ", length, value));    Assert(length > 0 && length <= 15, "invalid length");    s->bits_sent += (ulg)length;    /* If not enough room in bi_buf, use (valid) bits from bi_buf and     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))     * unused bits in value.     */    if (s->bi_valid > (int)Buf_size - length) {        s->bi_buf |= (ush)value << s->bi_valid;        put_short(s, s->bi_buf);        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);        s->bi_valid += length - Buf_size;    } else {        s->bi_buf |= (ush)value << s->bi_valid;        s->bi_valid += length;    }}#else /* !DEBUG */#define send_bits(s, value, length) \{ int len = length;\  if (s->bi_valid > (int)Buf_size - len) {\    int val = value;\    s->bi_buf |= (ush)val << s->bi_valid;\    put_short(s, s->bi_buf);\    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\    s->bi_valid += len - Buf_size;\  } else {\    s->bi_buf |= (ush)(value) << s->bi_valid;\    s->bi_valid += len;\  }\}#endif /* DEBUG *//* the arguments must not have side effects *//* =========================================================================== * Initialize the various 'constant' tables. */local void tr_static_init(){#if defined(GEN_TREES_H) || !defined(STDC)    static int static_init_done = 0;    int n;        /* iterates over tree elements */    int bits;     /* bit counter */    int length;   /* length value */    int code;     /* code value */    int dist;     /* distance index */    ush bl_count[MAX_BITS+1];    /* number of codes at each bit length for an optimal tree */    if (static_init_done) return;    /* For some embedded targets, global variables are not initialized: */#ifdef NO_INIT_GLOBAL_POINTERS    static_l_desc.static_tree = static_ltree;    static_l_desc.extra_bits = extra_lbits;    static_d_desc.static_tree = static_dtree;    static_d_desc.extra_bits = extra_dbits;    static_bl_desc.extra_bits = extra_blbits;#endif    /* Initialize the mapping length (0..255) -> length code (0..28) */    length = 0;    for (code = 0; code < LENGTH_CODES-1; code++) {        base_length[code] = length;        for (n = 0; n < (1<<extra_lbits[code]); n++) {            _length_code[length++] = (uch)code;        }    }    Assert (length == 256, "tr_static_init: length != 256");    /* Note that the length 255 (match length 258) can be represented     * in two different ways: code 284 + 5 bits or code 285, so we     * overwrite length_code[255] to use the best encoding:     */    _length_code[length-1] = (uch)code;    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */    dist = 0;    for (code = 0 ; code < 16; code++) {        base_dist[code] = dist;        for (n = 0; n < (1<<extra_dbits[code]); n++) {            _dist_code[dist++] = (uch)code;        }    }    Assert (dist == 256, "tr_static_init: dist != 256");    dist >>= 7; /* from now on, all distances are divided by 128 */    for ( ; code < D_CODES; code++) {        base_dist[code] = dist << 7;        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {            _dist_code[256 + dist++] = (uch)code;        }    }    Assert (dist == 256, "tr_static_init: 256+dist != 512");    /* Construct the codes of the static literal tree */    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;    n = 0;    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;    /* Codes 286 and 287 do not exist, but we must include them in the     * tree construction to get a canonical Huffman tree (longest code     * all ones)     */    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);    /* The static distance tree is trivial: */    for (n = 0; n < D_CODES; n++) {        static_dtree[n].Len = 5;        static_dtree[n].Code = bi_reverse((unsigned)n, 5);    }    static_init_done = 1;#  ifdef GEN_TREES_H    gen_trees_header();#  endif#endif /* defined(GEN_TREES_H) || !defined(STDC) */}/* =========================================================================== * Genererate the file trees.h describing the static trees. */#ifdef GEN_TREES_H#  ifndef DEBUG#    include <stdio.h>#  endif#  define SEPARATOR(i, last, width) \      ((i) == (last)? "\n};\n\n" :    \       ((i) % (width) == (width)-1 ? ",\n" : ", "))void gen_trees_header(){    FILE *header = fopen("trees.h", "w");    int i;    Assert (header != NULL, "Can't open trees.h");    fprintf(header,            "/* header created automatically with -DGEN_TREES_H */\n\n");    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");    for (i = 0; i < L_CODES+2; i++) {        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));    }    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");    for (i = 0; i < D_CODES; i++) {        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));    }    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");    for (i = 0; i < DIST_CODE_LEN; i++) {        fprintf(header, "%2u%s", _dist_code[i],                SEPARATOR(i, DIST_CODE_LEN-1, 20));    }    fprintf(header,        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {        fprintf(header, "%2u%s", _length_code[i],                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));    }    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");    for (i = 0; i < LENGTH_CODES; i++) {        fprintf(header, "%1u%s", base_length[i],                SEPARATOR(i, LENGTH_CODES-1, 20));    }    fprintf(header, "local const int base_dist[D_CODES] = {\n");    for (i = 0; i < D_CODES; i++) {        fprintf(header, "%5u%s", base_dist[i],                SEPARATOR(i, D_CODES-1, 10));    }    fclose(header);}#endif /* GEN_TREES_H *//* =========================================================================== * Initialize the tree data structures for a new zlib stream. */void ZLIB_INTERNAL _tr_init(s)    deflate_state *s;{    tr_static_init();    s->l_desc.dyn_tree = s->dyn_ltree;    s->l_desc.stat_desc = &static_l_desc;    s->d_desc.dyn_tree = s->dyn_dtree;    s->d_desc.stat_desc = &static_d_desc;    s->bl_desc.dyn_tree = s->bl_tree;    s->bl_desc.stat_desc = &static_bl_desc;    s->bi_buf = 0;    s->bi_valid = 0;#ifdef DEBUG    s->compressed_len = 0L;    s->bits_sent = 0L;#endif    /* Initialize the first block of the first file: */    init_block(s);}/* =========================================================================== * Initialize a new block. */local void init_block(s)    deflate_state *s;{    int n; /* iterates over tree elements */    /* Initialize the trees. */    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;    s->dyn_ltree[END_BLOCK].Freq = 1;    s->opt_len = s->static_len = 0L;    s->last_lit = s->matches = 0;}#define SMALLEST 1/* Index within the heap array of least frequent node in the Huffman tree *//* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */#define pqremove(s, tree, top) \{\    top = s->heap[SMALLEST]; \    s->heap[SMALLEST] = s->heap[s->heap_len--]; \    pqdownheap(s, tree, SMALLEST); \}/* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */#define smaller(tree, n, m, depth) \   (tree[n].Freq < tree[m].Freq || \   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))/* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */local void pqdownheap(s, tree, k)    deflate_state *s;    ct_data *tree;  /* the tree to restore */    int k;               /* node to move down */{    int v = s->heap[k];    int j = k << 1;  /* left son of k */    while (j <= s->heap_len) {        /* Set j to the smallest of the two sons: */        if (j < s->heap_len &&            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {            j++;        }        /* Exit if v is smaller than both sons */        if (smaller(tree, v, s->heap[j], s->depth)) break;        /* Exchange v with the smallest son */        s->heap[k] = s->heap[j];  k = j;        /* And continue down the tree, setting j to the left son of k */        j <<= 1;    }    s->heap[k] = v;}/* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and *    above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the *     array bl_count contains the frequencies for each bit length. *     The length opt_len is updated; static_len is also updated if stree is *     not null. */local void gen_bitlen(s, desc)    deflate_state *s;    tree_desc *desc;    /* the tree descriptor */{    ct_data *tree        = desc->dyn_tree;    int max_code         = desc->max_code;    const ct_data *stree = desc->stat_desc->static_tree;    const intf *extra    = desc->stat_desc->extra_bits;    int base             = desc->stat_desc->extra_base;    int max_length       = desc->stat_desc->max_length;    int h;              /* heap index */    int n, m;           /* iterate over the tree elements */    int bits;           /* bit length */    int xbits;          /* extra bits */    ush f;              /* frequency */    int overflow = 0;   /* number of elements with bit length too large */    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;    /* In a first pass, compute the optimal bit lengths (which may     * overflow in the case of the bit length tree).     */    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {        n = s->heap[h];        bits = tree[tree[n].Dad].Len + 1;        if (bits > max_length) bits = max_length, overflow++;        tree[n].Len = (ush)bits;        /* We overwrite tree[n].Dad which is no longer needed */        if (n > max_code) continue; /* not a leaf node */        s->bl_count[bits]++;        xbits = 0;        if (n >= base) xbits = extra[n-base];        f = tree[n].Freq;        s->opt_len += (ulg)f * (bits + xbits);        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);    }    if (overflow == 0) return;    Trace((stderr,"\nbit length overflow\n"));    /* This happens for example on obj2 and pic of the Calgary corpus */    /* Find the first bit length which could increase: */    do {        bits = max_length-1;        while (s->bl_count[bits] == 0) bits--;        s->bl_count[bits]--;      /* move one leaf down the tree */        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */        s->bl_count[max_length]--;        /* The brother of the overflow item also moves one step up,         * but this does not affect bl_count[max_length]         */        overflow -= 2;    } while (overflow > 0);    /* Now recompute all bit lengths, scanning in increasing frequency.     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all     * lengths instead of fixing only the wrong ones. This idea is taken     * from 'ar' written by Haruhiko Okumura.)     */    for (bits = max_length; bits != 0; bits--) {        n = s->bl_count[bits];        while (n != 0) {            m = s->heap[--h];            if (m > max_code) continue;            if ((unsigned) tree[m].Len != (unsigned) bits) {                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));                s->opt_len += ((long)bits - (long)tree[m].Len)                              *(long)tree[m].Freq;                tree[m].Len = (ush)bits;            }            n--;        }    }}/* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non *     zero code length. */local void gen_codes (tree, max_code, bl_count)    ct_data *tree;             /* the tree to decorate */    int max_code;              /* largest code with non zero frequency */    ushf *bl_count;            /* number of codes at each bit length */{    ush next_code[MAX_BITS+1]; /* next code value for each bit length */    ush code = 0;              /* running code value */    int bits;                  /* bit index */    int n;                     /* code index */    /* The distribution counts are first used to generate the code values     * without bit reversal.     */    for (bits = 1; bits <= MAX_BITS; bits++) {        next_code[bits] = code = (code + bl_count[bits-1]) << 1;    }    /* Check that the bit counts in bl_count are consistent. The last code     * must be all ones.     */    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,            "inconsistent bit counts");    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));    for (n = 0;  n <= max_code; n++) {        int len = tree[n].Len;        if (len == 0) continue;        /* Now reverse the bits */        tree[n].Code = bi_reverse(next_code[len]++, len);        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));    }}/* =========================================================================== * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length *     and corresponding code. The length opt_len is updated; static_len is *     also updated if stree is not null. The field max_code is set. */local void build_tree(s, desc)    deflate_state *s;    tree_desc *desc; /* the tree descriptor */{    ct_data *tree         = desc->dyn_tree;    const ct_data *stree  = desc->stat_desc->static_tree;    int elems             = desc->stat_desc->elems;    int n, m;          /* iterate over heap elements */    int max_code = -1; /* largest code with non zero frequency */    int node;          /* new node being created */    /* Construct the initial heap, with least frequent element in     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].     * heap[0] is not used.     */    s->heap_len = 0, s->heap_max = HEAP_SIZE;    for (n = 0; n < elems; n++) {        if (tree[n].Freq != 0) {            s->heap[++(s->heap_len)] = max_code = n;            s->depth[n] = 0;        } else {            tree[n].Len = 0;        }    }    /* The pkzip format requires that at least one distance code exists,     * and that at least one bit should be sent even if there is only one     * possible code. So to avoid special checks later on we force at least     * two codes of non zero frequency.     */    while (s->heap_len < 2) {        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);        tree[node].Freq = 1;        s->depth[node] = 0;        s->opt_len--; if (stree) s->static_len -= stree[node].Len;        /* node is 0 or 1 so it does not have extra bits */    }    desc->max_code = max_code;    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,     * establish sub-heaps of increasing lengths:     */    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);    /* Construct the Huffman tree by repeatedly combining the least two     * frequent nodes.     */    node = elems;              /* next internal node of the tree */    do {        pqremove(s, tree, n);  /* n = node of least frequency */        m = s->heap[SMALLEST]; /* m = node of next least frequency */        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */        s->heap[--(s->heap_max)] = m;        /* Create a new node father of n and m */        tree[node].Freq = tree[n].Freq + tree[m].Freq;        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?                                s->depth[n] : s->depth[m]) + 1);        tree[n].Dad = tree[m].Dad = (ush)node;#ifdef DUMP_BL_TREE        if (tree == s->bl_tree) {            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);        }#endif        /* and insert the new node in the heap */        s->heap[SMALLEST] = node++;        pqdownheap(s, tree, SMALLEST);    } while (s->heap_len >= 2);    s->heap[--(s->heap_max)] = s->heap[SMALLEST];    /* At this point, the fields freq and dad are set. We can now     * generate the bit lengths.     */    gen_bitlen(s, (tree_desc *)desc);    /* The field len is now set, we can generate the bit codes */    gen_codes ((ct_data *)tree, max_code, s->bl_count);}/* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */local void scan_tree (s, tree, max_code)    deflate_state *s;    ct_data *tree;   /* the tree to be scanned */    int max_code;    /* and its largest code of non zero frequency */{    int n;                     /* iterates over all tree elements */    int prevlen = -1;          /* last emitted length */    int curlen;                /* length of current code */    int nextlen = tree[0].Len; /* length of next code */    int count = 0;             /* repeat count of the current code */    int max_count = 7;         /* max repeat count */    int min_count = 4;         /* min repeat count */    if (nextlen == 0) max_count = 138, min_count = 3;    tree[max_code+1].Len = (ush)0xffff; /* guard */    for (n = 0; n <= max_code; n++) {        curlen = nextlen; nextlen = tree[n+1].Len;        if (++count < max_count && curlen == nextlen) {            continue;        } else if (count < min_count) {            s->bl_tree[curlen].Freq += count;        } else if (curlen != 0) {            if (curlen != prevlen) s->bl_tree[curlen].Freq++;            s->bl_tree[REP_3_6].Freq++;        } else if (count <= 10) {            s->bl_tree[REPZ_3_10].Freq++;        } else {            s->bl_tree[REPZ_11_138].Freq++;        }        count = 0; prevlen = curlen;        if (nextlen == 0) {            max_count = 138, min_count = 3;        } else if (curlen == nextlen) {            max_count = 6, min_count = 3;        } else {            max_count = 7, min_count = 4;        }    }}/* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */local void send_tree (s, tree, max_code)    deflate_state *s;    ct_data *tree; /* the tree to be scanned */    int max_code;       /* and its largest code of non zero frequency */{    int n;                     /* iterates over all tree elements */    int prevlen = -1;          /* last emitted length */    int curlen;                /* length of current code */    int nextlen = tree[0].Len; /* length of next code */    int count = 0;             /* repeat count of the current code */    int max_count = 7;         /* max repeat count */    int min_count = 4;         /* min repeat count */    /* tree[max_code+1].Len = -1; */  /* guard already set */    if (nextlen == 0) max_count = 138, min_count = 3;    for (n = 0; n <= max_code; n++) {        curlen = nextlen; nextlen = tree[n+1].Len;        if (++count < max_count && curlen == nextlen) {            continue;        } else if (count < min_count) {            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);        } else if (curlen != 0) {            if (curlen != prevlen) {                send_code(s, curlen, s->bl_tree); count--;            }            Assert(count >= 3 && count <= 6, " 3_6?");            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);        } else if (count <= 10) {            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);        } else {            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);        }        count = 0; prevlen = curlen;        if (nextlen == 0) {            max_count = 138, min_count = 3;        } else if (curlen == nextlen) {            max_count = 6, min_count = 3;        } else {            max_count = 7, min_count = 4;        }    }}/* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */local int build_bl_tree(s)    deflate_state *s;{    int max_blindex;  /* index of last bit length code of non zero freq */    /* Determine the bit length frequencies for literal and distance trees */    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);    /* Build the bit length tree: */    build_tree(s, (tree_desc *)(&(s->bl_desc)));    /* opt_len now includes the length of the tree representations, except     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.     */    /* Determine the number of bit length codes to send. The pkzip format     * requires that at least 4 bit length codes be sent. (appnote.txt says     * 3 but the actual value used is 4.)     */    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;    }    /* Update opt_len to include the bit length tree and counts */    s->opt_len += 3*(max_blindex+1) + 5+5+4;    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",            s->opt_len, s->static_len));    return max_blindex;}/* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */local void send_all_trees(s, lcodes, dcodes, blcodes)    deflate_state *s;    int lcodes, dcodes, blcodes; /* number of codes for each tree */{    int rank;                    /* index in bl_order */    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,            "too many codes");    Tracev((stderr, "\nbl counts: "));    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */    send_bits(s, dcodes-1,   5);    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */    for (rank = 0; rank < blcodes; rank++) {        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);    }    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));}/* =========================================================================== * Send a stored block */void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)    deflate_state *s;    charf *buf;       /* input block */    ulg stored_len;   /* length of input block */    int last;         /* one if this is the last block for a file */{    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */#ifdef DEBUG    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;    s->compressed_len += (stored_len + 4) << 3;#endif    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */}/* =========================================================================== * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) */void ZLIB_INTERNAL _tr_flush_bits(s)    deflate_state *s;{    bi_flush(s);}/* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */void ZLIB_INTERNAL _tr_align(s)    deflate_state *s;{    send_bits(s, STATIC_TREES<<1, 3);    send_code(s, END_BLOCK, static_ltree);#ifdef DEBUG    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */#endif    bi_flush(s);}/* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)    deflate_state *s;    charf *buf;       /* input block, or NULL if too old */    ulg stored_len;   /* length of input block */    int last;         /* one if this is the last block for a file */{    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */    int max_blindex = 0;  /* index of last bit length code of non zero freq */    /* Build the Huffman trees unless a stored block is forced */    if (s->level > 0) {        /* Check if the file is binary or text */        if (s->strm->data_type == Z_UNKNOWN)            s->strm->data_type = detect_data_type(s);        /* Construct the literal and distance trees */        build_tree(s, (tree_desc *)(&(s->l_desc)));        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,                s->static_len));        build_tree(s, (tree_desc *)(&(s->d_desc)));        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,                s->static_len));        /* At this point, opt_len and static_len are the total bit lengths of         * the compressed block data, excluding the tree representations.         */        /* Build the bit length tree for the above two trees, and get the index         * in bl_order of the last bit length code to send.         */        max_blindex = build_bl_tree(s);        /* Determine the best encoding. Compute the block lengths in bytes. */        opt_lenb = (s->opt_len+3+7)>>3;        static_lenb = (s->static_len+3+7)>>3;        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,                s->last_lit));        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;    } else {        Assert(buf != (char*)0, "lost buf");        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */    }#ifdef FORCE_STORED    if (buf != (char*)0) { /* force stored block */#else    if (stored_len+4 <= opt_lenb && buf != (char*)0) {                       /* 4: two words for the lengths */#endif        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.         * Otherwise we can't have processed more than WSIZE input bytes since         * the last block flush, because compression would have been         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to         * transform a block into a stored block.         */        _tr_stored_block(s, buf, stored_len, last);#ifdef FORCE_STATIC    } else if (static_lenb >= 0) { /* force static trees */#else    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {#endif        send_bits(s, (STATIC_TREES<<1)+last, 3);        compress_block(s, (const ct_data *)static_ltree,                       (const ct_data *)static_dtree);#ifdef DEBUG        s->compressed_len += 3 + s->static_len;#endif    } else {        send_bits(s, (DYN_TREES<<1)+last, 3);        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,                       max_blindex+1);        compress_block(s, (const ct_data *)s->dyn_ltree,                       (const ct_data *)s->dyn_dtree);#ifdef DEBUG        s->compressed_len += 3 + s->opt_len;#endif    }    Assert (s->compressed_len == s->bits_sent, "bad compressed size");    /* The above check is made mod 2^32, for files larger than 512 MB     * and uLong implemented on 32 bits.     */    init_block(s);    if (last) {        bi_windup(s);#ifdef DEBUG        s->compressed_len += 7;  /* align on byte boundary */#endif    }    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,           s->compressed_len-7*last));}/* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */int ZLIB_INTERNAL _tr_tally (s, dist, lc)    deflate_state *s;    unsigned dist;  /* distance of matched string */    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */{    s->d_buf[s->last_lit] = (ush)dist;    s->l_buf[s->last_lit++] = (uch)lc;    if (dist == 0) {        /* lc is the unmatched char */        s->dyn_ltree[lc].Freq++;    } else {        s->matches++;        /* Here, lc is the match length - MIN_MATCH */        dist--;             /* dist = match distance - 1 */        Assert((ush)dist < (ush)MAX_DIST(s) &&               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;        s->dyn_dtree[d_code(dist)].Freq++;    }#ifdef TRUNCATE_BLOCK    /* Try to guess if it is profitable to stop the current block here */    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {        /* Compute an upper bound for the compressed length */        ulg out_length = (ulg)s->last_lit*8L;        ulg in_length = (ulg)((long)s->strstart - s->block_start);        int dcode;        for (dcode = 0; dcode < D_CODES; dcode++) {            out_length += (ulg)s->dyn_dtree[dcode].Freq *                (5L+extra_dbits[dcode]);        }        out_length >>= 3;        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",               s->last_lit, in_length, out_length,               100L - out_length*100L/in_length));        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;    }#endif    return (s->last_lit == s->lit_bufsize-1);    /* We avoid equality with lit_bufsize because of wraparound at 64K     * on 16 bit machines and because stored blocks are restricted to     * 64K-1 bytes.     */}/* =========================================================================== * Send the block data compressed using the given Huffman trees */local void compress_block(s, ltree, dtree)    deflate_state *s;    const ct_data *ltree; /* literal tree */    const ct_data *dtree; /* distance tree */{    unsigned dist;      /* distance of matched string */    int lc;             /* match length or unmatched char (if dist == 0) */    unsigned lx = 0;    /* running index in l_buf */    unsigned code;      /* the code to send */    int extra;          /* number of extra bits to send */    if (s->last_lit != 0) do {        dist = s->d_buf[lx];        lc = s->l_buf[lx++];        if (dist == 0) {            send_code(s, lc, ltree); /* send a literal byte */            Tracecv(isgraph(lc), (stderr," '%c' ", lc));        } else {            /* Here, lc is the match length - MIN_MATCH */            code = _length_code[lc];            send_code(s, code+LITERALS+1, ltree); /* send the length code */            extra = extra_lbits[code];            if (extra != 0) {                lc -= base_length[code];                send_bits(s, lc, extra);       /* send the extra length bits */            }            dist--; /* dist is now the match distance - 1 */            code = d_code(dist);            Assert (code < D_CODES, "bad d_code");            send_code(s, code, dtree);       /* send the distance code */            extra = extra_dbits[code];            if (extra != 0) {                dist -= base_dist[code];                send_bits(s, dist, extra);   /* send the extra distance bits */            }        } /* literal or match pair ? */        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,               "pendingBuf overflow");    } while (lx < s->last_lit);    send_code(s, END_BLOCK, ltree);}/* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: *    a) There are no non-portable control characters belonging to the *       "black list" (0..6, 14..25, 28..31). *    b) There is at least one printable character belonging to the *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a *   "gray list" that is ignored in this detection algorithm: *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */local int detect_data_type(s)    deflate_state *s;{    /* black_mask is the bit mask of black-listed bytes     * set bits 0..6, 14..25, and 28..31     * 0xf3ffc07f = binary 11110011111111111100000001111111     */    unsigned long black_mask = 0xf3ffc07fUL;    int n;    /* Check for non-textual ("black-listed") bytes. */    for (n = 0; n <= 31; n++, black_mask >>= 1)        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))            return Z_BINARY;    /* Check for textual ("white-listed") bytes. */    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0            || s->dyn_ltree[13].Freq != 0)        return Z_TEXT;    for (n = 32; n < LITERALS; n++)        if (s->dyn_ltree[n].Freq != 0)            return Z_TEXT;    /* There are no "black-listed" or "white-listed" bytes:     * this stream either is empty or has tolerated ("gray-listed") bytes only.     */    return Z_BINARY;}/* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */local unsigned bi_reverse(code, len)    unsigned code; /* the value to invert */    int len;       /* its bit length */{    register unsigned res = 0;    do {        res |= code & 1;        code >>= 1, res <<= 1;    } while (--len > 0);    return res >> 1;}/* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */local void bi_flush(s)    deflate_state *s;{    if (s->bi_valid == 16) {        put_short(s, s->bi_buf);        s->bi_buf = 0;        s->bi_valid = 0;    } else if (s->bi_valid >= 8) {        put_byte(s, (Byte)s->bi_buf);        s->bi_buf >>= 8;        s->bi_valid -= 8;    }}/* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */local void bi_windup(s)    deflate_state *s;{    if (s->bi_valid > 8) {        put_short(s, s->bi_buf);    } else if (s->bi_valid > 0) {        put_byte(s, (Byte)s->bi_buf);    }    s->bi_buf = 0;    s->bi_valid = 0;#ifdef DEBUG    s->bits_sent = (s->bits_sent+7) & ~7;#endif}/* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */local void copy_block(s, buf, len, header)    deflate_state *s;    charf    *buf;    /* the input data */    unsigned len;     /* its length */    int      header;  /* true if block header must be written */{    bi_windup(s);        /* align on byte boundary */    if (header) {        put_short(s, (ush)len);        put_short(s, (ush)~len);#ifdef DEBUG        s->bits_sent += 2*16;#endif    }#ifdef DEBUG    s->bits_sent += (ulg)len<<3;#endif    while (len--) {        put_byte(s, *buf++);    }}
 |