| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659 | #include "scsi_accel_dma.h"#include <BlueSCSI_log.h>#include <gd32f20x_timer.h>#include <gd32f20x_rcu.h>#include <assert.h>#include <string.h>#ifndef SCSI_ACCEL_DMA_AVAILABLEvoid scsi_accel_timer_dma_init() {}void scsi_accel_greenpak_dma_init() {}void scsi_accel_dma_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag) {}void scsi_accel_dma_stopWrite() {}void scsi_accel_dma_finishWrite(volatile int *resetFlag) {}bool scsi_accel_dma_isWriteFinished(const uint8_t* data) { return true; }#elsestatic void greenpak_refill_dmabuf();static void greenpak_start_dma();static void greenpak_stop_dma();enum greenpak_state_t { GREENPAK_IO1_LOW = 0, GREENPAK_IO1_HIGH, GREENPAK_STOP};#define DMA_BUF_SIZE 256#define DMA_BUF_MASK (DMA_BUF_SIZE - 1)static struct {    uint8_t *app_buf; // Buffer provided by application    uint32_t dma_buf[DMA_BUF_SIZE]; // Buffer of data formatted for GPIO BOP register    uint32_t dma_idx; // Write index to DMA buffer    uint32_t dma_fillto; // Point up to which DMA buffer is available for refilling    uint32_t timer_buf; // Control value for timer SWEVG register    uint32_t bytes_app; // Bytes available in application buffer    uint32_t bytes_dma; // Bytes (words) written so far to DMA buffer    uint32_t scheduled_dma; // Bytes (words) that DMA data count was last set to    greenpak_state_t greenpak_state; // Toggle signal state for greenpak    uint8_t *next_app_buf; // Next buffer from application after current one finishes    uint32_t next_app_bytes; // Bytes in next buffer} g_scsi_dma;enum scsidma_state_t { SCSIDMA_IDLE = 0, SCSIDMA_WRITE };static volatile scsidma_state_t g_scsi_dma_state;static bool g_scsi_dma_use_greenpak;void scsi_accel_timer_dma_init(){    g_scsi_dma_state = SCSIDMA_IDLE;    g_scsi_dma_use_greenpak = false;    rcu_periph_clock_enable(SCSI_TIMER_RCU);    rcu_periph_clock_enable(SCSI_TIMER_DMA_RCU);    // DMA Channel A: data copy    // GPIO DMA copies data from memory buffer to GPIO BOP register.    // The memory buffer is filled by interrupt routine.    dma_parameter_struct gpio_dma_config =    {        .periph_addr = (uint32_t)&GPIO_BOP(SCSI_OUT_PORT),        .periph_width = DMA_PERIPHERAL_WIDTH_32BIT,        .memory_addr = 0, // Filled before transfer        .memory_width = DMA_MEMORY_WIDTH_32BIT,        .number = DMA_BUF_SIZE,        .priority = DMA_PRIORITY_ULTRA_HIGH,        .periph_inc = DMA_PERIPH_INCREASE_DISABLE,        .memory_inc = DMA_MEMORY_INCREASE_ENABLE,        .direction = DMA_MEMORY_TO_PERIPHERAL    };    dma_init(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA, &gpio_dma_config);    dma_circulation_enable(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA);    NVIC_SetPriority(SCSI_TIMER_DMACHA_IRQn, 1);    NVIC_EnableIRQ(SCSI_TIMER_DMACHA_IRQn);    // DMA Channel B: timer update    // Timer DMA causes update event to restart timer after    // GPIO DMA operation is done.    dma_parameter_struct timer_dma_config =    {        .periph_addr = (uint32_t)&TIMER_SWEVG(SCSI_TIMER),        .periph_width = DMA_PERIPHERAL_WIDTH_32BIT,        .memory_addr = (uint32_t)&g_scsi_dma.timer_buf,        .memory_width = DMA_MEMORY_WIDTH_32BIT,        .number = DMA_BUF_SIZE,        .priority = DMA_PRIORITY_HIGH,        .periph_inc = DMA_PERIPH_INCREASE_DISABLE,        .memory_inc = DMA_PERIPH_INCREASE_DISABLE,        .direction = DMA_MEMORY_TO_PERIPHERAL    };    dma_init(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB, &timer_dma_config);    NVIC_SetPriority(SCSI_TIMER_DMACHB_IRQn, 2);    NVIC_EnableIRQ(SCSI_TIMER_DMACHB_IRQn);    g_scsi_dma.timer_buf = TIMER_SWEVG_UPG;    // Timer is used to toggle the request signal based on external trigger input.    // OUT_REQ is driven by timer output.    // 1. On timer update event, REQ is set low.    // 2. When ACK goes low, timer counts and OUT_REQ is set high.    //    Simultaneously a DMA request is triggered to write next data to GPIO.    // 3. When ACK goes high, a DMA request is triggered to cause timer update event.    //    The DMA request priority is set so that 2. always completes before it.    TIMER_CTL0(SCSI_TIMER) = 0;    TIMER_SMCFG(SCSI_TIMER) = TIMER_SLAVE_MODE_EXTERNAL0 | TIMER_SMCFG_TRGSEL_CI0F_ED;    TIMER_CAR(SCSI_TIMER) = 65535;    TIMER_PSC(SCSI_TIMER) = 0;    TIMER_DMAINTEN(SCSI_TIMER) = 0;    TIMER_CHCTL0(SCSI_TIMER) = 0x6001; // CH0 as input, CH1 as DMA trigger    TIMER_CHCTL1(SCSI_TIMER) = 0x6074; // CH2 as fast PWM output, CH3 as DMA trigger    TIMER_CHCTL2(SCSI_TIMER) = TIMER_CHCTL2_CH2NEN;    TIMER_CCHP(SCSI_TIMER) = TIMER_CCHP_POEN;    TIMER_CH1CV(SCSI_TIMER) = 1; // Copy data when ACK goes low    TIMER_CH2CV(SCSI_TIMER) = 1; // REQ is low until ACK goes low    TIMER_CH3CV(SCSI_TIMER) = 2; // Reset timer after ACK goes high & previous DMA is complete    gpio_init(SCSI_TIMER_IN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_TIMER_IN_PIN);    scsi_accel_dma_stopWrite();}// Select whether OUT_REQ is connected to timer or GPIO portstatic void scsi_dma_gpio_config(bool enable){    if (enable)    {        gpio_init(SCSI_OUT_PORT, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, SCSI_OUT_REQ);        if (g_scsi_dma_use_greenpak)        {            GPIO_BC(SCSI_OUT_PORT) = GREENPAK_PLD_IO1;            GPIO_BOP(SCSI_OUT_PORT) = GREENPAK_PLD_IO2;        }        else        {            gpio_init(SCSI_TIMER_OUT_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SCSI_TIMER_OUT_PIN);        }    }    else    {        GPIO_BC(SCSI_OUT_PORT) = GREENPAK_PLD_IO2;        gpio_init(SCSI_TIMER_OUT_PORT, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, SCSI_TIMER_OUT_PIN);        gpio_init(SCSI_OUT_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_REQ);    }}// Convert input bytes into BOP values in the DMA bufferstatic void refill_dmabuf(){    if (g_scsi_dma_use_greenpak)    {        greenpak_refill_dmabuf();        return;    }    // Check how many bytes we have available from the application    uint32_t count = g_scsi_dma.bytes_app - g_scsi_dma.bytes_dma;    // Check amount of free space in DMA buffer    uint32_t max = g_scsi_dma.dma_fillto - g_scsi_dma.dma_idx;    if (count > max) count = max;    if (count == 0) return;    uint8_t *src = g_scsi_dma.app_buf + g_scsi_dma.bytes_dma;    uint32_t *dst = g_scsi_dma.dma_buf;    uint32_t pos = g_scsi_dma.dma_idx;    uint32_t end = pos + count;    g_scsi_dma.dma_idx = end;    g_scsi_dma.bytes_dma += count;    while (pos + 4 <= end)    {        uint32_t input = *(uint32_t*)src;        src += 4;        dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop[(input >> 0) & 0xFF];        dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop[(input >> 8) & 0xFF];        dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop[(input >> 16) & 0xFF];        dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop[(input >> 24) & 0xFF];    }    while (pos < end)    {        dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop[*src++];    }    if (end < g_scsi_dma.dma_fillto)    {        // Partial buffer fill, this will get refilled from interrupt if we        // get more data. Set next byte to an invalid parity value so that        // any race conditions will get caught as parity error.        dst[pos & DMA_BUF_MASK] = g_scsi_out_byte_to_bop[0] ^ SCSI_OUT_DBP;    }}// Start DMA transferstatic void start_dma(){    if (g_scsi_dma_use_greenpak)    {        greenpak_start_dma();        return;    }    // Disable channels while configuring    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) &= ~DMA_CHXCTL_CHEN;    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB) &= ~DMA_CHXCTL_CHEN;    TIMER_CTL0(SCSI_TIMER) = 0;    // Set new buffer address and size    // CHA / Data channel is in circular mode and always has DMA_BUF_SIZE buffer size.    // CHB / Update channel limits the number of data.    DMA_CHMADDR(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) = (uint32_t)g_scsi_dma.dma_buf;    DMA_CHCNT(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) = DMA_BUF_SIZE;    uint32_t dma_to_schedule = g_scsi_dma.bytes_app - g_scsi_dma.scheduled_dma;    DMA_CHCNT(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB) = dma_to_schedule;    g_scsi_dma.scheduled_dma += dma_to_schedule;    // Clear pending DMA events    TIMER_DMAINTEN(SCSI_TIMER) = 0;    TIMER_DMAINTEN(SCSI_TIMER) = TIMER_DMAINTEN_CH1DEN | TIMER_DMAINTEN_CH3DEN;    // Clear and enable interrupt    DMA_INTC(SCSI_TIMER_DMA) = DMA_FLAG_ADD(DMA_FLAG_HTF | DMA_FLAG_FTF | DMA_FLAG_ERR, SCSI_TIMER_DMACHA);    DMA_INTC(SCSI_TIMER_DMA) = DMA_FLAG_ADD(DMA_FLAG_HTF | DMA_FLAG_FTF | DMA_FLAG_ERR, SCSI_TIMER_DMACHB);    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) |= DMA_CHXCTL_FTFIE | DMA_CHXCTL_HTFIE;    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB) |= DMA_CHXCTL_FTFIE;    // Enable channels    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) |= DMA_CHXCTL_CHEN;    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB) |= DMA_CHXCTL_CHEN;    // Make sure REQ is initially high    TIMER_CNT(SCSI_TIMER) = 16;    TIMER_CHCTL1(SCSI_TIMER) = 0x6050;    TIMER_CHCTL1(SCSI_TIMER) = 0x6074;    // Enable timer    TIMER_CTL0(SCSI_TIMER) |= TIMER_CTL0_CEN;    // Generate first events    TIMER_SWEVG(SCSI_TIMER) = TIMER_SWEVG_CH1G;    TIMER_SWEVG(SCSI_TIMER) = TIMER_SWEVG_CH3G;}// Stop DMA transferstatic void stop_dma(){    greenpak_stop_dma();    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) &= ~DMA_CHXCTL_CHEN;    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB) &= ~DMA_CHXCTL_CHEN;    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) &= ~(DMA_CHXCTL_FTFIE | DMA_CHXCTL_HTFIE);    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB) &= ~DMA_CHXCTL_FTFIE;    TIMER_CTL0(SCSI_TIMER) &= ~TIMER_CTL0_CEN;    g_scsi_dma_state = SCSIDMA_IDLE;    SCSI_RELEASE_DATA_REQ();}static void check_dma_next_buffer(){    // Check if we are at the end of the application buffer    if (g_scsi_dma.next_app_buf && g_scsi_dma.bytes_dma == g_scsi_dma.bytes_app)    {        // Switch to next buffer        assert(g_scsi_dma.scheduled_dma == g_scsi_dma.bytes_app);        g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;        g_scsi_dma.bytes_app = g_scsi_dma.next_app_bytes;        g_scsi_dma.bytes_dma = 0;        g_scsi_dma.scheduled_dma = 0;        g_scsi_dma.next_app_buf = 0;        g_scsi_dma.next_app_bytes = 0;        refill_dmabuf();    }}// Convert new data from application buffer to DMA bufferextern "C" void SCSI_TIMER_DMACHA_IRQ(){    // bluedbg("DMA irq A, counts: ", DMA_CHCNT(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA), " ",    //             DMA_CHCNT(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB), " ",    //             TIMER_CNT(SCSI_TIMER));    uint32_t intf = DMA_INTF(SCSI_TIMER_DMA);    const uint32_t half_flag = DMA_FLAG_ADD(DMA_FLAG_HTF, SCSI_TIMER_DMACHA);    const uint32_t full_flag = DMA_FLAG_ADD(DMA_FLAG_FTF, SCSI_TIMER_DMACHA);    if (intf & half_flag)    {        if (intf & full_flag)        {            bluelog("ERROR: SCSI DMA overrun: ", intf,               " bytes_app: ", g_scsi_dma.bytes_app,               " bytes_dma: ", g_scsi_dma.bytes_dma,               " dma_idx: ", g_scsi_dma.dma_idx,               " sched_dma: ", g_scsi_dma.scheduled_dma);            stop_dma();            return;        }        DMA_INTC(SCSI_TIMER_DMA) = DMA_FLAG_ADD(DMA_FLAG_HTF, SCSI_TIMER_DMACHA);        g_scsi_dma.dma_fillto += DMA_BUF_SIZE / 2;    }    else if (intf & full_flag)    {        DMA_INTC(SCSI_TIMER_DMA) = DMA_FLAG_ADD(DMA_FLAG_FTF, SCSI_TIMER_DMACHA);        g_scsi_dma.dma_fillto += DMA_BUF_SIZE / 2;    }    // Fill DMA buffer with data from current application buffer    refill_dmabuf();    check_dma_next_buffer();}// Check if enough data is available to continue DMA transferextern "C" void SCSI_TIMER_DMACHB_IRQ(){    // bluedbg("DMA irq B, counts: ", DMA_CHCNT(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA), " ",    //             DMA_CHCNT(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB), " ",    //             TIMER_CNT(SCSI_TIMER));    uint32_t intf = DMA_INTF(SCSI_TIMER_DMA);    if (intf & DMA_FLAG_ADD(DMA_FLAG_FTF, SCSI_TIMER_DMACHB))    {        DMA_INTC(SCSI_TIMER_DMA) = DMA_FLAG_ADD(DMA_FLAG_FTF, SCSI_TIMER_DMACHB);        if (g_scsi_dma.bytes_app > g_scsi_dma.scheduled_dma)        {            if (g_scsi_dma.dma_idx < g_scsi_dma.dma_fillto)            {                // Previous request didn't have a complete buffer worth of data.                // Refill the buffer and ensure that the first byte of the new data gets                // written to outputs.                __disable_irq();                refill_dmabuf();                __enable_irq();            }            // Verify the first byte of the new data has been written to outputs            // It may have been updated after the DMA write occurred.            __disable_irq();            uint32_t first_data_idx = g_scsi_dma.dma_idx - (g_scsi_dma.bytes_dma - g_scsi_dma.scheduled_dma);            uint32_t first_data = g_scsi_dma.dma_buf[first_data_idx & DMA_BUF_MASK];            GPIO_BOP(SCSI_OUT_PORT) = first_data;            __enable_irq();            // Update the total number of bytes available for DMA            uint32_t dma_to_schedule = g_scsi_dma.bytes_app - g_scsi_dma.scheduled_dma;            DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB) &= ~DMA_CHXCTL_CHEN;            DMA_CHCNT(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB) = dma_to_schedule;            DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB) |= DMA_CHXCTL_CHEN;            g_scsi_dma.scheduled_dma += dma_to_schedule;        }        else        {            // No more data available            stop_dma();        }    }}void scsi_accel_dma_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag){    __disable_irq();    if (g_scsi_dma_state == SCSIDMA_WRITE)    {        if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.bytes_app)        {            // Combine with currently running request            g_scsi_dma.bytes_app += count;            count = 0;        }        else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)        {            // Combine with queued request            g_scsi_dma.next_app_bytes += count;            count = 0;        }        else if (!g_scsi_dma.next_app_buf)        {            // Add as queued request            g_scsi_dma.next_app_buf = (uint8_t*)data;            g_scsi_dma.next_app_bytes = count;            count = 0;        }    }    __enable_irq();    // Check if the request was combined    if (count == 0) return;    if (g_scsi_dma_state != SCSIDMA_IDLE)    {        // Wait for previous request to finish        scsi_accel_dma_finishWrite(resetFlag);        if (*resetFlag)        {            return;        }    }    // bluedbg("Starting DMA write of ", (int)count, " bytes");    scsi_dma_gpio_config(true);    g_scsi_dma_state = SCSIDMA_WRITE;    g_scsi_dma.app_buf = (uint8_t*)data;    g_scsi_dma.dma_idx = 0;    g_scsi_dma.dma_fillto = DMA_BUF_SIZE;    g_scsi_dma.bytes_app = count;    g_scsi_dma.bytes_dma = 0;    g_scsi_dma.scheduled_dma = 0;    g_scsi_dma.next_app_buf = NULL;    g_scsi_dma.next_app_bytes = 0;    g_scsi_dma.greenpak_state = GREENPAK_IO1_LOW;    refill_dmabuf();    start_dma();}bool scsi_accel_dma_isWriteFinished(const uint8_t* data){    // Check if everything has completed    if (g_scsi_dma_state == SCSIDMA_IDLE)    {        return true;    }    if (!data)        return false;    // Check if this data item is still in queue.    __disable_irq();    bool finished = true;    if (data >= g_scsi_dma.app_buf + g_scsi_dma.bytes_dma &&        data < g_scsi_dma.app_buf + g_scsi_dma.bytes_app)    {        finished = false; // In current transfer    }    else if (data >= g_scsi_dma.next_app_buf &&             data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)    {        finished = false; // In queued transfer    }    __enable_irq();    return finished;}void scsi_accel_dma_stopWrite(){    stop_dma();    scsi_dma_gpio_config(false);}void scsi_accel_dma_finishWrite(volatile int *resetFlag){    uint32_t start = millis();    while (g_scsi_dma_state != SCSIDMA_IDLE && !*resetFlag)    {        if ((uint32_t)(millis() - start) > 5000)        {            bluelog("scsi_accel_dma_finishWrite() timeout, DMA counts ",                DMA_CHCNT(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA), " ",                DMA_CHCNT(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB), " ",                TIMER_CNT(SCSI_TIMER));            *resetFlag = 1;            break;        }    }    scsi_accel_dma_stopWrite();}/************************************************//* Functions using external GreenPAK logic chip *//************************************************/void scsi_accel_greenpak_dma_init(){    g_scsi_dma_state = SCSIDMA_IDLE;    g_scsi_dma_use_greenpak = true;    rcu_periph_clock_enable(SCSI_TIMER_RCU);    rcu_periph_clock_enable(SCSI_TIMER_DMA_RCU);    // DMA Channel A: data copy    // GPIO DMA copies data from memory buffer to GPIO BOP register.    // The memory buffer is filled by interrupt routine.    dma_parameter_struct gpio_dma_config =    {        .periph_addr = (uint32_t)&GPIO_BOP(SCSI_OUT_PORT),        .periph_width = DMA_PERIPHERAL_WIDTH_32BIT,        .memory_addr = (uint32_t)g_scsi_dma.dma_buf,        .memory_width = DMA_MEMORY_WIDTH_32BIT,        .number = DMA_BUF_SIZE,        .priority = DMA_PRIORITY_ULTRA_HIGH,        .periph_inc = DMA_PERIPH_INCREASE_DISABLE,        .memory_inc = DMA_MEMORY_INCREASE_ENABLE,        .direction = DMA_MEMORY_TO_PERIPHERAL    };    dma_init(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA, &gpio_dma_config);    dma_circulation_enable(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA);    NVIC_SetPriority(SCSI_TIMER_DMACHA_IRQn, 2);    NVIC_EnableIRQ(SCSI_TIMER_DMACHA_IRQn);    NVIC_DisableIRQ(SCSI_TIMER_DMACHB_IRQn);    // EXTI channel is used to trigger when we reach end of the transfer.    // Because the main DMA is circular and transfer size may not be even    // multiple of it, we cannot trigger the end at the DMA interrupt.    gpio_exti_source_select(GREENPAK_PLD_IO2_EXTI_SOURCE_PORT, GREENPAK_PLD_IO2_EXTI_SOURCE_PIN);    exti_init(GREENPAK_PLD_IO2_EXTI, EXTI_INTERRUPT, EXTI_TRIG_FALLING);    exti_interrupt_flag_clear(GREENPAK_PLD_IO2_EXTI);    exti_interrupt_disable(GREENPAK_PLD_IO2_EXTI);    NVIC_SetPriority(GREENPAK_IRQn, 1);    NVIC_EnableIRQ(GREENPAK_IRQn);    // Timer is used to trigger DMA requests    // OUT_REQ is driven by timer output.    // 1. On timer update event, REQ is set low.    // 2. When ACK goes low, timer counts and OUT_REQ is set high.    //    Simultaneously a DMA request is triggered to write next data to GPIO.    // 3. When ACK goes high, a DMA request is triggered to cause timer update event.    //    The DMA request priority is set so that 2. always completes before it.    TIMER_CTL0(SCSI_TIMER) = 0;    TIMER_SMCFG(SCSI_TIMER) = TIMER_SLAVE_MODE_EXTERNAL0 | TIMER_SMCFG_TRGSEL_CI0F_ED;    TIMER_CAR(SCSI_TIMER) = 1;    TIMER_PSC(SCSI_TIMER) = 0;    TIMER_DMAINTEN(SCSI_TIMER) = 0;    TIMER_CHCTL0(SCSI_TIMER) = 0x6001; // CH0 as input, CH1 as DMA trigger    TIMER_CHCTL1(SCSI_TIMER) = 0;    TIMER_CHCTL2(SCSI_TIMER) = 0;    TIMER_CCHP(SCSI_TIMER) = 0;    TIMER_CH1CV(SCSI_TIMER) = 1; // Copy data when ACK goes low    gpio_init(SCSI_TIMER_IN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_TIMER_IN_PIN);}extern const uint32_t g_scsi_out_byte_to_bop_pld1hi[256];extern const uint32_t g_scsi_out_byte_to_bop_pld1lo[256];static void greenpak_refill_dmabuf(){    if (g_scsi_dma.greenpak_state == GREENPAK_STOP)    {        // Wait for previous DMA block to end first        return;    }    // Check how many bytes we have available from the application    uint32_t count = g_scsi_dma.bytes_app - g_scsi_dma.bytes_dma;    // Check amount of free space in DMA buffer    uint32_t max = g_scsi_dma.dma_fillto - g_scsi_dma.dma_idx;    if (count > max) count = max;    uint8_t *src = g_scsi_dma.app_buf + g_scsi_dma.bytes_dma;    uint32_t *dst = g_scsi_dma.dma_buf;    uint32_t pos = g_scsi_dma.dma_idx;    uint32_t end = pos + count;    g_scsi_dma.dma_idx = end;    g_scsi_dma.bytes_dma += count;    g_scsi_dma.scheduled_dma = g_scsi_dma.bytes_dma;    if (pos < end && g_scsi_dma.greenpak_state == GREENPAK_IO1_HIGH)    {        // Fix alignment so that main loop begins with PLD1HI        dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop_pld1lo[*src++];        g_scsi_dma.greenpak_state = GREENPAK_IO1_LOW;    }    while (pos + 4 <= end)    {        uint32_t input = *(uint32_t*)src;        src += 4;        dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop_pld1hi[(input >> 0) & 0xFF];        dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop_pld1lo[(input >> 8) & 0xFF];        dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop_pld1hi[(input >> 16) & 0xFF];        dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop_pld1lo[(input >> 24) & 0xFF];    }    while (pos < end)    {        if (g_scsi_dma.greenpak_state == GREENPAK_IO1_HIGH)        {            dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop_pld1lo[*src++];            g_scsi_dma.greenpak_state = GREENPAK_IO1_LOW;        }        else        {            dst[(pos++) & DMA_BUF_MASK] = g_scsi_out_byte_to_bop_pld1hi[*src++];            g_scsi_dma.greenpak_state = GREENPAK_IO1_HIGH;        }    }    uint32_t remain = g_scsi_dma.dma_fillto - g_scsi_dma.dma_idx;    if (!g_scsi_dma.next_app_buf && remain > 0)    {        // Mark the end of transfer by turning PD2 off        dst[(pos++) & DMA_BUF_MASK] = (GREENPAK_PLD_IO2 << 16) | (GREENPAK_PLD_IO1 << 16);        g_scsi_dma.dma_idx = pos;        g_scsi_dma.greenpak_state = GREENPAK_STOP;    }}extern "C" void GREENPAK_IRQ(){    if (EXTI_PD & GREENPAK_PLD_IO2_EXTI)    {        EXTI_PD = GREENPAK_PLD_IO2_EXTI;        if (g_scsi_dma.bytes_app > g_scsi_dma.bytes_dma || g_scsi_dma.next_app_buf)        {            assert(g_scsi_dma.greenpak_state == GREENPAK_STOP);            g_scsi_dma.greenpak_state = GREENPAK_IO1_LOW;            // More data is available            check_dma_next_buffer();            refill_dmabuf();            // Continue transferring            GPIO_BOP(SCSI_OUT_PORT) = GREENPAK_PLD_IO2;            TIMER_SWEVG(SCSI_TIMER) = TIMER_SWEVG_CH1G;        }        else        {            stop_dma();        }    }}static void greenpak_start_dma(){    // Disable channels while configuring    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) &= ~DMA_CHXCTL_CHEN;    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHB) &= ~DMA_CHXCTL_CHEN;    TIMER_CTL0(SCSI_TIMER) = 0;    // Set buffer address and size    DMA_CHMADDR(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) = (uint32_t)g_scsi_dma.dma_buf;    DMA_CHCNT(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) = DMA_BUF_SIZE;    // Clear pending DMA events    TIMER_DMAINTEN(SCSI_TIMER) = 0;    TIMER_DMAINTEN(SCSI_TIMER) = TIMER_DMAINTEN_CH1DEN | TIMER_DMAINTEN_CH3DEN;    // Clear and enable interrupt    DMA_INTC(SCSI_TIMER_DMA) = DMA_FLAG_ADD(DMA_FLAG_HTF | DMA_FLAG_FTF | DMA_FLAG_ERR, SCSI_TIMER_DMACHA);    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) |= DMA_CHXCTL_FTFIE | DMA_CHXCTL_HTFIE;    exti_interrupt_flag_clear(GREENPAK_PLD_IO2_EXTI);    exti_interrupt_enable(GREENPAK_PLD_IO2_EXTI);    // Enable channels    DMA_CHCTL(SCSI_TIMER_DMA, SCSI_TIMER_DMACHA) |= DMA_CHXCTL_CHEN;    // Enable timer    TIMER_CNT(SCSI_TIMER) = 0;    TIMER_CTL0(SCSI_TIMER) |= TIMER_CTL0_CEN;    // Generate first event    TIMER_SWEVG(SCSI_TIMER) = TIMER_SWEVG_CH1G;}static void greenpak_stop_dma(){    exti_interrupt_disable(GREENPAK_PLD_IO2_EXTI);}#endif
 |