scsiPhy.cpp 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. // Implements the low level interface to SCSI bus
  2. // Partially derived from scsiPhy.c from SCSI2SD-V6
  3. #include "scsiPhy.h"
  4. #include "BlueSCSI_platform.h"
  5. #include "BlueSCSI_log.h"
  6. #include "BlueSCSI_log_trace.h"
  7. #include "BlueSCSI_config.h"
  8. #include "scsi_accel_rp2040.h"
  9. #include "hardware/structs/iobank0.h"
  10. #include <scsi2sd.h>
  11. extern "C" {
  12. #include <scsi.h>
  13. #include <scsi2sd_time.h>
  14. }
  15. /***********************/
  16. /* SCSI status signals */
  17. /***********************/
  18. extern "C" bool scsiStatusATN()
  19. {
  20. return SCSI_IN(ATN);
  21. }
  22. extern "C" bool scsiStatusBSY()
  23. {
  24. return SCSI_IN(BSY);
  25. }
  26. /************************/
  27. /* SCSI selection logic */
  28. /************************/
  29. volatile uint8_t g_scsi_sts_selection;
  30. volatile uint8_t g_scsi_ctrl_bsy;
  31. void scsi_bsy_deassert_interrupt()
  32. {
  33. if (SCSI_IN(SEL) && !SCSI_IN(BSY))
  34. {
  35. // Check if any of the targets we simulate is selected
  36. uint8_t sel_bits = SCSI_IN_DATA();
  37. int sel_id = -1;
  38. for (int i = 0; i < S2S_MAX_TARGETS; i++)
  39. {
  40. if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
  41. {
  42. if (sel_bits & (1 << scsiDev.targets[i].targetId))
  43. {
  44. sel_id = scsiDev.targets[i].targetId;
  45. break;
  46. }
  47. }
  48. }
  49. if (sel_id >= 0)
  50. {
  51. // Set ATN flag here unconditionally, real value is only known after
  52. // OUT_BSY is enabled in scsiStatusSEL() below.
  53. g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | SCSI_STS_SELECTION_ATN | sel_id;
  54. }
  55. // selFlag is required for Philips P2000C which releases it after 600ns
  56. // without waiting for BSY.
  57. // Also required for some early Mac Plus roms
  58. scsiDev.selFlag = *SCSI_STS_SELECTED;
  59. }
  60. }
  61. extern "C" bool scsiStatusSEL()
  62. {
  63. if (g_scsi_ctrl_bsy)
  64. {
  65. // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
  66. // Instead update the state here.
  67. // Releasing happens with bus release.
  68. g_scsi_ctrl_bsy = 0;
  69. SCSI_OUT(CD, 0);
  70. SCSI_OUT(MSG, 0);
  71. SCSI_ENABLE_CONTROL_OUT();
  72. SCSI_OUT(BSY, 1);
  73. // On RP2040 hardware the ATN signal is only available after OUT_BSY enables
  74. // the IO buffer U105, so check the signal status here.
  75. delay_100ns();
  76. if (!scsiStatusATN())
  77. {
  78. // This is a SCSI1 host that does send IDENTIFY message
  79. scsiDev.atnFlag = 0;
  80. scsiDev.target->unitAttention = 0;
  81. scsiDev.compatMode = COMPAT_SCSI1;
  82. }
  83. }
  84. return SCSI_IN(SEL);
  85. }
  86. /************************/
  87. /* SCSI bus reset logic */
  88. /************************/
  89. static void scsi_rst_assert_interrupt()
  90. {
  91. // Glitch filtering
  92. bool rst1 = SCSI_IN(RST);
  93. delay_ns(500);
  94. bool rst2 = SCSI_IN(RST);
  95. if (rst1 && rst2)
  96. {
  97. debuglog("BUS RESET");
  98. scsiDev.resetFlag = 1;
  99. }
  100. }
  101. static void scsiPhyIRQ(uint gpio, uint32_t events)
  102. {
  103. if (gpio == SCSI_IN_BSY || gpio == SCSI_IN_SEL)
  104. {
  105. // Note BSY / SEL interrupts only when we are not driving OUT_BSY low ourselves.
  106. // The BSY input pin may be shared with other signals.
  107. if (sio_hw->gpio_out & (1 << SCSI_OUT_BSY))
  108. {
  109. scsi_bsy_deassert_interrupt();
  110. }
  111. }
  112. else if (gpio == SCSI_IN_RST)
  113. {
  114. scsi_rst_assert_interrupt();
  115. }
  116. }
  117. // This function is called to initialize the phy code.
  118. // It is called after power-on and after SCSI bus reset.
  119. extern "C" void scsiPhyReset(void)
  120. {
  121. SCSI_RELEASE_OUTPUTS();
  122. g_scsi_sts_selection = 0;
  123. g_scsi_ctrl_bsy = 0;
  124. scsi_accel_rp2040_init();
  125. // Enable BSY, RST and SEL interrupts
  126. // Note: RP2040 library currently supports only one callback,
  127. // so it has to be same for both pins.
  128. gpio_set_irq_enabled_with_callback(SCSI_IN_BSY, GPIO_IRQ_EDGE_RISE, true, scsiPhyIRQ);
  129. gpio_set_irq_enabled(SCSI_IN_RST, GPIO_IRQ_EDGE_FALL, true);
  130. // Check BSY line status when SEL goes active.
  131. // This is needed to handle SCSI-1 hosts that use the single initiator mode.
  132. // The host will just assert the SEL directly, without asserting BSY first.
  133. gpio_set_irq_enabled(SCSI_IN_SEL, GPIO_IRQ_EDGE_FALL, true);
  134. }
  135. /************************/
  136. /* SCSI bus phase logic */
  137. /************************/
  138. static SCSI_PHASE g_scsi_phase;
  139. extern "C" void scsiEnterPhase(int phase)
  140. {
  141. int delay = scsiEnterPhaseImmediate(phase);
  142. if (delay > 0)
  143. {
  144. s2s_delay_ns(delay);
  145. }
  146. }
  147. // Change state and return nanosecond delay to wait
  148. extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
  149. {
  150. if (phase != g_scsi_phase)
  151. {
  152. // ANSI INCITS 362-2002 SPI-3 10.7.1:
  153. // Phase changes are not allowed while REQ or ACK is asserted.
  154. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
  155. if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT))
  156. {
  157. // Akai S1000/S3000 seems to need extra delay before changing to data phase
  158. // after a command. The code in BlueSCSI_disk.cpp tries to do this while waiting
  159. // for SD card, to avoid any extra latency.
  160. s2s_delay_ns(400000);
  161. }
  162. int oldphase = g_scsi_phase;
  163. g_scsi_phase = (SCSI_PHASE)phase;
  164. scsiLogPhaseChange(phase);
  165. // Select between synchronous vs. asynchronous SCSI writes
  166. if (scsiDev.target->syncOffset > 0 && (g_scsi_phase == DATA_IN || g_scsi_phase == DATA_OUT))
  167. {
  168. scsi_accel_rp2040_setSyncMode(scsiDev.target->syncOffset, scsiDev.target->syncPeriod);
  169. }
  170. else
  171. {
  172. scsi_accel_rp2040_setSyncMode(0, 0);
  173. }
  174. if (phase < 0)
  175. {
  176. // Other communication on bus or reset state
  177. SCSI_RELEASE_OUTPUTS();
  178. return 0;
  179. }
  180. else
  181. {
  182. SCSI_OUT(MSG, phase & __scsiphase_msg);
  183. SCSI_OUT(CD, phase & __scsiphase_cd);
  184. SCSI_OUT(IO, phase & __scsiphase_io);
  185. SCSI_ENABLE_CONTROL_OUT();
  186. int delayNs = 400; // Bus settle delay
  187. if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
  188. {
  189. delayNs += 400; // Data release delay
  190. }
  191. if (scsiDev.compatMode < COMPAT_SCSI2)
  192. {
  193. // EMU EMAX needs 100uS ! 10uS is not enough.
  194. delayNs += 100000;
  195. }
  196. return delayNs;
  197. }
  198. }
  199. else
  200. {
  201. return 0;
  202. }
  203. }
  204. // Release all signals
  205. void scsiEnterBusFree(void)
  206. {
  207. g_scsi_phase = BUS_FREE;
  208. g_scsi_sts_selection = 0;
  209. g_scsi_ctrl_bsy = 0;
  210. scsiDev.cdbLen = 0;
  211. SCSI_RELEASE_OUTPUTS();
  212. }
  213. /********************/
  214. /* Transmit to host */
  215. /********************/
  216. #define SCSI_WAIT_ACTIVE(pin) \
  217. if (!SCSI_IN(pin)) { \
  218. if (!SCSI_IN(pin)) { \
  219. while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
  220. } \
  221. }
  222. // In synchronous mode the ACK pulse can be very short, so use edge IRQ to detect it.
  223. #define CHECK_EDGE(pin) \
  224. ((iobank0_hw->intr[pin / 8] >> (4 * (pin % 8))) & GPIO_IRQ_EDGE_FALL)
  225. #define SCSI_WAIT_ACTIVE_EDGE(pin) \
  226. if (!CHECK_EDGE(SCSI_IN_ ## pin)) { \
  227. while(!SCSI_IN(pin) && !CHECK_EDGE(SCSI_IN_ ## pin) && !scsiDev.resetFlag); \
  228. }
  229. #define SCSI_WAIT_INACTIVE(pin) \
  230. if (SCSI_IN(pin)) { \
  231. if (SCSI_IN(pin)) { \
  232. while(SCSI_IN(pin) && !scsiDev.resetFlag); \
  233. } \
  234. }
  235. // Write one byte to SCSI host using the handshake mechanism
  236. // This is suitable for both asynchronous and synchronous communication.
  237. static inline void scsiWriteOneByte(uint8_t value)
  238. {
  239. SCSI_OUT_DATA(value);
  240. delay_100ns(); // DB setup time before REQ
  241. gpio_acknowledge_irq(SCSI_IN_ACK, GPIO_IRQ_EDGE_FALL);
  242. SCSI_OUT(REQ, 1);
  243. SCSI_WAIT_ACTIVE_EDGE(ACK);
  244. SCSI_RELEASE_DATA_REQ();
  245. SCSI_WAIT_INACTIVE(ACK);
  246. }
  247. extern "C" void scsiWriteByte(uint8_t value)
  248. {
  249. scsiLogDataIn(&value, 1);
  250. scsiWriteOneByte(value);
  251. }
  252. extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
  253. {
  254. scsiStartWrite(data, count);
  255. scsiFinishWrite();
  256. }
  257. extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
  258. {
  259. scsiLogDataIn(data, count);
  260. scsi_accel_rp2040_startWrite(data, count, &scsiDev.resetFlag);
  261. }
  262. extern "C" bool scsiIsWriteFinished(const uint8_t *data)
  263. {
  264. return scsi_accel_rp2040_isWriteFinished(data);
  265. }
  266. extern "C" void scsiFinishWrite()
  267. {
  268. scsi_accel_rp2040_finishWrite(&scsiDev.resetFlag);
  269. }
  270. /*********************/
  271. /* Receive from host */
  272. /*********************/
  273. // Read one byte from SCSI host using the handshake mechanism.
  274. static inline uint8_t scsiReadOneByte(int* parityError)
  275. {
  276. SCSI_OUT(REQ, 1);
  277. SCSI_WAIT_ACTIVE(ACK);
  278. delay_100ns();
  279. uint16_t r = SCSI_IN_DATA();
  280. SCSI_OUT(REQ, 0);
  281. SCSI_WAIT_INACTIVE(ACK);
  282. if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ SCSI_IO_DATA_MASK))
  283. {
  284. debuglog("Parity error in scsiReadOneByte(): ", (uint32_t)r);
  285. *parityError = 1;
  286. }
  287. return (uint8_t)r;
  288. }
  289. extern "C" uint8_t scsiReadByte(void)
  290. {
  291. uint8_t r = scsiReadOneByte(NULL);
  292. scsiLogDataOut(&r, 1);
  293. return r;
  294. }
  295. extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
  296. {
  297. *parityError = 0;
  298. scsiStartRead(data, count, parityError);
  299. scsiFinishRead(data, count, parityError);
  300. }
  301. extern "C" void scsiStartRead(uint8_t* data, uint32_t count, int *parityError)
  302. {
  303. scsi_accel_rp2040_startRead(data, count, parityError, &scsiDev.resetFlag);
  304. }
  305. extern "C" void scsiFinishRead(uint8_t* data, uint32_t count, int *parityError)
  306. {
  307. scsi_accel_rp2040_finishRead(data, count, parityError, &scsiDev.resetFlag);
  308. scsiLogDataOut(data, count);
  309. }
  310. extern "C" bool scsiIsReadFinished(const uint8_t *data)
  311. {
  312. return scsi_accel_rp2040_isReadFinished(data);
  313. }