audio.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
  1. /**
  2. * Copyright (C) 2023 saybur
  3. *
  4. * This program is free software: you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation, either version 3 of the License, or
  7. * (at your option) any later version. 
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12. * GNU General Public License for more details. 
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  16. **/
  17. #ifdef ENABLE_AUDIO_OUTPUT
  18. #include <SdFat.h>
  19. #include <stdbool.h>
  20. #include <hardware/dma.h>
  21. #include <hardware/irq.h>
  22. #include <hardware/spi.h>
  23. #include <pico/multicore.h>
  24. #include "audio.h"
  25. #include "BlueSCSI_config.h"
  26. #include "BlueSCSI_log.h"
  27. #include "BlueSCSI_platform.h"
  28. #ifdef __cplusplus
  29. extern "C" {
  30. #endif
  31. extern SdFs SD;
  32. // Table with the number of '1' bits for each index.
  33. // Used for SP/DIF parity calculations.
  34. // Placed in SRAM5 for the second core to use with reduced contention.
  35. const uint8_t snd_parity[256] __attribute__((aligned(256), section(".scratch_y.snd_parity"))) = {
  36. 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
  37. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  38. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  39. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  40. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  41. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  42. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  43. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  44. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  45. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  46. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  47. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  48. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  49. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  50. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  51. 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, };
  52. /*
  53. * Precomputed biphase-mark patterns for data. For an 8-bit value this has
  54. * 16-bits in MSB-first order for the correct high/low transitions to
  55. * represent the data, given an output clocking rate twice the bitrate (so the
  56. * bits '11' or '00' reflect a zero and '10' or '01' represent a one). Each
  57. * value below starts with a '1' and will need to be inverted if the last bit
  58. * of the previous mask was also a '1'. These values can be written to an
  59. * appropriately configured SPI peripheral to blast biphase data at a
  60. * receiver.
  61. *
  62. * To facilitate fast lookups this table should be put in SRAM with low
  63. * contention, aligned to an apppropriate boundry.
  64. */
  65. const uint16_t biphase[256] __attribute__((aligned(512), section(".scratch_y.biphase"))) = {
  66. 0xCCCC, 0xB333, 0xD333, 0xACCC, 0xCB33, 0xB4CC, 0xD4CC, 0xAB33,
  67. 0xCD33, 0xB2CC, 0xD2CC, 0xAD33, 0xCACC, 0xB533, 0xD533, 0xAACC,
  68. 0xCCB3, 0xB34C, 0xD34C, 0xACB3, 0xCB4C, 0xB4B3, 0xD4B3, 0xAB4C,
  69. 0xCD4C, 0xB2B3, 0xD2B3, 0xAD4C, 0xCAB3, 0xB54C, 0xD54C, 0xAAB3,
  70. 0xCCD3, 0xB32C, 0xD32C, 0xACD3, 0xCB2C, 0xB4D3, 0xD4D3, 0xAB2C,
  71. 0xCD2C, 0xB2D3, 0xD2D3, 0xAD2C, 0xCAD3, 0xB52C, 0xD52C, 0xAAD3,
  72. 0xCCAC, 0xB353, 0xD353, 0xACAC, 0xCB53, 0xB4AC, 0xD4AC, 0xAB53,
  73. 0xCD53, 0xB2AC, 0xD2AC, 0xAD53, 0xCAAC, 0xB553, 0xD553, 0xAAAC,
  74. 0xCCCB, 0xB334, 0xD334, 0xACCB, 0xCB34, 0xB4CB, 0xD4CB, 0xAB34,
  75. 0xCD34, 0xB2CB, 0xD2CB, 0xAD34, 0xCACB, 0xB534, 0xD534, 0xAACB,
  76. 0xCCB4, 0xB34B, 0xD34B, 0xACB4, 0xCB4B, 0xB4B4, 0xD4B4, 0xAB4B,
  77. 0xCD4B, 0xB2B4, 0xD2B4, 0xAD4B, 0xCAB4, 0xB54B, 0xD54B, 0xAAB4,
  78. 0xCCD4, 0xB32B, 0xD32B, 0xACD4, 0xCB2B, 0xB4D4, 0xD4D4, 0xAB2B,
  79. 0xCD2B, 0xB2D4, 0xD2D4, 0xAD2B, 0xCAD4, 0xB52B, 0xD52B, 0xAAD4,
  80. 0xCCAB, 0xB354, 0xD354, 0xACAB, 0xCB54, 0xB4AB, 0xD4AB, 0xAB54,
  81. 0xCD54, 0xB2AB, 0xD2AB, 0xAD54, 0xCAAB, 0xB554, 0xD554, 0xAAAB,
  82. 0xCCCD, 0xB332, 0xD332, 0xACCD, 0xCB32, 0xB4CD, 0xD4CD, 0xAB32,
  83. 0xCD32, 0xB2CD, 0xD2CD, 0xAD32, 0xCACD, 0xB532, 0xD532, 0xAACD,
  84. 0xCCB2, 0xB34D, 0xD34D, 0xACB2, 0xCB4D, 0xB4B2, 0xD4B2, 0xAB4D,
  85. 0xCD4D, 0xB2B2, 0xD2B2, 0xAD4D, 0xCAB2, 0xB54D, 0xD54D, 0xAAB2,
  86. 0xCCD2, 0xB32D, 0xD32D, 0xACD2, 0xCB2D, 0xB4D2, 0xD4D2, 0xAB2D,
  87. 0xCD2D, 0xB2D2, 0xD2D2, 0xAD2D, 0xCAD2, 0xB52D, 0xD52D, 0xAAD2,
  88. 0xCCAD, 0xB352, 0xD352, 0xACAD, 0xCB52, 0xB4AD, 0xD4AD, 0xAB52,
  89. 0xCD52, 0xB2AD, 0xD2AD, 0xAD52, 0xCAAD, 0xB552, 0xD552, 0xAAAD,
  90. 0xCCCA, 0xB335, 0xD335, 0xACCA, 0xCB35, 0xB4CA, 0xD4CA, 0xAB35,
  91. 0xCD35, 0xB2CA, 0xD2CA, 0xAD35, 0xCACA, 0xB535, 0xD535, 0xAACA,
  92. 0xCCB5, 0xB34A, 0xD34A, 0xACB5, 0xCB4A, 0xB4B5, 0xD4B5, 0xAB4A,
  93. 0xCD4A, 0xB2B5, 0xD2B5, 0xAD4A, 0xCAB5, 0xB54A, 0xD54A, 0xAAB5,
  94. 0xCCD5, 0xB32A, 0xD32A, 0xACD5, 0xCB2A, 0xB4D5, 0xD4D5, 0xAB2A,
  95. 0xCD2A, 0xB2D5, 0xD2D5, 0xAD2A, 0xCAD5, 0xB52A, 0xD52A, 0xAAD5,
  96. 0xCCAA, 0xB355, 0xD355, 0xACAA, 0xCB55, 0xB4AA, 0xD4AA, 0xAB55,
  97. 0xCD55, 0xB2AA, 0xD2AA, 0xAD55, 0xCAAA, 0xB555, 0xD555, 0xAAAA };
  98. /*
  99. * Biphase frame headers for SP/DIF, including the special bit framing
  100. * errors used to detect (sub)frame start conditions. See above table
  101. * for details.
  102. */
  103. const uint16_t x_preamble = 0xE2CC;
  104. const uint16_t y_preamble = 0xE4CC;
  105. const uint16_t z_preamble = 0xE8CC;
  106. // DMA configuration info
  107. static dma_channel_config snd_dma_a_cfg;
  108. static dma_channel_config snd_dma_b_cfg;
  109. // some chonky buffers to store audio samples
  110. static uint8_t sample_buf_a[AUDIO_BUFFER_SIZE];
  111. static uint8_t sample_buf_b[AUDIO_BUFFER_SIZE];
  112. // tracking for the state of the above buffers
  113. enum bufstate { STALE, FILLING, READY };
  114. static volatile bufstate sbufst_a = STALE;
  115. static volatile bufstate sbufst_b = STALE;
  116. enum bufselect { A, B };
  117. static bufselect sbufsel = A;
  118. static uint16_t sbufpos = 0;
  119. static uint8_t sbufswap = 0;
  120. // buffers for storing biphase patterns
  121. #define SAMPLE_CHUNK_SIZE 1024 // ~5.8ms
  122. #define WIRE_BUFFER_SIZE (SAMPLE_CHUNK_SIZE * 2)
  123. static uint16_t wire_buf_a[WIRE_BUFFER_SIZE];
  124. static uint16_t wire_buf_b[WIRE_BUFFER_SIZE];
  125. // tracking for audio playback
  126. static uint8_t audio_owner; // SCSI ID or 0xFF when idle
  127. static volatile bool audio_paused = false;
  128. static FsFile audio_file;
  129. static uint32_t fleft;
  130. // historical playback status information
  131. static audio_status_code audio_last_status[8] = {ASC_NO_STATUS};
  132. static uint32_t audio_bytes_read[8] = {0};
  133. // mechanism for cleanly stopping DMA units
  134. static volatile bool audio_stopping = false;
  135. // trackers for the below function call
  136. static uint16_t sfcnt = 0; // sub-frame count; 2 per frame, 192 frames/block
  137. static uint8_t invert = 0; // biphase encode help: set if last wire bit was '1'
  138. /*
  139. * Translates 16-bit stereo sound samples to biphase wire patterns for the
  140. * SPI peripheral. Produces 8 patterns (128 bits, or 1 SP/DIF frame) per pair
  141. * of input samples. Provided length is the total number of sample bytes present,
  142. * _twice_ the number of samples (little-endian order assumed)
  143. *
  144. * This function operates with side-effects and is not safe to call from both
  145. * cores. It must also be called in the same order data is intended to be
  146. * output.
  147. */
  148. static void snd_encode(uint8_t* samples, uint16_t* wire_patterns, uint16_t len, uint8_t swap) {
  149. uint16_t widx = 0;
  150. for (uint16_t i = 0; i < len; i += 2) {
  151. uint32_t sample = 0;
  152. uint8_t parity = 0;
  153. if (samples != NULL) {
  154. if (swap) {
  155. sample = samples[i + 1] + (samples[i] << 8);
  156. } else {
  157. sample = samples[i] + (samples[i + 1] << 8);
  158. }
  159. // determine parity, simplified to one lookup via an XOR
  160. parity = (sample >> 8) ^ sample;
  161. parity = snd_parity[parity];
  162. /*
  163. * Shift sample into the correct bit positions of the sub-frame. This
  164. * would normally be << 12, but with my DACs I've had persistent issues
  165. * with signal clipping when sending data in the highest bit position.
  166. */
  167. sample = sample << 11;
  168. if (sample & 0x04000000) {
  169. // handle two's complement
  170. sample |= 0x08000000;
  171. parity++;
  172. }
  173. }
  174. // if needed, establish even parity with P bit
  175. if (parity % 2) sample |= 0x80000000;
  176. // translate sample into biphase encoding
  177. // first is low 8 bits: preamble and 4 least-significant bits of
  178. // 24-bit audio, pre-encoded as all '0' due to 16-bit samples
  179. uint16_t wp;
  180. if (sfcnt == 0) {
  181. wp = z_preamble; // left channel, block start
  182. } else if (sfcnt % 2) {
  183. wp = y_preamble; // right channel
  184. } else {
  185. wp = x_preamble; // left channel, not block start
  186. }
  187. if (invert) wp = ~wp;
  188. invert = wp & 1;
  189. wire_patterns[widx++] = wp;
  190. // next 8 bits (only high 4 have data)
  191. wp = biphase[(uint8_t) (sample >> 8)];
  192. if (invert) wp = ~wp;
  193. invert = wp & 1;
  194. wire_patterns[widx++] = wp;
  195. // next 8 again, all audio data
  196. wp = biphase[(uint8_t) (sample >> 16)];
  197. if (invert) wp = ~wp;
  198. invert = wp & 1;
  199. wire_patterns[widx++] = wp;
  200. // final 8, low 4 audio data and high 4 control bits
  201. wp = biphase[(uint8_t) (sample >> 24)];
  202. if (invert) wp = ~wp;
  203. invert = wp & 1;
  204. wire_patterns[widx++] = wp;
  205. // increment subframe counter for next pass
  206. sfcnt++;
  207. if (sfcnt == 384) sfcnt = 0; // if true, block complete
  208. }
  209. }
  210. // functions for passing to Core1
  211. static void snd_process_a() {
  212. if (sbufsel == A) {
  213. if (sbufst_a == READY) {
  214. snd_encode(sample_buf_a + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  215. sbufpos += SAMPLE_CHUNK_SIZE;
  216. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  217. sbufsel = B;
  218. sbufpos = 0;
  219. sbufst_a = STALE;
  220. }
  221. } else {
  222. snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  223. }
  224. } else {
  225. if (sbufst_b == READY) {
  226. snd_encode(sample_buf_b + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  227. sbufpos += SAMPLE_CHUNK_SIZE;
  228. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  229. sbufsel = A;
  230. sbufpos = 0;
  231. sbufst_b = STALE;
  232. }
  233. } else {
  234. snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  235. }
  236. }
  237. }
  238. static void snd_process_b() {
  239. // clone of above for the other wire buffer
  240. if (sbufsel == A) {
  241. if (sbufst_a == READY) {
  242. snd_encode(sample_buf_a + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  243. sbufpos += SAMPLE_CHUNK_SIZE;
  244. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  245. sbufsel = B;
  246. sbufpos = 0;
  247. sbufst_a = STALE;
  248. }
  249. } else {
  250. snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  251. }
  252. } else {
  253. if (sbufst_b == READY) {
  254. snd_encode(sample_buf_b + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  255. sbufpos += SAMPLE_CHUNK_SIZE;
  256. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  257. sbufsel = A;
  258. sbufpos = 0;
  259. sbufst_b = STALE;
  260. }
  261. } else {
  262. snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  263. }
  264. }
  265. }
  266. // Allows execution on Core1 via function pointers. Each function can take
  267. // no parameters and should return nothing, operating via side-effects only.
  268. static void core1_handler() {
  269. while (1) {
  270. void (*function)() = (void (*)()) multicore_fifo_pop_blocking();
  271. (*function)();
  272. }
  273. }
  274. /* ------------------------------------------------------------------------ */
  275. /* ---------- VISIBLE FUNCTIONS ------------------------------------------- */
  276. /* ------------------------------------------------------------------------ */
  277. void audio_dma_irq() {
  278. if (dma_hw->intr & (1 << SOUND_DMA_CHA)) {
  279. dma_hw->ints0 = (1 << SOUND_DMA_CHA);
  280. multicore_fifo_push_blocking((uintptr_t) &snd_process_a);
  281. if (audio_stopping) {
  282. channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHA);
  283. }
  284. dma_channel_configure(SOUND_DMA_CHA,
  285. &snd_dma_a_cfg,
  286. &(spi_get_hw(AUDIO_SPI)->dr),
  287. &wire_buf_a,
  288. WIRE_BUFFER_SIZE,
  289. false);
  290. } else if (dma_hw->intr & (1 << SOUND_DMA_CHB)) {
  291. dma_hw->ints0 = (1 << SOUND_DMA_CHB);
  292. multicore_fifo_push_blocking((uintptr_t) &snd_process_b);
  293. if (audio_stopping) {
  294. channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHB);
  295. }
  296. dma_channel_configure(SOUND_DMA_CHB,
  297. &snd_dma_b_cfg,
  298. &(spi_get_hw(AUDIO_SPI)->dr),
  299. &wire_buf_b,
  300. WIRE_BUFFER_SIZE,
  301. false);
  302. }
  303. }
  304. bool audio_is_active() {
  305. return audio_owner != 0xFF;
  306. }
  307. bool audio_is_paused() {
  308. return audio_paused;
  309. }
  310. uint8_t audio_get_owner() {
  311. return audio_owner;
  312. }
  313. void audio_setup() {
  314. // setup SPI to blast SP/DIF data over the TX pin
  315. spi_set_baudrate(AUDIO_SPI, 5644800); // will be slightly wrong, ~0.03% slow
  316. hw_write_masked(&spi_get_hw(AUDIO_SPI)->cr0,
  317. 0x1F, // TI mode with 16 bits
  318. SPI_SSPCR0_DSS_BITS | SPI_SSPCR0_FRF_BITS);
  319. spi_get_hw(AUDIO_SPI)->dmacr = SPI_SSPDMACR_TXDMAE_BITS;
  320. hw_set_bits(&spi_get_hw(AUDIO_SPI)->cr1, SPI_SSPCR1_SSE_BITS);
  321. dma_channel_claim(SOUND_DMA_CHA);
  322. dma_channel_claim(SOUND_DMA_CHB);
  323. log("Starting Core1 for audio");
  324. multicore_launch_core1(core1_handler);
  325. }
  326. void audio_poll() {
  327. if (!audio_is_active()) return;
  328. if (audio_paused) return;
  329. if (fleft == 0 && sbufst_a == STALE && sbufst_b == STALE) {
  330. // out of data and ready to stop
  331. audio_stop();
  332. return;
  333. } else if (fleft == 0) {
  334. // out of data to read but still working on remainder
  335. return;
  336. }
  337. // are new audio samples needed from the memory card?
  338. uint8_t* audiobuf;
  339. if (sbufst_a == STALE) {
  340. sbufst_a = FILLING;
  341. audiobuf = sample_buf_a;
  342. } else if (sbufst_b == STALE) {
  343. sbufst_b = FILLING;
  344. audiobuf = sample_buf_b;
  345. } else {
  346. // no data needed this time
  347. return;
  348. }
  349. platform_set_sd_callback(NULL, NULL);
  350. uint16_t toRead = AUDIO_BUFFER_SIZE;
  351. if (fleft < toRead) toRead = fleft;
  352. if (audio_file.read(audiobuf, toRead) != toRead) {
  353. log("Audio sample data underrun");
  354. }
  355. fleft -= toRead;
  356. audio_bytes_read[audio_owner] += toRead;
  357. if (sbufst_a == FILLING) {
  358. sbufst_a = READY;
  359. } else if (sbufst_b == FILLING) {
  360. sbufst_b = READY;
  361. }
  362. }
  363. bool audio_play(uint8_t owner, const char* file, uint64_t start, uint64_t end, bool swap) {
  364. // stop any existing playback first
  365. if (audio_is_active()) audio_stop();
  366. // debuglog("Request to play ('", file, "':", start, ":", end, ")");
  367. // verify audio file is present and inputs are (somewhat) sane
  368. if (owner == 0xFF) {
  369. log("Illegal audio owner");
  370. return false;
  371. }
  372. if (start >= end) {
  373. log("Invalid range for audio (", start, ":", end, ")");
  374. return false;
  375. }
  376. platform_set_sd_callback(NULL, NULL);
  377. audio_file = SD.open(file, O_RDONLY);
  378. if (!audio_file.isOpen()) {
  379. log("Unable to open file for audio playback: ", file);
  380. return false;
  381. }
  382. uint64_t len = audio_file.size();
  383. if (start > len) {
  384. log("File '", file, "' playback request start (",
  385. start, ":", len, ") outside file bounds");
  386. audio_file.close();
  387. return false;
  388. }
  389. // truncate playback end to end of file
  390. // we will not consider this to be an error at the moment
  391. if (end > len) {
  392. dbgmsg("------ Truncate audio play request end ", end, " to file size ", len);
  393. end = len;
  394. }
  395. fleft = end - start;
  396. if (fleft <= 2 * AUDIO_BUFFER_SIZE) {
  397. log("File '", file, "' playback request (",
  398. start, ":", end, ") too short");
  399. audio_file.close();
  400. return false;
  401. }
  402. // read in initial sample buffers
  403. if (!audio_file.seek(start)) {
  404. log("Sample file (", file, ") failed start seek to ", start);
  405. audio_file.close();
  406. return false;
  407. }
  408. if (audio_file.read(sample_buf_a, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) {
  409. log("File '", file, "' playback start returned fewer bytes than allowed");
  410. audio_file.close();
  411. return false;
  412. }
  413. if (audio_file.read(sample_buf_b, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) {
  414. log("File '", file, "' playback start returned fewer bytes than allowed");
  415. audio_file.close();
  416. return false;
  417. }
  418. // prepare initial tracking state
  419. fleft -= AUDIO_BUFFER_SIZE * 2;
  420. sbufsel = A;
  421. sbufpos = 0;
  422. sbufswap = swap;
  423. sbufst_a = READY;
  424. sbufst_b = READY;
  425. audio_owner = owner & 7;
  426. audio_bytes_read[audio_owner] = AUDIO_BUFFER_SIZE * 2;
  427. audio_last_status[audio_owner] = ASC_PLAYING;
  428. // prepare the wire buffers
  429. for (uint16_t i = 0; i < WIRE_BUFFER_SIZE; i++) {
  430. wire_buf_a[i] = 0;
  431. wire_buf_b[i] = 0;
  432. }
  433. sfcnt = 0;
  434. invert = 0;
  435. // setup the two DMA units to hand-off to each other
  436. // to maintain a stable bitstream these need to run without interruption
  437. snd_dma_a_cfg = dma_channel_get_default_config(SOUND_DMA_CHA);
  438. channel_config_set_transfer_data_size(&snd_dma_a_cfg, DMA_SIZE_16);
  439. channel_config_set_dreq(&snd_dma_a_cfg, spi_get_dreq(AUDIO_SPI, true));
  440. channel_config_set_read_increment(&snd_dma_a_cfg, true);
  441. channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHB);
  442. // version of pico-sdk lacks channel_config_set_high_priority()
  443. snd_dma_a_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
  444. dma_channel_configure(SOUND_DMA_CHA, &snd_dma_a_cfg, &(spi_get_hw(AUDIO_SPI)->dr),
  445. &wire_buf_a, WIRE_BUFFER_SIZE, false);
  446. dma_channel_set_irq0_enabled(SOUND_DMA_CHA, true);
  447. snd_dma_b_cfg = dma_channel_get_default_config(SOUND_DMA_CHB);
  448. channel_config_set_transfer_data_size(&snd_dma_b_cfg, DMA_SIZE_16);
  449. channel_config_set_dreq(&snd_dma_b_cfg, spi_get_dreq(AUDIO_SPI, true));
  450. channel_config_set_read_increment(&snd_dma_b_cfg, true);
  451. channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHA);
  452. snd_dma_b_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
  453. dma_channel_configure(SOUND_DMA_CHB, &snd_dma_b_cfg, &(spi_get_hw(AUDIO_SPI)->dr),
  454. &wire_buf_b, WIRE_BUFFER_SIZE, false);
  455. dma_channel_set_irq0_enabled(SOUND_DMA_CHB, true);
  456. // ready to go
  457. dma_channel_start(SOUND_DMA_CHA);
  458. return true;
  459. }
  460. bool audio_set_paused(bool paused) {
  461. if (!audio_is_active()) return false;
  462. else if (audio_paused && paused) return false;
  463. else if (!audio_paused && !paused) return false;
  464. audio_paused = paused;
  465. if (paused) {
  466. audio_last_status[audio_owner] = ASC_PAUSED;
  467. } else {
  468. audio_last_status[audio_owner] = ASC_PLAYING;
  469. }
  470. return true;
  471. }
  472. void audio_stop() {
  473. if (!audio_is_active()) return;
  474. // to help mute external hardware, send a bunch of '0' samples prior to
  475. // halting the datastream; easiest way to do this is invalidating the
  476. // sample buffers, same as if there was a sample data underrun
  477. sbufst_a = STALE;
  478. sbufst_b = STALE;
  479. // then indicate that the streams should no longer chain to one another
  480. // and wait for them to shut down naturally
  481. audio_stopping = true;
  482. while (dma_channel_is_busy(SOUND_DMA_CHA)) tight_loop_contents();
  483. while (dma_channel_is_busy(SOUND_DMA_CHB)) tight_loop_contents();
  484. while (spi_is_busy(AUDIO_SPI)) tight_loop_contents();
  485. audio_stopping = false;
  486. // idle the subsystem
  487. if (audio_file.isOpen()) {
  488. audio_file.close();
  489. }
  490. audio_last_status[audio_owner] = ASC_COMPLETED;
  491. audio_owner = 0xFF;
  492. }
  493. audio_status_code audio_get_status_code(uint8_t id) {
  494. audio_status_code tmp = audio_last_status[id & 7];
  495. if (tmp == ASC_COMPLETED || tmp == ASC_ERRORED) {
  496. audio_last_status[id & 7] = ASC_NO_STATUS;
  497. }
  498. return tmp;
  499. }
  500. uint32_t audio_get_bytes_read(uint8_t id) {
  501. return audio_bytes_read[id & 7];
  502. }
  503. void audio_clear_bytes_read(uint8_t id) {
  504. audio_bytes_read[id & 7] = 0;
  505. }
  506. #ifdef __cplusplus
  507. }
  508. #endif
  509. #endif // ENABLE_AUDIO_OUTPUT