audio.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549
  1. /**
  2. * Copyright (C) 2023 saybur
  3. *
  4. * This program is free software: you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation, either version 3 of the License, or
  7. * (at your option) any later version. 
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12. * GNU General Public License for more details. 
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  16. **/
  17. #ifdef ENABLE_AUDIO_OUTPUT
  18. #include <SdFat.h>
  19. #include <stdbool.h>
  20. #include <hardware/dma.h>
  21. #include <hardware/irq.h>
  22. #include <hardware/spi.h>
  23. #include <pico/multicore.h>
  24. #include "audio.h"
  25. #include "BlueSCSI_audio.h"
  26. #include "BlueSCSI_config.h"
  27. #include "BlueSCSI_log.h"
  28. #include "BlueSCSI_platform.h"
  29. extern SdFs SD;
  30. // Table with the number of '1' bits for each index.
  31. // Used for SP/DIF parity calculations.
  32. // Placed in SRAM5 for the second core to use with reduced contention.
  33. const uint8_t snd_parity[256] __attribute__((aligned(256), section(".scratch_y.snd_parity"))) = {
  34. 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
  35. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  36. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  37. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  38. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  39. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  40. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  41. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  42. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  43. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  44. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  45. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  46. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  47. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  48. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  49. 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, };
  50. /*
  51. * Precomputed biphase-mark patterns for data. For an 8-bit value this has
  52. * 16-bits in MSB-first order for the correct high/low transitions to
  53. * represent the data, given an output clocking rate twice the bitrate (so the
  54. * bits '11' or '00' reflect a zero and '10' or '01' represent a one). Each
  55. * value below starts with a '1' and will need to be inverted if the last bit
  56. * of the previous mask was also a '1'. These values can be written to an
  57. * appropriately configured SPI peripheral to blast biphase data at a
  58. * receiver.
  59. *
  60. * To facilitate fast lookups this table should be put in SRAM with low
  61. * contention, aligned to an apppropriate boundry.
  62. */
  63. const uint16_t biphase[256] __attribute__((aligned(512), section(".scratch_y.biphase"))) = {
  64. 0xCCCC, 0xB333, 0xD333, 0xACCC, 0xCB33, 0xB4CC, 0xD4CC, 0xAB33,
  65. 0xCD33, 0xB2CC, 0xD2CC, 0xAD33, 0xCACC, 0xB533, 0xD533, 0xAACC,
  66. 0xCCB3, 0xB34C, 0xD34C, 0xACB3, 0xCB4C, 0xB4B3, 0xD4B3, 0xAB4C,
  67. 0xCD4C, 0xB2B3, 0xD2B3, 0xAD4C, 0xCAB3, 0xB54C, 0xD54C, 0xAAB3,
  68. 0xCCD3, 0xB32C, 0xD32C, 0xACD3, 0xCB2C, 0xB4D3, 0xD4D3, 0xAB2C,
  69. 0xCD2C, 0xB2D3, 0xD2D3, 0xAD2C, 0xCAD3, 0xB52C, 0xD52C, 0xAAD3,
  70. 0xCCAC, 0xB353, 0xD353, 0xACAC, 0xCB53, 0xB4AC, 0xD4AC, 0xAB53,
  71. 0xCD53, 0xB2AC, 0xD2AC, 0xAD53, 0xCAAC, 0xB553, 0xD553, 0xAAAC,
  72. 0xCCCB, 0xB334, 0xD334, 0xACCB, 0xCB34, 0xB4CB, 0xD4CB, 0xAB34,
  73. 0xCD34, 0xB2CB, 0xD2CB, 0xAD34, 0xCACB, 0xB534, 0xD534, 0xAACB,
  74. 0xCCB4, 0xB34B, 0xD34B, 0xACB4, 0xCB4B, 0xB4B4, 0xD4B4, 0xAB4B,
  75. 0xCD4B, 0xB2B4, 0xD2B4, 0xAD4B, 0xCAB4, 0xB54B, 0xD54B, 0xAAB4,
  76. 0xCCD4, 0xB32B, 0xD32B, 0xACD4, 0xCB2B, 0xB4D4, 0xD4D4, 0xAB2B,
  77. 0xCD2B, 0xB2D4, 0xD2D4, 0xAD2B, 0xCAD4, 0xB52B, 0xD52B, 0xAAD4,
  78. 0xCCAB, 0xB354, 0xD354, 0xACAB, 0xCB54, 0xB4AB, 0xD4AB, 0xAB54,
  79. 0xCD54, 0xB2AB, 0xD2AB, 0xAD54, 0xCAAB, 0xB554, 0xD554, 0xAAAB,
  80. 0xCCCD, 0xB332, 0xD332, 0xACCD, 0xCB32, 0xB4CD, 0xD4CD, 0xAB32,
  81. 0xCD32, 0xB2CD, 0xD2CD, 0xAD32, 0xCACD, 0xB532, 0xD532, 0xAACD,
  82. 0xCCB2, 0xB34D, 0xD34D, 0xACB2, 0xCB4D, 0xB4B2, 0xD4B2, 0xAB4D,
  83. 0xCD4D, 0xB2B2, 0xD2B2, 0xAD4D, 0xCAB2, 0xB54D, 0xD54D, 0xAAB2,
  84. 0xCCD2, 0xB32D, 0xD32D, 0xACD2, 0xCB2D, 0xB4D2, 0xD4D2, 0xAB2D,
  85. 0xCD2D, 0xB2D2, 0xD2D2, 0xAD2D, 0xCAD2, 0xB52D, 0xD52D, 0xAAD2,
  86. 0xCCAD, 0xB352, 0xD352, 0xACAD, 0xCB52, 0xB4AD, 0xD4AD, 0xAB52,
  87. 0xCD52, 0xB2AD, 0xD2AD, 0xAD52, 0xCAAD, 0xB552, 0xD552, 0xAAAD,
  88. 0xCCCA, 0xB335, 0xD335, 0xACCA, 0xCB35, 0xB4CA, 0xD4CA, 0xAB35,
  89. 0xCD35, 0xB2CA, 0xD2CA, 0xAD35, 0xCACA, 0xB535, 0xD535, 0xAACA,
  90. 0xCCB5, 0xB34A, 0xD34A, 0xACB5, 0xCB4A, 0xB4B5, 0xD4B5, 0xAB4A,
  91. 0xCD4A, 0xB2B5, 0xD2B5, 0xAD4A, 0xCAB5, 0xB54A, 0xD54A, 0xAAB5,
  92. 0xCCD5, 0xB32A, 0xD32A, 0xACD5, 0xCB2A, 0xB4D5, 0xD4D5, 0xAB2A,
  93. 0xCD2A, 0xB2D5, 0xD2D5, 0xAD2A, 0xCAD5, 0xB52A, 0xD52A, 0xAAD5,
  94. 0xCCAA, 0xB355, 0xD355, 0xACAA, 0xCB55, 0xB4AA, 0xD4AA, 0xAB55,
  95. 0xCD55, 0xB2AA, 0xD2AA, 0xAD55, 0xCAAA, 0xB555, 0xD555, 0xAAAA };
  96. /*
  97. * Biphase frame headers for SP/DIF, including the special bit framing
  98. * errors used to detect (sub)frame start conditions. See above table
  99. * for details.
  100. */
  101. const uint16_t x_preamble = 0xE2CC;
  102. const uint16_t y_preamble = 0xE4CC;
  103. const uint16_t z_preamble = 0xE8CC;
  104. // DMA configuration info
  105. static dma_channel_config snd_dma_a_cfg;
  106. static dma_channel_config snd_dma_b_cfg;
  107. // some chonky buffers to store audio samples
  108. static uint8_t sample_buf_a[AUDIO_BUFFER_SIZE];
  109. static uint8_t sample_buf_b[AUDIO_BUFFER_SIZE];
  110. // tracking for the state of the above buffers
  111. enum bufstate { STALE, FILLING, READY };
  112. static volatile bufstate sbufst_a = STALE;
  113. static volatile bufstate sbufst_b = STALE;
  114. enum bufselect { A, B };
  115. static bufselect sbufsel = A;
  116. static uint16_t sbufpos = 0;
  117. static uint8_t sbufswap = 0;
  118. // buffers for storing biphase patterns
  119. #define SAMPLE_CHUNK_SIZE 1024 // ~5.8ms
  120. #define WIRE_BUFFER_SIZE (SAMPLE_CHUNK_SIZE * 2)
  121. static uint16_t wire_buf_a[WIRE_BUFFER_SIZE];
  122. static uint16_t wire_buf_b[WIRE_BUFFER_SIZE];
  123. // tracking for audio playback
  124. static uint8_t audio_owner; // SCSI ID or 0xFF when idle
  125. static volatile bool audio_paused = false;
  126. static FsFile audio_file;
  127. static uint32_t fleft;
  128. // historical playback status information
  129. static audio_status_code audio_last_status[8] = {ASC_NO_STATUS};
  130. static uint32_t audio_bytes_read[8] = {0};
  131. // mechanism for cleanly stopping DMA units
  132. static volatile bool audio_stopping = false;
  133. // trackers for the below function call
  134. static uint16_t sfcnt = 0; // sub-frame count; 2 per frame, 192 frames/block
  135. static uint8_t invert = 0; // biphase encode help: set if last wire bit was '1'
  136. /*
  137. * Translates 16-bit stereo sound samples to biphase wire patterns for the
  138. * SPI peripheral. Produces 8 patterns (128 bits, or 1 SP/DIF frame) per pair
  139. * of input samples. Provided length is the total number of sample bytes present,
  140. * _twice_ the number of samples (little-endian order assumed)
  141. *
  142. * This function operates with side-effects and is not safe to call from both
  143. * cores. It must also be called in the same order data is intended to be
  144. * output.
  145. */
  146. static void snd_encode(uint8_t* samples, uint16_t* wire_patterns, uint16_t len, uint8_t swap) {
  147. uint16_t widx = 0;
  148. for (uint16_t i = 0; i < len; i += 2) {
  149. uint32_t sample = 0;
  150. uint8_t parity = 0;
  151. if (samples != NULL) {
  152. if (swap) {
  153. sample = samples[i + 1] + (samples[i] << 8);
  154. } else {
  155. sample = samples[i] + (samples[i + 1] << 8);
  156. }
  157. // determine parity, simplified to one lookup via an XOR
  158. parity = (sample >> 8) ^ sample;
  159. parity = snd_parity[parity];
  160. /*
  161. * Shift sample into the correct bit positions of the sub-frame. This
  162. * would normally be << 12, but with my DACs I've had persistent issues
  163. * with signal clipping when sending data in the highest bit position.
  164. */
  165. sample = sample << 11;
  166. if (sample & 0x04000000) {
  167. // handle two's complement
  168. sample |= 0x08000000;
  169. parity++;
  170. }
  171. }
  172. // if needed, establish even parity with P bit
  173. if (parity % 2) sample |= 0x80000000;
  174. // translate sample into biphase encoding
  175. // first is low 8 bits: preamble and 4 least-significant bits of
  176. // 24-bit audio, pre-encoded as all '0' due to 16-bit samples
  177. uint16_t wp;
  178. if (sfcnt == 0) {
  179. wp = z_preamble; // left channel, block start
  180. } else if (sfcnt % 2) {
  181. wp = y_preamble; // right channel
  182. } else {
  183. wp = x_preamble; // left channel, not block start
  184. }
  185. if (invert) wp = ~wp;
  186. invert = wp & 1;
  187. wire_patterns[widx++] = wp;
  188. // next 8 bits (only high 4 have data)
  189. wp = biphase[(uint8_t) (sample >> 8)];
  190. if (invert) wp = ~wp;
  191. invert = wp & 1;
  192. wire_patterns[widx++] = wp;
  193. // next 8 again, all audio data
  194. wp = biphase[(uint8_t) (sample >> 16)];
  195. if (invert) wp = ~wp;
  196. invert = wp & 1;
  197. wire_patterns[widx++] = wp;
  198. // final 8, low 4 audio data and high 4 control bits
  199. wp = biphase[(uint8_t) (sample >> 24)];
  200. if (invert) wp = ~wp;
  201. invert = wp & 1;
  202. wire_patterns[widx++] = wp;
  203. // increment subframe counter for next pass
  204. sfcnt++;
  205. if (sfcnt == 384) sfcnt = 0; // if true, block complete
  206. }
  207. }
  208. // functions for passing to Core1
  209. static void snd_process_a() {
  210. if (sbufsel == A) {
  211. if (sbufst_a == READY) {
  212. snd_encode(sample_buf_a + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  213. sbufpos += SAMPLE_CHUNK_SIZE;
  214. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  215. sbufsel = B;
  216. sbufpos = 0;
  217. sbufst_a = STALE;
  218. }
  219. } else {
  220. snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  221. }
  222. } else {
  223. if (sbufst_b == READY) {
  224. snd_encode(sample_buf_b + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  225. sbufpos += SAMPLE_CHUNK_SIZE;
  226. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  227. sbufsel = A;
  228. sbufpos = 0;
  229. sbufst_b = STALE;
  230. }
  231. } else {
  232. snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  233. }
  234. }
  235. }
  236. static void snd_process_b() {
  237. // clone of above for the other wire buffer
  238. if (sbufsel == A) {
  239. if (sbufst_a == READY) {
  240. snd_encode(sample_buf_a + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  241. sbufpos += SAMPLE_CHUNK_SIZE;
  242. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  243. sbufsel = B;
  244. sbufpos = 0;
  245. sbufst_a = STALE;
  246. }
  247. } else {
  248. snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  249. }
  250. } else {
  251. if (sbufst_b == READY) {
  252. snd_encode(sample_buf_b + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  253. sbufpos += SAMPLE_CHUNK_SIZE;
  254. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  255. sbufsel = A;
  256. sbufpos = 0;
  257. sbufst_b = STALE;
  258. }
  259. } else {
  260. snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  261. }
  262. }
  263. }
  264. // Allows execution on Core1 via function pointers. Each function can take
  265. // no parameters and should return nothing, operating via side-effects only.
  266. static void core1_handler() {
  267. while (1) {
  268. void (*function)() = (void (*)()) multicore_fifo_pop_blocking();
  269. (*function)();
  270. }
  271. }
  272. /* ------------------------------------------------------------------------ */
  273. /* ---------- VISIBLE FUNCTIONS ------------------------------------------- */
  274. /* ------------------------------------------------------------------------ */
  275. void audio_dma_irq() {
  276. if (dma_hw->intr & (1 << SOUND_DMA_CHA)) {
  277. dma_hw->ints0 = (1 << SOUND_DMA_CHA);
  278. multicore_fifo_push_blocking((uintptr_t) &snd_process_a);
  279. if (audio_stopping) {
  280. channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHA);
  281. }
  282. dma_channel_configure(SOUND_DMA_CHA,
  283. &snd_dma_a_cfg,
  284. &(spi_get_hw(AUDIO_SPI)->dr),
  285. &wire_buf_a,
  286. WIRE_BUFFER_SIZE,
  287. false);
  288. } else if (dma_hw->intr & (1 << SOUND_DMA_CHB)) {
  289. dma_hw->ints0 = (1 << SOUND_DMA_CHB);
  290. multicore_fifo_push_blocking((uintptr_t) &snd_process_b);
  291. if (audio_stopping) {
  292. channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHB);
  293. }
  294. dma_channel_configure(SOUND_DMA_CHB,
  295. &snd_dma_b_cfg,
  296. &(spi_get_hw(AUDIO_SPI)->dr),
  297. &wire_buf_b,
  298. WIRE_BUFFER_SIZE,
  299. false);
  300. }
  301. }
  302. bool audio_is_active() {
  303. return audio_owner != 0xFF;
  304. }
  305. bool audio_is_playing(uint8_t id) {
  306. return audio_owner == (id & 7);
  307. }
  308. void audio_setup() {
  309. // setup SPI to blast SP/DIF data over the TX pin
  310. spi_set_baudrate(AUDIO_SPI, 5644800); // will be slightly wrong, ~0.03% slow
  311. hw_write_masked(&spi_get_hw(AUDIO_SPI)->cr0,
  312. 0x1F, // TI mode with 16 bits
  313. SPI_SSPCR0_DSS_BITS | SPI_SSPCR0_FRF_BITS);
  314. spi_get_hw(AUDIO_SPI)->dmacr = SPI_SSPDMACR_TXDMAE_BITS;
  315. hw_set_bits(&spi_get_hw(AUDIO_SPI)->cr1, SPI_SSPCR1_SSE_BITS);
  316. dma_channel_claim(SOUND_DMA_CHA);
  317. dma_channel_claim(SOUND_DMA_CHB);
  318. log("Starting Core1 for audio");
  319. multicore_launch_core1(core1_handler);
  320. }
  321. void audio_poll() {
  322. if (!audio_is_active()) return;
  323. if (audio_paused) return;
  324. if (fleft == 0 && sbufst_a == STALE && sbufst_b == STALE) {
  325. // out of data and ready to stop
  326. audio_stop(audio_owner);
  327. return;
  328. } else if (fleft == 0) {
  329. // out of data to read but still working on remainder
  330. return;
  331. }
  332. // are new audio samples needed from the memory card?
  333. uint8_t* audiobuf;
  334. if (sbufst_a == STALE) {
  335. sbufst_a = FILLING;
  336. audiobuf = sample_buf_a;
  337. } else if (sbufst_b == STALE) {
  338. sbufst_b = FILLING;
  339. audiobuf = sample_buf_b;
  340. } else {
  341. // no data needed this time
  342. return;
  343. }
  344. platform_set_sd_callback(NULL, NULL);
  345. uint16_t toRead = AUDIO_BUFFER_SIZE;
  346. if (fleft < toRead) toRead = fleft;
  347. if (audio_file.read(audiobuf, toRead) != toRead) {
  348. log("Audio sample data underrun");
  349. }
  350. fleft -= toRead;
  351. audio_bytes_read[audio_owner] += toRead;
  352. if (sbufst_a == FILLING) {
  353. sbufst_a = READY;
  354. } else if (sbufst_b == FILLING) {
  355. sbufst_b = READY;
  356. }
  357. }
  358. bool audio_play(uint8_t owner, const char* file, uint64_t start, uint64_t end, bool swap) {
  359. // stop any existing playback first
  360. if (audio_is_active()) audio_stop(audio_owner);
  361. // debuglog("Request to play ('", file, "':", start, ":", end, ")");
  362. // verify audio file is present and inputs are (somewhat) sane
  363. if (owner == 0xFF) {
  364. log("Illegal audio owner");
  365. return false;
  366. }
  367. if (start >= end) {
  368. log("Invalid range for audio (", start, ":", end, ")");
  369. return false;
  370. }
  371. platform_set_sd_callback(NULL, NULL);
  372. audio_file = SD.open(file, O_RDONLY);
  373. if (!audio_file.isOpen()) {
  374. log("Unable to open file for audio playback: ", file);
  375. return false;
  376. }
  377. uint64_t len = audio_file.size();
  378. if (start > len) {
  379. log("File '", file, "' playback request start (",
  380. start, ":", len, ") outside file bounds");
  381. audio_file.close();
  382. return false;
  383. }
  384. // truncate playback end to end of file
  385. // we will not consider this to be an error at the moment
  386. if (end > len) {
  387. dbgmsg("------ Truncate audio play request end ", end, " to file size ", len);
  388. end = len;
  389. }
  390. fleft = end - start;
  391. if (fleft <= 2 * AUDIO_BUFFER_SIZE) {
  392. log("File '", file, "' playback request (",
  393. start, ":", end, ") too short");
  394. audio_file.close();
  395. return false;
  396. }
  397. // read in initial sample buffers
  398. if (!audio_file.seek(start)) {
  399. log("Sample file (", file, ") failed start seek to ", start);
  400. audio_file.close();
  401. return false;
  402. }
  403. if (audio_file.read(sample_buf_a, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) {
  404. log("File '", file, "' playback start returned fewer bytes than allowed");
  405. audio_file.close();
  406. return false;
  407. }
  408. if (audio_file.read(sample_buf_b, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) {
  409. log("File '", file, "' playback start returned fewer bytes than allowed");
  410. audio_file.close();
  411. return false;
  412. }
  413. // prepare initial tracking state
  414. fleft -= AUDIO_BUFFER_SIZE * 2;
  415. sbufsel = A;
  416. sbufpos = 0;
  417. sbufswap = swap;
  418. sbufst_a = READY;
  419. sbufst_b = READY;
  420. audio_owner = owner & 7;
  421. audio_bytes_read[audio_owner] = AUDIO_BUFFER_SIZE * 2;
  422. audio_last_status[audio_owner] = ASC_PLAYING;
  423. // prepare the wire buffers
  424. for (uint16_t i = 0; i < WIRE_BUFFER_SIZE; i++) {
  425. wire_buf_a[i] = 0;
  426. wire_buf_b[i] = 0;
  427. }
  428. sfcnt = 0;
  429. invert = 0;
  430. // setup the two DMA units to hand-off to each other
  431. // to maintain a stable bitstream these need to run without interruption
  432. snd_dma_a_cfg = dma_channel_get_default_config(SOUND_DMA_CHA);
  433. channel_config_set_transfer_data_size(&snd_dma_a_cfg, DMA_SIZE_16);
  434. channel_config_set_dreq(&snd_dma_a_cfg, spi_get_dreq(AUDIO_SPI, true));
  435. channel_config_set_read_increment(&snd_dma_a_cfg, true);
  436. channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHB);
  437. // version of pico-sdk lacks channel_config_set_high_priority()
  438. snd_dma_a_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
  439. dma_channel_configure(SOUND_DMA_CHA, &snd_dma_a_cfg, &(spi_get_hw(AUDIO_SPI)->dr),
  440. &wire_buf_a, WIRE_BUFFER_SIZE, false);
  441. dma_channel_set_irq0_enabled(SOUND_DMA_CHA, true);
  442. snd_dma_b_cfg = dma_channel_get_default_config(SOUND_DMA_CHB);
  443. channel_config_set_transfer_data_size(&snd_dma_b_cfg, DMA_SIZE_16);
  444. channel_config_set_dreq(&snd_dma_b_cfg, spi_get_dreq(AUDIO_SPI, true));
  445. channel_config_set_read_increment(&snd_dma_b_cfg, true);
  446. channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHA);
  447. snd_dma_b_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
  448. dma_channel_configure(SOUND_DMA_CHB, &snd_dma_b_cfg, &(spi_get_hw(AUDIO_SPI)->dr),
  449. &wire_buf_b, WIRE_BUFFER_SIZE, false);
  450. dma_channel_set_irq0_enabled(SOUND_DMA_CHB, true);
  451. // ready to go
  452. dma_channel_start(SOUND_DMA_CHA);
  453. return true;
  454. }
  455. bool audio_set_paused(uint8_t id, bool paused) {
  456. if (audio_owner != (id & 7)) return false;
  457. else if (audio_paused && paused) return false;
  458. else if (!audio_paused && !paused) return false;
  459. audio_paused = paused;
  460. if (paused) {
  461. audio_last_status[audio_owner] = ASC_PAUSED;
  462. } else {
  463. audio_last_status[audio_owner] = ASC_PLAYING;
  464. }
  465. return true;
  466. }
  467. void audio_stop(uint8_t id) {
  468. if (audio_owner != (id & 7)) return;
  469. // to help mute external hardware, send a bunch of '0' samples prior to
  470. // halting the datastream; easiest way to do this is invalidating the
  471. // sample buffers, same as if there was a sample data underrun
  472. sbufst_a = STALE;
  473. sbufst_b = STALE;
  474. // then indicate that the streams should no longer chain to one another
  475. // and wait for them to shut down naturally
  476. audio_stopping = true;
  477. while (dma_channel_is_busy(SOUND_DMA_CHA)) tight_loop_contents();
  478. while (dma_channel_is_busy(SOUND_DMA_CHB)) tight_loop_contents();
  479. while (spi_is_busy(AUDIO_SPI)) tight_loop_contents();
  480. audio_stopping = false;
  481. // idle the subsystem
  482. if (audio_file.isOpen()) {
  483. audio_file.close();
  484. }
  485. audio_last_status[audio_owner] = ASC_COMPLETED;
  486. audio_owner = 0xFF;
  487. }
  488. audio_status_code audio_get_status_code(uint8_t id) {
  489. audio_status_code tmp = audio_last_status[id & 7];
  490. if (tmp == ASC_COMPLETED || tmp == ASC_ERRORED) {
  491. audio_last_status[id & 7] = ASC_NO_STATUS;
  492. }
  493. return tmp;
  494. }
  495. uint32_t audio_get_bytes_read(uint8_t id) {
  496. return audio_bytes_read[id & 7];
  497. }
  498. void audio_clear_bytes_read(uint8_t id) {
  499. audio_bytes_read[id & 7] = 0;
  500. }
  501. #endif // ENABLE_AUDIO_OUTPUT