sdio.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
  3. *
  4. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
  5. *
  6. * https://www.gnu.org/licenses/gpl-3.0.html
  7. * ----
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version. 
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16. * GNU General Public License for more details. 
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  20. **/
  21. // Implementation of SDIO communication for RP2040
  22. //
  23. // The RP2040 official work-in-progress code at
  24. // https://github.com/raspberrypi/pico-extras/tree/master/src/rp2_common/pico_sd_card
  25. // may be useful reference, but this is independent implementation.
  26. //
  27. // For official SDIO specifications, refer to:
  28. // https://www.sdcard.org/downloads/pls/
  29. // "SDIO Physical Layer Simplified Specification Version 8.00"
  30. #include "sdio.h"
  31. #include <hardware/pio.h>
  32. #include <hardware/dma.h>
  33. #include <hardware/gpio.h>
  34. #include <ZuluSCSI_platform.h>
  35. #include <ZuluSCSI_log.h>
  36. #if defined(ZULUSCSI_PICO) || defined(ZULUSCSI_BS2)
  37. #include "sdio_Pico.pio.h"
  38. #else
  39. #include "sdio_RP2040.pio.h"
  40. #endif
  41. #define SDIO_PIO pio1
  42. #define SDIO_CMD_SM 0
  43. #define SDIO_DATA_SM 1
  44. #define SDIO_DMA_CH 4
  45. #define SDIO_DMA_CHB 5
  46. // Maximum number of 512 byte blocks to transfer in one request
  47. #define SDIO_MAX_BLOCKS 256
  48. enum sdio_transfer_state_t { SDIO_IDLE, SDIO_RX, SDIO_TX, SDIO_TX_WAIT_IDLE};
  49. static struct {
  50. uint32_t pio_cmd_clk_offset;
  51. uint32_t pio_data_rx_offset;
  52. pio_sm_config pio_cfg_data_rx;
  53. uint32_t pio_data_tx_offset;
  54. pio_sm_config pio_cfg_data_tx;
  55. sdio_transfer_state_t transfer_state;
  56. uint32_t transfer_start_time;
  57. uint32_t *data_buf;
  58. uint32_t blocks_done; // Number of blocks transferred so far
  59. uint32_t total_blocks; // Total number of blocks to transfer
  60. uint32_t blocks_checksumed; // Number of blocks that have had CRC calculated
  61. uint32_t checksum_errors; // Number of checksum errors detected
  62. // Variables for block writes
  63. uint64_t next_wr_block_checksum;
  64. uint32_t end_token_buf[3]; // CRC and end token for write block
  65. sdio_status_t wr_status;
  66. uint32_t card_response;
  67. // Variables for block reads
  68. // This is used to perform DMA into data buffers and checksum buffers separately.
  69. struct {
  70. void * write_addr;
  71. uint32_t transfer_count;
  72. } dma_blocks[SDIO_MAX_BLOCKS * 2];
  73. struct {
  74. uint32_t top;
  75. uint32_t bottom;
  76. } received_checksums[SDIO_MAX_BLOCKS];
  77. } g_sdio;
  78. void rp2040_sdio_dma_irq();
  79. /*******************************************************
  80. * Checksum algorithms
  81. *******************************************************/
  82. // Table lookup for calculating CRC-7 checksum that is used in SDIO command packets.
  83. // Usage:
  84. // uint8_t crc = 0;
  85. // crc = crc7_table[crc ^ byte];
  86. // .. repeat for every byte ..
  87. static const uint8_t crc7_table[256] = {
  88. 0x00, 0x12, 0x24, 0x36, 0x48, 0x5a, 0x6c, 0x7e, 0x90, 0x82, 0xb4, 0xa6, 0xd8, 0xca, 0xfc, 0xee,
  89. 0x32, 0x20, 0x16, 0x04, 0x7a, 0x68, 0x5e, 0x4c, 0xa2, 0xb0, 0x86, 0x94, 0xea, 0xf8, 0xce, 0xdc,
  90. 0x64, 0x76, 0x40, 0x52, 0x2c, 0x3e, 0x08, 0x1a, 0xf4, 0xe6, 0xd0, 0xc2, 0xbc, 0xae, 0x98, 0x8a,
  91. 0x56, 0x44, 0x72, 0x60, 0x1e, 0x0c, 0x3a, 0x28, 0xc6, 0xd4, 0xe2, 0xf0, 0x8e, 0x9c, 0xaa, 0xb8,
  92. 0xc8, 0xda, 0xec, 0xfe, 0x80, 0x92, 0xa4, 0xb6, 0x58, 0x4a, 0x7c, 0x6e, 0x10, 0x02, 0x34, 0x26,
  93. 0xfa, 0xe8, 0xde, 0xcc, 0xb2, 0xa0, 0x96, 0x84, 0x6a, 0x78, 0x4e, 0x5c, 0x22, 0x30, 0x06, 0x14,
  94. 0xac, 0xbe, 0x88, 0x9a, 0xe4, 0xf6, 0xc0, 0xd2, 0x3c, 0x2e, 0x18, 0x0a, 0x74, 0x66, 0x50, 0x42,
  95. 0x9e, 0x8c, 0xba, 0xa8, 0xd6, 0xc4, 0xf2, 0xe0, 0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62, 0x70,
  96. 0x82, 0x90, 0xa6, 0xb4, 0xca, 0xd8, 0xee, 0xfc, 0x12, 0x00, 0x36, 0x24, 0x5a, 0x48, 0x7e, 0x6c,
  97. 0xb0, 0xa2, 0x94, 0x86, 0xf8, 0xea, 0xdc, 0xce, 0x20, 0x32, 0x04, 0x16, 0x68, 0x7a, 0x4c, 0x5e,
  98. 0xe6, 0xf4, 0xc2, 0xd0, 0xae, 0xbc, 0x8a, 0x98, 0x76, 0x64, 0x52, 0x40, 0x3e, 0x2c, 0x1a, 0x08,
  99. 0xd4, 0xc6, 0xf0, 0xe2, 0x9c, 0x8e, 0xb8, 0xaa, 0x44, 0x56, 0x60, 0x72, 0x0c, 0x1e, 0x28, 0x3a,
  100. 0x4a, 0x58, 0x6e, 0x7c, 0x02, 0x10, 0x26, 0x34, 0xda, 0xc8, 0xfe, 0xec, 0x92, 0x80, 0xb6, 0xa4,
  101. 0x78, 0x6a, 0x5c, 0x4e, 0x30, 0x22, 0x14, 0x06, 0xe8, 0xfa, 0xcc, 0xde, 0xa0, 0xb2, 0x84, 0x96,
  102. 0x2e, 0x3c, 0x0a, 0x18, 0x66, 0x74, 0x42, 0x50, 0xbe, 0xac, 0x9a, 0x88, 0xf6, 0xe4, 0xd2, 0xc0,
  103. 0x1c, 0x0e, 0x38, 0x2a, 0x54, 0x46, 0x70, 0x62, 0x8c, 0x9e, 0xa8, 0xba, 0xc4, 0xd6, 0xe0, 0xf2
  104. };
  105. // Calculate the CRC16 checksum for parallel 4 bit lines separately.
  106. // When the SDIO bus operates in 4-bit mode, the CRC16 algorithm
  107. // is applied to each line separately and generates total of
  108. // 4 x 16 = 64 bits of checksum.
  109. __attribute__((optimize("O3")))
  110. uint64_t sdio_crc16_4bit_checksum(uint32_t *data, uint32_t num_words)
  111. {
  112. uint64_t crc = 0;
  113. uint32_t *end = data + num_words;
  114. while (data < end)
  115. {
  116. for (int unroll = 0; unroll < 4; unroll++)
  117. {
  118. // Each 32-bit word contains 8 bits per line.
  119. // Reverse the bytes because SDIO protocol is big-endian.
  120. uint32_t data_in = __builtin_bswap32(*data++);
  121. // Shift out 8 bits for each line
  122. uint32_t data_out = crc >> 32;
  123. crc <<= 32;
  124. // XOR outgoing data to itself with 4 bit delay
  125. data_out ^= (data_out >> 16);
  126. // XOR incoming data to outgoing data with 4 bit delay
  127. data_out ^= (data_in >> 16);
  128. // XOR outgoing and incoming data to accumulator at each tap
  129. uint64_t xorred = data_out ^ data_in;
  130. crc ^= xorred;
  131. crc ^= xorred << (5 * 4);
  132. crc ^= xorred << (12 * 4);
  133. }
  134. }
  135. return crc;
  136. }
  137. /*******************************************************
  138. * Status Register Receiver
  139. *******************************************************/
  140. sdio_status_t receive_status_register(uint8_t* sds) {
  141. rp2040_sdio_rx_start(sds, 1, 64);
  142. // Wait for the DMA operation to complete, or fail if it took too long
  143. waitagain:
  144. while (dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH))
  145. {
  146. if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 2)
  147. {
  148. // Reset the state machine program
  149. dma_channel_abort(SDIO_DMA_CHB);
  150. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  151. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  152. return SDIO_ERR_RESPONSE_TIMEOUT;
  153. }
  154. }
  155. // Assert that both DMA channels are complete
  156. if(dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH)) {
  157. // Wait failure, go back.
  158. goto waitagain;
  159. }
  160. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  161. g_sdio.transfer_state = SDIO_IDLE;
  162. return SDIO_OK;
  163. }
  164. /*******************************************************
  165. * Basic SDIO command execution
  166. *******************************************************/
  167. static void sdio_send_command(uint8_t command, uint32_t arg, uint8_t response_bits)
  168. {
  169. // dbgmsg("SDIO Command: ", (int)command, " arg ", arg);
  170. // Format the arguments in the way expected by the PIO code.
  171. uint32_t word0 =
  172. (47 << 24) | // Number of bits in command minus one
  173. ( 1 << 22) | // Transfer direction from host to card
  174. (command << 16) | // Command byte
  175. (((arg >> 24) & 0xFF) << 8) | // MSB byte of argument
  176. (((arg >> 16) & 0xFF) << 0);
  177. uint32_t word1 =
  178. (((arg >> 8) & 0xFF) << 24) |
  179. (((arg >> 0) & 0xFF) << 16) | // LSB byte of argument
  180. ( 1 << 8); // End bit
  181. // Set number of bits in response minus one, or leave at 0 if no response expected
  182. if (response_bits)
  183. {
  184. word1 |= ((response_bits - 1) << 0);
  185. }
  186. // Calculate checksum in the order that the bytes will be transmitted (big-endian)
  187. uint8_t crc = 0;
  188. crc = crc7_table[crc ^ ((word0 >> 16) & 0xFF)];
  189. crc = crc7_table[crc ^ ((word0 >> 8) & 0xFF)];
  190. crc = crc7_table[crc ^ ((word0 >> 0) & 0xFF)];
  191. crc = crc7_table[crc ^ ((word1 >> 24) & 0xFF)];
  192. crc = crc7_table[crc ^ ((word1 >> 16) & 0xFF)];
  193. word1 |= crc << 8;
  194. // Transmit command
  195. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  196. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word0);
  197. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word1);
  198. }
  199. sdio_status_t rp2040_sdio_command_R1(uint8_t command, uint32_t arg, uint32_t *response)
  200. {
  201. sdio_send_command(command, arg, response ? 48 : 0);
  202. // Wait for response
  203. uint32_t start = millis();
  204. uint32_t wait_words = response ? 2 : 1;
  205. while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < wait_words)
  206. {
  207. if ((uint32_t)(millis() - start) > 2)
  208. {
  209. if (command != 8) // Don't log for missing SD card
  210. {
  211. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R1(", (int)command, "), ",
  212. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  213. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  214. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  215. }
  216. // Reset the state machine program
  217. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  218. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  219. return SDIO_ERR_RESPONSE_TIMEOUT;
  220. }
  221. }
  222. if (response)
  223. {
  224. // Read out response packet
  225. uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  226. uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  227. // dbgmsg("SDIO R1 response: ", resp0, " ", resp1);
  228. // Calculate response checksum
  229. uint8_t crc = 0;
  230. crc = crc7_table[crc ^ ((resp0 >> 24) & 0xFF)];
  231. crc = crc7_table[crc ^ ((resp0 >> 16) & 0xFF)];
  232. crc = crc7_table[crc ^ ((resp0 >> 8) & 0xFF)];
  233. crc = crc7_table[crc ^ ((resp0 >> 0) & 0xFF)];
  234. crc = crc7_table[crc ^ ((resp1 >> 8) & 0xFF)];
  235. uint8_t actual_crc = ((resp1 >> 0) & 0xFE);
  236. if (crc != actual_crc)
  237. {
  238. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  239. return SDIO_ERR_RESPONSE_CRC;
  240. }
  241. uint8_t response_cmd = ((resp0 >> 24) & 0xFF);
  242. if (response_cmd != command && command != 41)
  243. {
  244. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): received reply for ", (int)response_cmd);
  245. return SDIO_ERR_RESPONSE_CODE;
  246. }
  247. *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
  248. }
  249. else
  250. {
  251. // Read out dummy marker
  252. pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  253. }
  254. return SDIO_OK;
  255. }
  256. sdio_status_t rp2040_sdio_command_R2(uint8_t command, uint32_t arg, uint8_t response[16])
  257. {
  258. // The response is too long to fit in the PIO FIFO, so use DMA to receive it.
  259. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  260. uint32_t response_buf[5];
  261. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  262. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  263. channel_config_set_read_increment(&dmacfg, false);
  264. channel_config_set_write_increment(&dmacfg, true);
  265. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false));
  266. dma_channel_configure(SDIO_DMA_CH, &dmacfg, &response_buf, &SDIO_PIO->rxf[SDIO_CMD_SM], 5, true);
  267. sdio_send_command(command, arg, 136);
  268. uint32_t start = millis();
  269. while (dma_channel_is_busy(SDIO_DMA_CH))
  270. {
  271. if ((uint32_t)(millis() - start) > 2)
  272. {
  273. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R2(", (int)command, "), ",
  274. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  275. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  276. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  277. // Reset the state machine program
  278. dma_channel_abort(SDIO_DMA_CH);
  279. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  280. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  281. return SDIO_ERR_RESPONSE_TIMEOUT;
  282. }
  283. }
  284. dma_channel_abort(SDIO_DMA_CH);
  285. // Copy the response payload to output buffer
  286. response[0] = ((response_buf[0] >> 16) & 0xFF);
  287. response[1] = ((response_buf[0] >> 8) & 0xFF);
  288. response[2] = ((response_buf[0] >> 0) & 0xFF);
  289. response[3] = ((response_buf[1] >> 24) & 0xFF);
  290. response[4] = ((response_buf[1] >> 16) & 0xFF);
  291. response[5] = ((response_buf[1] >> 8) & 0xFF);
  292. response[6] = ((response_buf[1] >> 0) & 0xFF);
  293. response[7] = ((response_buf[2] >> 24) & 0xFF);
  294. response[8] = ((response_buf[2] >> 16) & 0xFF);
  295. response[9] = ((response_buf[2] >> 8) & 0xFF);
  296. response[10] = ((response_buf[2] >> 0) & 0xFF);
  297. response[11] = ((response_buf[3] >> 24) & 0xFF);
  298. response[12] = ((response_buf[3] >> 16) & 0xFF);
  299. response[13] = ((response_buf[3] >> 8) & 0xFF);
  300. response[14] = ((response_buf[3] >> 0) & 0xFF);
  301. response[15] = ((response_buf[4] >> 0) & 0xFF);
  302. // Calculate checksum of the payload
  303. uint8_t crc = 0;
  304. for (int i = 0; i < 15; i++)
  305. {
  306. crc = crc7_table[crc ^ response[i]];
  307. }
  308. uint8_t actual_crc = response[15] & 0xFE;
  309. if (crc != actual_crc)
  310. {
  311. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  312. return SDIO_ERR_RESPONSE_CRC;
  313. }
  314. uint8_t response_cmd = ((response_buf[0] >> 24) & 0xFF);
  315. if (response_cmd != 0x3F)
  316. {
  317. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): Expected reply code 0x3F");
  318. return SDIO_ERR_RESPONSE_CODE;
  319. }
  320. return SDIO_OK;
  321. }
  322. sdio_status_t rp2040_sdio_command_R3(uint8_t command, uint32_t arg, uint32_t *response)
  323. {
  324. sdio_send_command(command, arg, 48);
  325. // Wait for response
  326. uint32_t start = millis();
  327. while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < 2)
  328. {
  329. if ((uint32_t)(millis() - start) > 2)
  330. {
  331. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R3(", (int)command, "), ",
  332. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  333. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  334. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  335. // Reset the state machine program
  336. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  337. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  338. return SDIO_ERR_RESPONSE_TIMEOUT;
  339. }
  340. }
  341. // Read out response packet
  342. uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  343. uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  344. *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
  345. // dbgmsg("SDIO R3 response: ", resp0, " ", resp1);
  346. return SDIO_OK;
  347. }
  348. /*******************************************************
  349. * Data reception from SD card
  350. *******************************************************/
  351. sdio_status_t rp2040_sdio_rx_start(uint8_t *buffer, uint32_t num_blocks, uint32_t block_size)
  352. {
  353. // Buffer must be aligned
  354. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  355. g_sdio.transfer_state = SDIO_RX;
  356. g_sdio.transfer_start_time = millis();
  357. g_sdio.data_buf = (uint32_t*)buffer;
  358. g_sdio.blocks_done = 0;
  359. g_sdio.total_blocks = num_blocks;
  360. g_sdio.blocks_checksumed = 0;
  361. g_sdio.checksum_errors = 0;
  362. // Create DMA block descriptors to store each block of block_size bytes of data to buffer
  363. // and then 8 bytes to g_sdio.received_checksums.
  364. for (int i = 0; i < num_blocks; i++)
  365. {
  366. g_sdio.dma_blocks[i * 2].write_addr = buffer + i * block_size;
  367. g_sdio.dma_blocks[i * 2].transfer_count = block_size / sizeof(uint32_t);
  368. g_sdio.dma_blocks[i * 2 + 1].write_addr = &g_sdio.received_checksums[i];
  369. g_sdio.dma_blocks[i * 2 + 1].transfer_count = 2;
  370. }
  371. g_sdio.dma_blocks[num_blocks * 2].write_addr = 0;
  372. g_sdio.dma_blocks[num_blocks * 2].transfer_count = 0;
  373. // Configure first DMA channel for reading from the PIO RX fifo
  374. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  375. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  376. channel_config_set_read_increment(&dmacfg, false);
  377. channel_config_set_write_increment(&dmacfg, true);
  378. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  379. channel_config_set_bswap(&dmacfg, true);
  380. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  381. dma_channel_configure(SDIO_DMA_CH, &dmacfg, 0, &SDIO_PIO->rxf[SDIO_DATA_SM], 0, false);
  382. // Configure second DMA channel for reconfiguring the first one
  383. dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  384. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  385. channel_config_set_read_increment(&dmacfg, true);
  386. channel_config_set_write_increment(&dmacfg, true);
  387. channel_config_set_ring(&dmacfg, true, 3);
  388. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &dma_hw->ch[SDIO_DMA_CH].al1_write_addr,
  389. g_sdio.dma_blocks, 2, false);
  390. // Initialize PIO state machine
  391. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_rx_offset, &g_sdio.pio_cfg_data_rx);
  392. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  393. // Write number of nibbles to receive to Y register
  394. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, block_size * 2 + 16 - 1);
  395. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  396. // Enable RX FIFO join because we don't need the TX FIFO during transfer.
  397. // This gives more leeway for the DMA block switching
  398. SDIO_PIO->sm[SDIO_DATA_SM].shiftctrl |= PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS;
  399. // Start PIO and DMA
  400. dma_channel_start(SDIO_DMA_CHB);
  401. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  402. return SDIO_OK;
  403. }
  404. // Check checksums for received blocks
  405. static void sdio_verify_rx_checksums(uint32_t maxcount)
  406. {
  407. while (g_sdio.blocks_checksumed < g_sdio.blocks_done && maxcount-- > 0)
  408. {
  409. // Calculate checksum from received data
  410. int blockidx = g_sdio.blocks_checksumed++;
  411. uint64_t checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  412. SDIO_WORDS_PER_BLOCK);
  413. // Convert received checksum to little-endian format
  414. uint32_t top = __builtin_bswap32(g_sdio.received_checksums[blockidx].top);
  415. uint32_t bottom = __builtin_bswap32(g_sdio.received_checksums[blockidx].bottom);
  416. uint64_t expected = ((uint64_t)top << 32) | bottom;
  417. if (checksum != expected)
  418. {
  419. g_sdio.checksum_errors++;
  420. if (g_sdio.checksum_errors == 1)
  421. {
  422. logmsg("SDIO checksum error in reception: block ", blockidx,
  423. " calculated ", checksum, " expected ", expected);
  424. }
  425. }
  426. }
  427. }
  428. sdio_status_t rp2040_sdio_rx_poll(uint32_t *bytes_complete)
  429. {
  430. // Was everything done when the previous rx_poll() finished?
  431. if (g_sdio.blocks_done >= g_sdio.total_blocks)
  432. {
  433. g_sdio.transfer_state = SDIO_IDLE;
  434. }
  435. else
  436. {
  437. // Use the idle time to calculate checksums
  438. sdio_verify_rx_checksums(4);
  439. // Check how many DMA control blocks have been consumed
  440. uint32_t dma_ctrl_block_count = (dma_hw->ch[SDIO_DMA_CHB].read_addr - (uint32_t)&g_sdio.dma_blocks);
  441. dma_ctrl_block_count /= sizeof(g_sdio.dma_blocks[0]);
  442. // Compute how many complete 512 byte SDIO blocks have been transferred
  443. // When transfer ends, dma_ctrl_block_count == g_sdio.total_blocks * 2 + 1
  444. g_sdio.blocks_done = (dma_ctrl_block_count - 1) / 2;
  445. // NOTE: When all blocks are done, rx_poll() still returns SDIO_BUSY once.
  446. // This provides a chance to start the SCSI transfer before the last checksums
  447. // are computed. Any checksum failures can be indicated in SCSI status after
  448. // the data transfer has finished.
  449. }
  450. if (bytes_complete)
  451. {
  452. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  453. }
  454. if (g_sdio.transfer_state == SDIO_IDLE)
  455. {
  456. // Verify all remaining checksums.
  457. sdio_verify_rx_checksums(g_sdio.total_blocks);
  458. if (g_sdio.checksum_errors == 0)
  459. return SDIO_OK;
  460. else
  461. return SDIO_ERR_DATA_CRC;
  462. }
  463. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  464. {
  465. dbgmsg("rp2040_sdio_rx_poll() timeout, "
  466. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_rx_offset,
  467. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  468. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  469. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  470. rp2040_sdio_stop();
  471. return SDIO_ERR_DATA_TIMEOUT;
  472. }
  473. return SDIO_BUSY;
  474. }
  475. /*******************************************************
  476. * Data transmission to SD card
  477. *******************************************************/
  478. static void sdio_start_next_block_tx()
  479. {
  480. // Initialize PIO
  481. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_tx_offset, &g_sdio.pio_cfg_data_tx);
  482. // Configure DMA to send the data block payload (512 bytes)
  483. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  484. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  485. channel_config_set_read_increment(&dmacfg, true);
  486. channel_config_set_write_increment(&dmacfg, false);
  487. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, true));
  488. channel_config_set_bswap(&dmacfg, true);
  489. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  490. dma_channel_configure(SDIO_DMA_CH, &dmacfg,
  491. &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.data_buf + g_sdio.blocks_done * SDIO_WORDS_PER_BLOCK,
  492. SDIO_WORDS_PER_BLOCK, false);
  493. // Prepare second DMA channel to send the CRC and block end marker
  494. uint64_t crc = g_sdio.next_wr_block_checksum;
  495. g_sdio.end_token_buf[0] = (uint32_t)(crc >> 32);
  496. g_sdio.end_token_buf[1] = (uint32_t)(crc >> 0);
  497. g_sdio.end_token_buf[2] = 0xFFFFFFFF;
  498. channel_config_set_bswap(&dmacfg, false);
  499. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  500. &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.end_token_buf, 3, false);
  501. // Enable IRQ to trigger when block is done
  502. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  503. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 1);
  504. // Initialize register X with nibble count and register Y with response bit count
  505. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 1048);
  506. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_x, 32));
  507. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 31);
  508. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  509. // Initialize pins to output and high
  510. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pins, 15));
  511. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pindirs, 15));
  512. // Write start token and start the DMA transfer.
  513. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 0xFFFFFFF0);
  514. dma_channel_start(SDIO_DMA_CH);
  515. // Start state machine
  516. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  517. }
  518. static void sdio_compute_next_tx_checksum()
  519. {
  520. assert (g_sdio.blocks_done < g_sdio.total_blocks && g_sdio.blocks_checksumed < g_sdio.total_blocks);
  521. int blockidx = g_sdio.blocks_checksumed++;
  522. g_sdio.next_wr_block_checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  523. SDIO_WORDS_PER_BLOCK);
  524. }
  525. // Start transferring data from memory to SD card
  526. sdio_status_t rp2040_sdio_tx_start(const uint8_t *buffer, uint32_t num_blocks)
  527. {
  528. // Buffer must be aligned
  529. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  530. g_sdio.transfer_state = SDIO_TX;
  531. g_sdio.transfer_start_time = millis();
  532. g_sdio.data_buf = (uint32_t*)buffer;
  533. g_sdio.blocks_done = 0;
  534. g_sdio.total_blocks = num_blocks;
  535. g_sdio.blocks_checksumed = 0;
  536. g_sdio.checksum_errors = 0;
  537. // Compute first block checksum
  538. sdio_compute_next_tx_checksum();
  539. // Start first DMA transfer and PIO
  540. sdio_start_next_block_tx();
  541. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  542. {
  543. // Precompute second block checksum
  544. sdio_compute_next_tx_checksum();
  545. }
  546. return SDIO_OK;
  547. }
  548. sdio_status_t check_sdio_write_response(uint32_t card_response)
  549. {
  550. // Shift card response until top bit is 0 (the start bit)
  551. // The format of response is poorly documented in SDIO spec but refer to e.g.
  552. // http://my-cool-projects.blogspot.com/2013/02/the-mysterious-sd-card-crc-status.html
  553. uint32_t resp = card_response;
  554. if (!(~resp & 0xFFFF0000)) resp <<= 16;
  555. if (!(~resp & 0xFF000000)) resp <<= 8;
  556. if (!(~resp & 0xF0000000)) resp <<= 4;
  557. if (!(~resp & 0xC0000000)) resp <<= 2;
  558. if (!(~resp & 0x80000000)) resp <<= 1;
  559. uint32_t wr_status = (resp >> 28) & 7;
  560. if (wr_status == 2)
  561. {
  562. return SDIO_OK;
  563. }
  564. else if (wr_status == 5)
  565. {
  566. logmsg("SDIO card reports write CRC error, status ", card_response);
  567. return SDIO_ERR_WRITE_CRC;
  568. }
  569. else if (wr_status == 6)
  570. {
  571. logmsg("SDIO card reports write failure, status ", card_response);
  572. return SDIO_ERR_WRITE_FAIL;
  573. }
  574. else
  575. {
  576. logmsg("SDIO card reports unknown write status ", card_response);
  577. return SDIO_ERR_WRITE_FAIL;
  578. }
  579. }
  580. // When a block finishes, this IRQ handler starts the next one
  581. static void rp2040_sdio_tx_irq()
  582. {
  583. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  584. if (g_sdio.transfer_state == SDIO_TX)
  585. {
  586. if (!dma_channel_is_busy(SDIO_DMA_CH) && !dma_channel_is_busy(SDIO_DMA_CHB))
  587. {
  588. // Main data transfer is finished now.
  589. // When card is ready, PIO will put card response on RX fifo
  590. g_sdio.transfer_state = SDIO_TX_WAIT_IDLE;
  591. if (!pio_sm_is_rx_fifo_empty(SDIO_PIO, SDIO_DATA_SM))
  592. {
  593. // Card is already idle
  594. g_sdio.card_response = pio_sm_get(SDIO_PIO, SDIO_DATA_SM);
  595. }
  596. else
  597. {
  598. // Use DMA to wait for the response
  599. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  600. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  601. channel_config_set_read_increment(&dmacfg, false);
  602. channel_config_set_write_increment(&dmacfg, false);
  603. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  604. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  605. &g_sdio.card_response, &SDIO_PIO->rxf[SDIO_DATA_SM], 1, true);
  606. }
  607. }
  608. }
  609. if (g_sdio.transfer_state == SDIO_TX_WAIT_IDLE)
  610. {
  611. if (!dma_channel_is_busy(SDIO_DMA_CHB))
  612. {
  613. g_sdio.wr_status = check_sdio_write_response(g_sdio.card_response);
  614. if (g_sdio.wr_status != SDIO_OK)
  615. {
  616. rp2040_sdio_stop();
  617. return;
  618. }
  619. g_sdio.blocks_done++;
  620. if (g_sdio.blocks_done < g_sdio.total_blocks)
  621. {
  622. sdio_start_next_block_tx();
  623. g_sdio.transfer_state = SDIO_TX;
  624. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  625. {
  626. // Precompute the CRC for next block so that it is ready when
  627. // we want to send it.
  628. sdio_compute_next_tx_checksum();
  629. }
  630. }
  631. else
  632. {
  633. rp2040_sdio_stop();
  634. }
  635. }
  636. }
  637. }
  638. // Check if transmission is complete
  639. sdio_status_t rp2040_sdio_tx_poll(uint32_t *bytes_complete)
  640. {
  641. if (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk)
  642. {
  643. // Verify that IRQ handler gets called even if we are in hardfault handler
  644. rp2040_sdio_tx_irq();
  645. }
  646. if (bytes_complete)
  647. {
  648. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  649. }
  650. if (g_sdio.transfer_state == SDIO_IDLE)
  651. {
  652. rp2040_sdio_stop();
  653. return g_sdio.wr_status;
  654. }
  655. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  656. {
  657. dbgmsg("rp2040_sdio_tx_poll() timeout, "
  658. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_tx_offset,
  659. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  660. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  661. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  662. rp2040_sdio_stop();
  663. return SDIO_ERR_DATA_TIMEOUT;
  664. }
  665. return SDIO_BUSY;
  666. }
  667. // Force everything to idle state
  668. sdio_status_t rp2040_sdio_stop()
  669. {
  670. dma_channel_abort(SDIO_DMA_CH);
  671. dma_channel_abort(SDIO_DMA_CHB);
  672. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 0);
  673. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  674. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  675. g_sdio.transfer_state = SDIO_IDLE;
  676. return SDIO_OK;
  677. }
  678. void rp2040_sdio_init(int clock_divider)
  679. {
  680. // Mark resources as being in use, unless it has been done already.
  681. static bool resources_claimed = false;
  682. if (!resources_claimed)
  683. {
  684. pio_sm_claim(SDIO_PIO, SDIO_CMD_SM);
  685. pio_sm_claim(SDIO_PIO, SDIO_DATA_SM);
  686. dma_channel_claim(SDIO_DMA_CH);
  687. dma_channel_claim(SDIO_DMA_CHB);
  688. resources_claimed = true;
  689. }
  690. memset(&g_sdio, 0, sizeof(g_sdio));
  691. dma_channel_abort(SDIO_DMA_CH);
  692. dma_channel_abort(SDIO_DMA_CHB);
  693. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  694. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  695. // Load PIO programs
  696. pio_clear_instruction_memory(SDIO_PIO);
  697. // Command & clock state machine
  698. g_sdio.pio_cmd_clk_offset = pio_add_program(SDIO_PIO, &sdio_cmd_clk_program);
  699. pio_sm_config cfg = sdio_cmd_clk_program_get_default_config(g_sdio.pio_cmd_clk_offset);
  700. sm_config_set_out_pins(&cfg, SDIO_CMD, 1);
  701. sm_config_set_in_pins(&cfg, SDIO_CMD);
  702. sm_config_set_set_pins(&cfg, SDIO_CMD, 1);
  703. sm_config_set_jmp_pin(&cfg, SDIO_CMD);
  704. sm_config_set_sideset_pins(&cfg, SDIO_CLK);
  705. sm_config_set_out_shift(&cfg, false, true, 32);
  706. sm_config_set_in_shift(&cfg, false, true, 32);
  707. sm_config_set_clkdiv_int_frac(&cfg, clock_divider, 0);
  708. sm_config_set_mov_status(&cfg, STATUS_TX_LESSTHAN, 2);
  709. pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_cmd_clk_offset, &cfg);
  710. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
  711. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, true);
  712. // Data reception program
  713. g_sdio.pio_data_rx_offset = pio_add_program(SDIO_PIO, &sdio_data_rx_program);
  714. g_sdio.pio_cfg_data_rx = sdio_data_rx_program_get_default_config(g_sdio.pio_data_rx_offset);
  715. sm_config_set_in_pins(&g_sdio.pio_cfg_data_rx, SDIO_D0);
  716. sm_config_set_in_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
  717. sm_config_set_out_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
  718. sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_rx, clock_divider, 0);
  719. // Data transmission program
  720. g_sdio.pio_data_tx_offset = pio_add_program(SDIO_PIO, &sdio_data_tx_program);
  721. g_sdio.pio_cfg_data_tx = sdio_data_tx_program_get_default_config(g_sdio.pio_data_tx_offset);
  722. sm_config_set_in_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0);
  723. sm_config_set_set_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
  724. sm_config_set_out_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
  725. sm_config_set_in_shift(&g_sdio.pio_cfg_data_tx, false, false, 32);
  726. sm_config_set_out_shift(&g_sdio.pio_cfg_data_tx, false, true, 32);
  727. sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_tx, clock_divider, 0);
  728. // Disable SDIO pins input synchronizer.
  729. // This reduces input delay.
  730. // Because the CLK is driven synchronously to CPU clock,
  731. // there should be no metastability problems.
  732. SDIO_PIO->input_sync_bypass |= (1 << SDIO_CLK) | (1 << SDIO_CMD)
  733. | (1 << SDIO_D0) | (1 << SDIO_D1) | (1 << SDIO_D2) | (1 << SDIO_D3);
  734. // Redirect GPIOs to PIO
  735. gpio_set_function(SDIO_CMD, GPIO_FUNC_PIO1);
  736. gpio_set_function(SDIO_CLK, GPIO_FUNC_PIO1);
  737. gpio_set_function(SDIO_D0, GPIO_FUNC_PIO1);
  738. gpio_set_function(SDIO_D1, GPIO_FUNC_PIO1);
  739. gpio_set_function(SDIO_D2, GPIO_FUNC_PIO1);
  740. gpio_set_function(SDIO_D3, GPIO_FUNC_PIO1);
  741. // Set up IRQ handler when DMA completes.
  742. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  743. irq_set_enabled(DMA_IRQ_1, true);
  744. #if 0
  745. #ifndef ENABLE_AUDIO_OUTPUT
  746. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  747. #else
  748. // seem to hit assertion in _exclusive_handler call due to DMA_IRQ_0 being shared?
  749. // slightly less efficient to do it this way, so investigate further at some point
  750. irq_add_shared_handler(DMA_IRQ_1, rp2040_sdio_tx_irq, 0xFF);
  751. #endif
  752. irq_set_enabled(DMA_IRQ_1, true);
  753. #endif
  754. }