rp2040_sdio.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
  3. *
  4. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
  5. *
  6. * https://www.gnu.org/licenses/gpl-3.0.html
  7. * ----
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version. 
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16. * GNU General Public License for more details. 
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  20. **/
  21. // Implementation of SDIO communication for RP2040
  22. //
  23. // The RP2040 official work-in-progress code at
  24. // https://github.com/raspberrypi/pico-extras/tree/master/src/rp2_common/pico_sd_card
  25. // may be useful reference, but this is independent implementation.
  26. //
  27. // For official SDIO specifications, refer to:
  28. // https://www.sdcard.org/downloads/pls/
  29. // "SDIO Physical Layer Simplified Specification Version 8.00"
  30. #include "rp2040_sdio.h"
  31. #include "rp2040_sdio.pio.h"
  32. #include <hardware/pio.h>
  33. #include <hardware/dma.h>
  34. #include <hardware/gpio.h>
  35. #include <ZuluSCSI_platform.h>
  36. #include <ZuluSCSI_log.h>
  37. #define SDIO_PIO pio1
  38. #define SDIO_CMD_SM 0
  39. #define SDIO_DATA_SM 1
  40. #define SDIO_DMA_CH 4
  41. #define SDIO_DMA_CHB 5
  42. // Maximum number of 512 byte blocks to transfer in one request
  43. #define SDIO_MAX_BLOCKS 256
  44. enum sdio_transfer_state_t { SDIO_IDLE, SDIO_RX, SDIO_TX, SDIO_TX_WAIT_IDLE};
  45. static struct {
  46. uint32_t pio_cmd_clk_offset;
  47. uint32_t pio_data_rx_offset;
  48. pio_sm_config pio_cfg_data_rx;
  49. uint32_t pio_data_tx_offset;
  50. pio_sm_config pio_cfg_data_tx;
  51. sdio_transfer_state_t transfer_state;
  52. uint32_t transfer_start_time;
  53. uint32_t *data_buf;
  54. uint32_t blocks_done; // Number of blocks transferred so far
  55. uint32_t total_blocks; // Total number of blocks to transfer
  56. uint32_t blocks_checksumed; // Number of blocks that have had CRC calculated
  57. uint32_t checksum_errors; // Number of checksum errors detected
  58. // Variables for block writes
  59. uint64_t next_wr_block_checksum;
  60. uint32_t end_token_buf[3]; // CRC and end token for write block
  61. sdio_status_t wr_status;
  62. uint32_t card_response;
  63. // Variables for block reads
  64. // This is used to perform DMA into data buffers and checksum buffers separately.
  65. struct {
  66. void * write_addr;
  67. uint32_t transfer_count;
  68. } dma_blocks[SDIO_MAX_BLOCKS * 2];
  69. struct {
  70. uint32_t top;
  71. uint32_t bottom;
  72. } received_checksums[SDIO_MAX_BLOCKS];
  73. } g_sdio;
  74. void rp2040_sdio_dma_irq();
  75. /*******************************************************
  76. * Checksum algorithms
  77. *******************************************************/
  78. // Table lookup for calculating CRC-7 checksum that is used in SDIO command packets.
  79. // Usage:
  80. // uint8_t crc = 0;
  81. // crc = crc7_table[crc ^ byte];
  82. // .. repeat for every byte ..
  83. static const uint8_t crc7_table[256] = {
  84. 0x00, 0x12, 0x24, 0x36, 0x48, 0x5a, 0x6c, 0x7e, 0x90, 0x82, 0xb4, 0xa6, 0xd8, 0xca, 0xfc, 0xee,
  85. 0x32, 0x20, 0x16, 0x04, 0x7a, 0x68, 0x5e, 0x4c, 0xa2, 0xb0, 0x86, 0x94, 0xea, 0xf8, 0xce, 0xdc,
  86. 0x64, 0x76, 0x40, 0x52, 0x2c, 0x3e, 0x08, 0x1a, 0xf4, 0xe6, 0xd0, 0xc2, 0xbc, 0xae, 0x98, 0x8a,
  87. 0x56, 0x44, 0x72, 0x60, 0x1e, 0x0c, 0x3a, 0x28, 0xc6, 0xd4, 0xe2, 0xf0, 0x8e, 0x9c, 0xaa, 0xb8,
  88. 0xc8, 0xda, 0xec, 0xfe, 0x80, 0x92, 0xa4, 0xb6, 0x58, 0x4a, 0x7c, 0x6e, 0x10, 0x02, 0x34, 0x26,
  89. 0xfa, 0xe8, 0xde, 0xcc, 0xb2, 0xa0, 0x96, 0x84, 0x6a, 0x78, 0x4e, 0x5c, 0x22, 0x30, 0x06, 0x14,
  90. 0xac, 0xbe, 0x88, 0x9a, 0xe4, 0xf6, 0xc0, 0xd2, 0x3c, 0x2e, 0x18, 0x0a, 0x74, 0x66, 0x50, 0x42,
  91. 0x9e, 0x8c, 0xba, 0xa8, 0xd6, 0xc4, 0xf2, 0xe0, 0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62, 0x70,
  92. 0x82, 0x90, 0xa6, 0xb4, 0xca, 0xd8, 0xee, 0xfc, 0x12, 0x00, 0x36, 0x24, 0x5a, 0x48, 0x7e, 0x6c,
  93. 0xb0, 0xa2, 0x94, 0x86, 0xf8, 0xea, 0xdc, 0xce, 0x20, 0x32, 0x04, 0x16, 0x68, 0x7a, 0x4c, 0x5e,
  94. 0xe6, 0xf4, 0xc2, 0xd0, 0xae, 0xbc, 0x8a, 0x98, 0x76, 0x64, 0x52, 0x40, 0x3e, 0x2c, 0x1a, 0x08,
  95. 0xd4, 0xc6, 0xf0, 0xe2, 0x9c, 0x8e, 0xb8, 0xaa, 0x44, 0x56, 0x60, 0x72, 0x0c, 0x1e, 0x28, 0x3a,
  96. 0x4a, 0x58, 0x6e, 0x7c, 0x02, 0x10, 0x26, 0x34, 0xda, 0xc8, 0xfe, 0xec, 0x92, 0x80, 0xb6, 0xa4,
  97. 0x78, 0x6a, 0x5c, 0x4e, 0x30, 0x22, 0x14, 0x06, 0xe8, 0xfa, 0xcc, 0xde, 0xa0, 0xb2, 0x84, 0x96,
  98. 0x2e, 0x3c, 0x0a, 0x18, 0x66, 0x74, 0x42, 0x50, 0xbe, 0xac, 0x9a, 0x88, 0xf6, 0xe4, 0xd2, 0xc0,
  99. 0x1c, 0x0e, 0x38, 0x2a, 0x54, 0x46, 0x70, 0x62, 0x8c, 0x9e, 0xa8, 0xba, 0xc4, 0xd6, 0xe0, 0xf2
  100. };
  101. // Calculate the CRC16 checksum for parallel 4 bit lines separately.
  102. // When the SDIO bus operates in 4-bit mode, the CRC16 algorithm
  103. // is applied to each line separately and generates total of
  104. // 4 x 16 = 64 bits of checksum.
  105. __attribute__((optimize("O3")))
  106. uint64_t sdio_crc16_4bit_checksum(uint32_t *data, uint32_t num_words)
  107. {
  108. uint64_t crc = 0;
  109. uint32_t *end = data + num_words;
  110. while (data < end)
  111. {
  112. for (int unroll = 0; unroll < 4; unroll++)
  113. {
  114. // Each 32-bit word contains 8 bits per line.
  115. // Reverse the bytes because SDIO protocol is big-endian.
  116. uint32_t data_in = __builtin_bswap32(*data++);
  117. // Shift out 8 bits for each line
  118. uint32_t data_out = crc >> 32;
  119. crc <<= 32;
  120. // XOR outgoing data to itself with 4 bit delay
  121. data_out ^= (data_out >> 16);
  122. // XOR incoming data to outgoing data with 4 bit delay
  123. data_out ^= (data_in >> 16);
  124. // XOR outgoing and incoming data to accumulator at each tap
  125. uint64_t xorred = data_out ^ data_in;
  126. crc ^= xorred;
  127. crc ^= xorred << (5 * 4);
  128. crc ^= xorred << (12 * 4);
  129. }
  130. }
  131. return crc;
  132. }
  133. /*******************************************************
  134. * Basic SDIO command execution
  135. *******************************************************/
  136. static void sdio_send_command(uint8_t command, uint32_t arg, uint8_t response_bits)
  137. {
  138. // dbgmsg("SDIO Command: ", (int)command, " arg ", arg);
  139. // Format the arguments in the way expected by the PIO code.
  140. uint32_t word0 =
  141. (47 << 24) | // Number of bits in command minus one
  142. ( 1 << 22) | // Transfer direction from host to card
  143. (command << 16) | // Command byte
  144. (((arg >> 24) & 0xFF) << 8) | // MSB byte of argument
  145. (((arg >> 16) & 0xFF) << 0);
  146. uint32_t word1 =
  147. (((arg >> 8) & 0xFF) << 24) |
  148. (((arg >> 0) & 0xFF) << 16) | // LSB byte of argument
  149. ( 1 << 8); // End bit
  150. // Set number of bits in response minus one, or leave at 0 if no response expected
  151. if (response_bits)
  152. {
  153. word1 |= ((response_bits - 1) << 0);
  154. }
  155. // Calculate checksum in the order that the bytes will be transmitted (big-endian)
  156. uint8_t crc = 0;
  157. crc = crc7_table[crc ^ ((word0 >> 16) & 0xFF)];
  158. crc = crc7_table[crc ^ ((word0 >> 8) & 0xFF)];
  159. crc = crc7_table[crc ^ ((word0 >> 0) & 0xFF)];
  160. crc = crc7_table[crc ^ ((word1 >> 24) & 0xFF)];
  161. crc = crc7_table[crc ^ ((word1 >> 16) & 0xFF)];
  162. word1 |= crc << 8;
  163. // Transmit command
  164. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  165. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word0);
  166. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word1);
  167. }
  168. sdio_status_t rp2040_sdio_command_R1(uint8_t command, uint32_t arg, uint32_t *response)
  169. {
  170. sdio_send_command(command, arg, response ? 48 : 0);
  171. // Wait for response
  172. uint32_t start = millis();
  173. uint32_t wait_words = response ? 2 : 1;
  174. while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < wait_words)
  175. {
  176. if ((uint32_t)(millis() - start) > 2)
  177. {
  178. if (command != 8) // Don't log for missing SD card
  179. {
  180. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R1(", (int)command, "), ",
  181. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  182. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  183. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  184. }
  185. // Reset the state machine program
  186. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  187. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  188. return SDIO_ERR_RESPONSE_TIMEOUT;
  189. }
  190. }
  191. if (response)
  192. {
  193. // Read out response packet
  194. uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  195. uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  196. // dbgmsg("SDIO R1 response: ", resp0, " ", resp1);
  197. // Calculate response checksum
  198. uint8_t crc = 0;
  199. crc = crc7_table[crc ^ ((resp0 >> 24) & 0xFF)];
  200. crc = crc7_table[crc ^ ((resp0 >> 16) & 0xFF)];
  201. crc = crc7_table[crc ^ ((resp0 >> 8) & 0xFF)];
  202. crc = crc7_table[crc ^ ((resp0 >> 0) & 0xFF)];
  203. crc = crc7_table[crc ^ ((resp1 >> 8) & 0xFF)];
  204. uint8_t actual_crc = ((resp1 >> 0) & 0xFE);
  205. if (crc != actual_crc)
  206. {
  207. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  208. return SDIO_ERR_RESPONSE_CRC;
  209. }
  210. uint8_t response_cmd = ((resp0 >> 24) & 0xFF);
  211. if (response_cmd != command && command != 41)
  212. {
  213. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): received reply for ", (int)response_cmd);
  214. return SDIO_ERR_RESPONSE_CODE;
  215. }
  216. *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
  217. }
  218. else
  219. {
  220. // Read out dummy marker
  221. pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  222. }
  223. return SDIO_OK;
  224. }
  225. sdio_status_t rp2040_sdio_command_R2(uint8_t command, uint32_t arg, uint8_t response[16])
  226. {
  227. // The response is too long to fit in the PIO FIFO, so use DMA to receive it.
  228. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  229. uint32_t response_buf[5];
  230. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  231. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  232. channel_config_set_read_increment(&dmacfg, false);
  233. channel_config_set_write_increment(&dmacfg, true);
  234. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false));
  235. dma_channel_configure(SDIO_DMA_CH, &dmacfg, &response_buf, &SDIO_PIO->rxf[SDIO_CMD_SM], 5, true);
  236. sdio_send_command(command, arg, 136);
  237. uint32_t start = millis();
  238. while (dma_channel_is_busy(SDIO_DMA_CH))
  239. {
  240. if ((uint32_t)(millis() - start) > 2)
  241. {
  242. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R2(", (int)command, "), ",
  243. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  244. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  245. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  246. // Reset the state machine program
  247. dma_channel_abort(SDIO_DMA_CH);
  248. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  249. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  250. return SDIO_ERR_RESPONSE_TIMEOUT;
  251. }
  252. }
  253. dma_channel_abort(SDIO_DMA_CH);
  254. // Copy the response payload to output buffer
  255. response[0] = ((response_buf[0] >> 16) & 0xFF);
  256. response[1] = ((response_buf[0] >> 8) & 0xFF);
  257. response[2] = ((response_buf[0] >> 0) & 0xFF);
  258. response[3] = ((response_buf[1] >> 24) & 0xFF);
  259. response[4] = ((response_buf[1] >> 16) & 0xFF);
  260. response[5] = ((response_buf[1] >> 8) & 0xFF);
  261. response[6] = ((response_buf[1] >> 0) & 0xFF);
  262. response[7] = ((response_buf[2] >> 24) & 0xFF);
  263. response[8] = ((response_buf[2] >> 16) & 0xFF);
  264. response[9] = ((response_buf[2] >> 8) & 0xFF);
  265. response[10] = ((response_buf[2] >> 0) & 0xFF);
  266. response[11] = ((response_buf[3] >> 24) & 0xFF);
  267. response[12] = ((response_buf[3] >> 16) & 0xFF);
  268. response[13] = ((response_buf[3] >> 8) & 0xFF);
  269. response[14] = ((response_buf[3] >> 0) & 0xFF);
  270. response[15] = ((response_buf[4] >> 0) & 0xFF);
  271. // Calculate checksum of the payload
  272. uint8_t crc = 0;
  273. for (int i = 0; i < 15; i++)
  274. {
  275. crc = crc7_table[crc ^ response[i]];
  276. }
  277. uint8_t actual_crc = response[15] & 0xFE;
  278. if (crc != actual_crc)
  279. {
  280. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  281. return SDIO_ERR_RESPONSE_CRC;
  282. }
  283. uint8_t response_cmd = ((response_buf[0] >> 24) & 0xFF);
  284. if (response_cmd != 0x3F)
  285. {
  286. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): Expected reply code 0x3F");
  287. return SDIO_ERR_RESPONSE_CODE;
  288. }
  289. return SDIO_OK;
  290. }
  291. sdio_status_t rp2040_sdio_command_R3(uint8_t command, uint32_t arg, uint32_t *response)
  292. {
  293. sdio_send_command(command, arg, 48);
  294. // Wait for response
  295. uint32_t start = millis();
  296. while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < 2)
  297. {
  298. if ((uint32_t)(millis() - start) > 2)
  299. {
  300. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R3(", (int)command, "), ",
  301. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  302. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  303. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  304. // Reset the state machine program
  305. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  306. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  307. return SDIO_ERR_RESPONSE_TIMEOUT;
  308. }
  309. }
  310. // Read out response packet
  311. uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  312. uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  313. *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
  314. // dbgmsg("SDIO R3 response: ", resp0, " ", resp1);
  315. return SDIO_OK;
  316. }
  317. /*******************************************************
  318. * Data reception from SD card
  319. *******************************************************/
  320. sdio_status_t rp2040_sdio_rx_start(uint8_t *buffer, uint32_t num_blocks)
  321. {
  322. // Buffer must be aligned
  323. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  324. g_sdio.transfer_state = SDIO_RX;
  325. g_sdio.transfer_start_time = millis();
  326. g_sdio.data_buf = (uint32_t*)buffer;
  327. g_sdio.blocks_done = 0;
  328. g_sdio.total_blocks = num_blocks;
  329. g_sdio.blocks_checksumed = 0;
  330. g_sdio.checksum_errors = 0;
  331. // Create DMA block descriptors to store each block of 512 bytes of data to buffer
  332. // and then 8 bytes to g_sdio.received_checksums.
  333. for (int i = 0; i < num_blocks; i++)
  334. {
  335. g_sdio.dma_blocks[i * 2].write_addr = buffer + i * SDIO_BLOCK_SIZE;
  336. g_sdio.dma_blocks[i * 2].transfer_count = SDIO_BLOCK_SIZE / sizeof(uint32_t);
  337. g_sdio.dma_blocks[i * 2 + 1].write_addr = &g_sdio.received_checksums[i];
  338. g_sdio.dma_blocks[i * 2 + 1].transfer_count = 2;
  339. }
  340. g_sdio.dma_blocks[num_blocks * 2].write_addr = 0;
  341. g_sdio.dma_blocks[num_blocks * 2].transfer_count = 0;
  342. // Configure first DMA channel for reading from the PIO RX fifo
  343. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  344. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  345. channel_config_set_read_increment(&dmacfg, false);
  346. channel_config_set_write_increment(&dmacfg, true);
  347. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  348. channel_config_set_bswap(&dmacfg, true);
  349. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  350. dma_channel_configure(SDIO_DMA_CH, &dmacfg, 0, &SDIO_PIO->rxf[SDIO_DATA_SM], 0, false);
  351. // Configure second DMA channel for reconfiguring the first one
  352. dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  353. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  354. channel_config_set_read_increment(&dmacfg, true);
  355. channel_config_set_write_increment(&dmacfg, true);
  356. channel_config_set_ring(&dmacfg, true, 3);
  357. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &dma_hw->ch[SDIO_DMA_CH].al1_write_addr,
  358. g_sdio.dma_blocks, 2, false);
  359. // Initialize PIO state machine
  360. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_rx_offset, &g_sdio.pio_cfg_data_rx);
  361. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  362. // Write number of nibbles to receive to Y register
  363. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, SDIO_BLOCK_SIZE * 2 + 16 - 1);
  364. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  365. // Enable RX FIFO join because we don't need the TX FIFO during transfer.
  366. // This gives more leeway for the DMA block switching
  367. SDIO_PIO->sm[SDIO_DATA_SM].shiftctrl |= PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS;
  368. // Start PIO and DMA
  369. dma_channel_start(SDIO_DMA_CHB);
  370. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  371. return SDIO_OK;
  372. }
  373. // Check checksums for received blocks
  374. static void sdio_verify_rx_checksums(uint32_t maxcount)
  375. {
  376. while (g_sdio.blocks_checksumed < g_sdio.blocks_done && maxcount-- > 0)
  377. {
  378. // Calculate checksum from received data
  379. int blockidx = g_sdio.blocks_checksumed++;
  380. uint64_t checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  381. SDIO_WORDS_PER_BLOCK);
  382. // Convert received checksum to little-endian format
  383. uint32_t top = __builtin_bswap32(g_sdio.received_checksums[blockidx].top);
  384. uint32_t bottom = __builtin_bswap32(g_sdio.received_checksums[blockidx].bottom);
  385. uint64_t expected = ((uint64_t)top << 32) | bottom;
  386. if (checksum != expected)
  387. {
  388. g_sdio.checksum_errors++;
  389. if (g_sdio.checksum_errors == 1)
  390. {
  391. logmsg("SDIO checksum error in reception: block ", blockidx,
  392. " calculated ", checksum, " expected ", expected);
  393. }
  394. }
  395. }
  396. }
  397. sdio_status_t rp2040_sdio_rx_poll(uint32_t *bytes_complete)
  398. {
  399. // Was everything done when the previous rx_poll() finished?
  400. if (g_sdio.blocks_done >= g_sdio.total_blocks)
  401. {
  402. g_sdio.transfer_state = SDIO_IDLE;
  403. }
  404. else
  405. {
  406. // Use the idle time to calculate checksums
  407. sdio_verify_rx_checksums(4);
  408. // Check how many DMA control blocks have been consumed
  409. uint32_t dma_ctrl_block_count = (dma_hw->ch[SDIO_DMA_CHB].read_addr - (uint32_t)&g_sdio.dma_blocks);
  410. dma_ctrl_block_count /= sizeof(g_sdio.dma_blocks[0]);
  411. // Compute how many complete 512 byte SDIO blocks have been transferred
  412. // When transfer ends, dma_ctrl_block_count == g_sdio.total_blocks * 2 + 1
  413. g_sdio.blocks_done = (dma_ctrl_block_count - 1) / 2;
  414. // NOTE: When all blocks are done, rx_poll() still returns SDIO_BUSY once.
  415. // This provides a chance to start the SCSI transfer before the last checksums
  416. // are computed. Any checksum failures can be indicated in SCSI status after
  417. // the data transfer has finished.
  418. }
  419. if (bytes_complete)
  420. {
  421. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  422. }
  423. if (g_sdio.transfer_state == SDIO_IDLE)
  424. {
  425. // Verify all remaining checksums.
  426. sdio_verify_rx_checksums(g_sdio.total_blocks);
  427. if (g_sdio.checksum_errors == 0)
  428. return SDIO_OK;
  429. else
  430. return SDIO_ERR_DATA_CRC;
  431. }
  432. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  433. {
  434. dbgmsg("rp2040_sdio_rx_poll() timeout, "
  435. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_rx_offset,
  436. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  437. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  438. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  439. rp2040_sdio_stop();
  440. return SDIO_ERR_DATA_TIMEOUT;
  441. }
  442. return SDIO_BUSY;
  443. }
  444. /*******************************************************
  445. * Data transmission to SD card
  446. *******************************************************/
  447. static void sdio_start_next_block_tx()
  448. {
  449. // Initialize PIO
  450. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_tx_offset, &g_sdio.pio_cfg_data_tx);
  451. // Configure DMA to send the data block payload (512 bytes)
  452. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  453. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  454. channel_config_set_read_increment(&dmacfg, true);
  455. channel_config_set_write_increment(&dmacfg, false);
  456. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, true));
  457. channel_config_set_bswap(&dmacfg, true);
  458. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  459. dma_channel_configure(SDIO_DMA_CH, &dmacfg,
  460. &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.data_buf + g_sdio.blocks_done * SDIO_WORDS_PER_BLOCK,
  461. SDIO_WORDS_PER_BLOCK, false);
  462. // Prepare second DMA channel to send the CRC and block end marker
  463. uint64_t crc = g_sdio.next_wr_block_checksum;
  464. g_sdio.end_token_buf[0] = (uint32_t)(crc >> 32);
  465. g_sdio.end_token_buf[1] = (uint32_t)(crc >> 0);
  466. g_sdio.end_token_buf[2] = 0xFFFFFFFF;
  467. channel_config_set_bswap(&dmacfg, false);
  468. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  469. &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.end_token_buf, 3, false);
  470. // Enable IRQ to trigger when block is done
  471. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  472. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 1);
  473. // Initialize register X with nibble count and register Y with response bit count
  474. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 1048);
  475. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_x, 32));
  476. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 31);
  477. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  478. // Initialize pins to output and high
  479. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pins, 15));
  480. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pindirs, 15));
  481. // Write start token and start the DMA transfer.
  482. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 0xFFFFFFF0);
  483. dma_channel_start(SDIO_DMA_CH);
  484. // Start state machine
  485. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  486. }
  487. static void sdio_compute_next_tx_checksum()
  488. {
  489. assert (g_sdio.blocks_done < g_sdio.total_blocks && g_sdio.blocks_checksumed < g_sdio.total_blocks);
  490. int blockidx = g_sdio.blocks_checksumed++;
  491. g_sdio.next_wr_block_checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  492. SDIO_WORDS_PER_BLOCK);
  493. }
  494. // Start transferring data from memory to SD card
  495. sdio_status_t rp2040_sdio_tx_start(const uint8_t *buffer, uint32_t num_blocks)
  496. {
  497. // Buffer must be aligned
  498. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  499. g_sdio.transfer_state = SDIO_TX;
  500. g_sdio.transfer_start_time = millis();
  501. g_sdio.data_buf = (uint32_t*)buffer;
  502. g_sdio.blocks_done = 0;
  503. g_sdio.total_blocks = num_blocks;
  504. g_sdio.blocks_checksumed = 0;
  505. g_sdio.checksum_errors = 0;
  506. // Compute first block checksum
  507. sdio_compute_next_tx_checksum();
  508. // Start first DMA transfer and PIO
  509. sdio_start_next_block_tx();
  510. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  511. {
  512. // Precompute second block checksum
  513. sdio_compute_next_tx_checksum();
  514. }
  515. return SDIO_OK;
  516. }
  517. sdio_status_t check_sdio_write_response(uint32_t card_response)
  518. {
  519. // Shift card response until top bit is 0 (the start bit)
  520. // The format of response is poorly documented in SDIO spec but refer to e.g.
  521. // http://my-cool-projects.blogspot.com/2013/02/the-mysterious-sd-card-crc-status.html
  522. uint32_t resp = card_response;
  523. if (!(~resp & 0xFFFF0000)) resp <<= 16;
  524. if (!(~resp & 0xFF000000)) resp <<= 8;
  525. if (!(~resp & 0xF0000000)) resp <<= 4;
  526. if (!(~resp & 0xC0000000)) resp <<= 2;
  527. if (!(~resp & 0x80000000)) resp <<= 1;
  528. uint32_t wr_status = (resp >> 28) & 7;
  529. if (wr_status == 2)
  530. {
  531. return SDIO_OK;
  532. }
  533. else if (wr_status == 5)
  534. {
  535. logmsg("SDIO card reports write CRC error, status ", card_response);
  536. return SDIO_ERR_WRITE_CRC;
  537. }
  538. else if (wr_status == 6)
  539. {
  540. logmsg("SDIO card reports write failure, status ", card_response);
  541. return SDIO_ERR_WRITE_FAIL;
  542. }
  543. else
  544. {
  545. logmsg("SDIO card reports unknown write status ", card_response);
  546. return SDIO_ERR_WRITE_FAIL;
  547. }
  548. }
  549. // When a block finishes, this IRQ handler starts the next one
  550. static void rp2040_sdio_tx_irq()
  551. {
  552. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  553. if (g_sdio.transfer_state == SDIO_TX)
  554. {
  555. if (!dma_channel_is_busy(SDIO_DMA_CH) && !dma_channel_is_busy(SDIO_DMA_CHB))
  556. {
  557. // Main data transfer is finished now.
  558. // When card is ready, PIO will put card response on RX fifo
  559. g_sdio.transfer_state = SDIO_TX_WAIT_IDLE;
  560. if (!pio_sm_is_rx_fifo_empty(SDIO_PIO, SDIO_DATA_SM))
  561. {
  562. // Card is already idle
  563. g_sdio.card_response = pio_sm_get(SDIO_PIO, SDIO_DATA_SM);
  564. }
  565. else
  566. {
  567. // Use DMA to wait for the response
  568. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  569. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  570. channel_config_set_read_increment(&dmacfg, false);
  571. channel_config_set_write_increment(&dmacfg, false);
  572. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  573. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  574. &g_sdio.card_response, &SDIO_PIO->rxf[SDIO_DATA_SM], 1, true);
  575. }
  576. }
  577. }
  578. if (g_sdio.transfer_state == SDIO_TX_WAIT_IDLE)
  579. {
  580. if (!dma_channel_is_busy(SDIO_DMA_CHB))
  581. {
  582. g_sdio.wr_status = check_sdio_write_response(g_sdio.card_response);
  583. if (g_sdio.wr_status != SDIO_OK)
  584. {
  585. rp2040_sdio_stop();
  586. return;
  587. }
  588. g_sdio.blocks_done++;
  589. if (g_sdio.blocks_done < g_sdio.total_blocks)
  590. {
  591. sdio_start_next_block_tx();
  592. g_sdio.transfer_state = SDIO_TX;
  593. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  594. {
  595. // Precompute the CRC for next block so that it is ready when
  596. // we want to send it.
  597. sdio_compute_next_tx_checksum();
  598. }
  599. }
  600. else
  601. {
  602. rp2040_sdio_stop();
  603. }
  604. }
  605. }
  606. }
  607. // Check if transmission is complete
  608. sdio_status_t rp2040_sdio_tx_poll(uint32_t *bytes_complete)
  609. {
  610. if (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk)
  611. {
  612. // Verify that IRQ handler gets called even if we are in hardfault handler
  613. rp2040_sdio_tx_irq();
  614. }
  615. if (bytes_complete)
  616. {
  617. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  618. }
  619. if (g_sdio.transfer_state == SDIO_IDLE)
  620. {
  621. rp2040_sdio_stop();
  622. return g_sdio.wr_status;
  623. }
  624. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  625. {
  626. dbgmsg("rp2040_sdio_tx_poll() timeout, "
  627. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_tx_offset,
  628. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  629. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  630. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  631. rp2040_sdio_stop();
  632. return SDIO_ERR_DATA_TIMEOUT;
  633. }
  634. return SDIO_BUSY;
  635. }
  636. // Force everything to idle state
  637. sdio_status_t rp2040_sdio_stop()
  638. {
  639. dma_channel_abort(SDIO_DMA_CH);
  640. dma_channel_abort(SDIO_DMA_CHB);
  641. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 0);
  642. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  643. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  644. g_sdio.transfer_state = SDIO_IDLE;
  645. return SDIO_OK;
  646. }
  647. void rp2040_sdio_init(int clock_divider)
  648. {
  649. // Mark resources as being in use, unless it has been done already.
  650. static bool resources_claimed = false;
  651. if (!resources_claimed)
  652. {
  653. pio_sm_claim(SDIO_PIO, SDIO_CMD_SM);
  654. pio_sm_claim(SDIO_PIO, SDIO_DATA_SM);
  655. dma_channel_claim(SDIO_DMA_CH);
  656. dma_channel_claim(SDIO_DMA_CHB);
  657. resources_claimed = true;
  658. }
  659. memset(&g_sdio, 0, sizeof(g_sdio));
  660. dma_channel_abort(SDIO_DMA_CH);
  661. dma_channel_abort(SDIO_DMA_CHB);
  662. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  663. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  664. // Load PIO programs
  665. pio_clear_instruction_memory(SDIO_PIO);
  666. // Command & clock state machine
  667. g_sdio.pio_cmd_clk_offset = pio_add_program(SDIO_PIO, &sdio_cmd_clk_program);
  668. pio_sm_config cfg = sdio_cmd_clk_program_get_default_config(g_sdio.pio_cmd_clk_offset);
  669. sm_config_set_out_pins(&cfg, SDIO_CMD, 1);
  670. sm_config_set_in_pins(&cfg, SDIO_CMD);
  671. sm_config_set_set_pins(&cfg, SDIO_CMD, 1);
  672. sm_config_set_jmp_pin(&cfg, SDIO_CMD);
  673. sm_config_set_sideset_pins(&cfg, SDIO_CLK);
  674. sm_config_set_out_shift(&cfg, false, true, 32);
  675. sm_config_set_in_shift(&cfg, false, true, 32);
  676. sm_config_set_clkdiv_int_frac(&cfg, clock_divider, 0);
  677. sm_config_set_mov_status(&cfg, STATUS_TX_LESSTHAN, 2);
  678. pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_cmd_clk_offset, &cfg);
  679. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
  680. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, true);
  681. // Data reception program
  682. g_sdio.pio_data_rx_offset = pio_add_program(SDIO_PIO, &sdio_data_rx_program);
  683. g_sdio.pio_cfg_data_rx = sdio_data_rx_program_get_default_config(g_sdio.pio_data_rx_offset);
  684. sm_config_set_in_pins(&g_sdio.pio_cfg_data_rx, SDIO_D0);
  685. sm_config_set_in_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
  686. sm_config_set_out_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
  687. sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_rx, clock_divider, 0);
  688. // Data transmission program
  689. g_sdio.pio_data_tx_offset = pio_add_program(SDIO_PIO, &sdio_data_tx_program);
  690. g_sdio.pio_cfg_data_tx = sdio_data_tx_program_get_default_config(g_sdio.pio_data_tx_offset);
  691. sm_config_set_in_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0);
  692. sm_config_set_set_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
  693. sm_config_set_out_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
  694. sm_config_set_in_shift(&g_sdio.pio_cfg_data_tx, false, false, 32);
  695. sm_config_set_out_shift(&g_sdio.pio_cfg_data_tx, false, true, 32);
  696. sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_tx, clock_divider, 0);
  697. // Disable SDIO pins input synchronizer.
  698. // This reduces input delay.
  699. // Because the CLK is driven synchronously to CPU clock,
  700. // there should be no metastability problems.
  701. SDIO_PIO->input_sync_bypass |= (1 << SDIO_CLK) | (1 << SDIO_CMD)
  702. | (1 << SDIO_D0) | (1 << SDIO_D1) | (1 << SDIO_D2) | (1 << SDIO_D3);
  703. // Redirect GPIOs to PIO
  704. gpio_set_function(SDIO_CMD, GPIO_FUNC_PIO1);
  705. gpio_set_function(SDIO_CLK, GPIO_FUNC_PIO1);
  706. gpio_set_function(SDIO_D0, GPIO_FUNC_PIO1);
  707. gpio_set_function(SDIO_D1, GPIO_FUNC_PIO1);
  708. gpio_set_function(SDIO_D2, GPIO_FUNC_PIO1);
  709. gpio_set_function(SDIO_D3, GPIO_FUNC_PIO1);
  710. // Set up IRQ handler when DMA completes.
  711. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  712. irq_set_enabled(DMA_IRQ_1, true);
  713. }