| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 | // Implements the low level interface to SCSI bus// Partially derived from scsiPhy.c from SCSI2SD-V6#include "scsiPhy.h"#include "BlueSCSI_platform.h"#include "BlueSCSI_log.h"#include "BlueSCSI_log_trace.h"#include "BlueSCSI_config.h"#include <scsi2sd.h>extern "C" {#include <scsi.h>#include <scsi2sd_time.h>}/***********************//* SCSI status signals *//***********************/extern "C" bool scsiStatusATN(){    return SCSI_IN(ATN);}extern "C" bool scsiStatusBSY(){    return SCSI_IN(BSY);}/************************//* SCSI selection logic *//************************/volatile uint8_t g_scsi_sts_selection;volatile uint8_t g_scsi_ctrl_bsy;void scsi_bsy_deassert_interrupt(){    if (SCSI_IN(SEL) && !SCSI_IN(BSY))    {        // Check if any of the targets we simulate is selected        uint8_t sel_bits = SCSI_IN_DATA();        int sel_id = -1;        for (int i = 0; i < S2S_MAX_TARGETS; i++)        {            if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)            {                if (sel_bits & (1 << scsiDev.targets[i].targetId))                {                    sel_id = scsiDev.targets[i].targetId;                    break;                }            }        }        if (sel_id >= 0)        {            uint8_t atn_flag = SCSI_IN(ATN) ? SCSI_STS_SELECTION_ATN : 0;            g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | atn_flag | sel_id;        }        // selFlag is required for Philips P2000C which releases it after 600ns        // without waiting for BSY.        // Also required for some early Mac Plus roms        scsiDev.selFlag = *SCSI_STS_SELECTED;    }}extern "C" bool scsiStatusSEL(){    if (g_scsi_ctrl_bsy)    {        // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.        // Instead update the state here.        // Releasing happens with bus release.        g_scsi_ctrl_bsy = 0;        SCSI_OUT(BSY, 1);    }    return SCSI_IN(SEL);}/************************//* SCSI bus reset logic *//************************/static void scsi_rst_assert_interrupt(){    // Glitch filtering    bool rst1 = SCSI_IN(RST);    delay_ns(500);    bool rst2 = SCSI_IN(RST);    if (rst1 && rst2)    {        debuglog("BUS RESET");        scsiDev.resetFlag = 1;    }}// This function is called to initialize the phy code.// It is called after power-on and after SCSI bus reset.extern "C" void scsiPhyReset(void){    SCSI_RELEASE_OUTPUTS();    g_scsi_sts_selection = 0;    g_scsi_ctrl_bsy = 0;    /* Implement here code to enable two interrupts:     * scsi_bsy_deassert_interrupt() on rising edge of BSY pin     * scsi_rst_assert_interrupt() on falling edge of RST pin     *     * For SCSI-1 single-initiator support, also call:     * scsi_bsy_deassert_interrupt() on falling edge of SEL pin     */}/************************//* SCSI bus phase logic *//************************/static SCSI_PHASE g_scsi_phase;extern "C" void scsiEnterPhase(int phase){    int delay = scsiEnterPhaseImmediate(phase);    if (delay > 0)    {        s2s_delay_ns(delay);    }}// Change state and return nanosecond delay to waitextern "C" uint32_t scsiEnterPhaseImmediate(int phase){    if (phase != g_scsi_phase)    {        // ANSI INCITS 362-2002 SPI-3 10.7.1:        // Phase changes are not allowed while REQ or ACK is asserted.        while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}        if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT))        {            // Akai S1000/S3000 seems to need extra delay before changing to data phase            // after a command. The code in BlueSCSI_disk.cpp tries to do this while waiting            // for SD card, to avoid any extra latency.            s2s_delay_ns(400000);        }        int oldphase = g_scsi_phase;        g_scsi_phase = (SCSI_PHASE)phase;        scsiLogPhaseChange(phase);        if (phase < 0)        {            // Other communication on bus or reset state            SCSI_RELEASE_OUTPUTS();            return 0;        }        else        {            SCSI_OUT(MSG, phase & __scsiphase_msg);            SCSI_OUT(CD,  phase & __scsiphase_cd);            SCSI_OUT(IO,  phase & __scsiphase_io);            int delayNs = 400; // Bus settle delay            if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))            {                delayNs += 400; // Data release delay            }            if (scsiDev.compatMode < COMPAT_SCSI2)            {                // EMU EMAX needs 100uS ! 10uS is not enough.                delayNs += 100000;            }            return delayNs;        }    }    else    {        return 0;    }}// Release all signalsvoid scsiEnterBusFree(void){    g_scsi_phase = BUS_FREE;    g_scsi_sts_selection = 0;    g_scsi_ctrl_bsy = 0;    scsiDev.cdbLen = 0;    SCSI_RELEASE_OUTPUTS();}/********************//* Transmit to host *//********************/#define SCSI_WAIT_ACTIVE(pin) \  if (!SCSI_IN(pin)) { \    if (!SCSI_IN(pin)) { \      while(!SCSI_IN(pin) && !scsiDev.resetFlag); \    } \  }#define SCSI_WAIT_INACTIVE(pin) \  if (SCSI_IN(pin)) { \    if (SCSI_IN(pin)) { \      while(SCSI_IN(pin) && !scsiDev.resetFlag); \    } \  }// Write one byte to SCSI host using the handshake mechanismstatic inline void scsiWriteOneByte(uint8_t value){    SCSI_OUT_DATA(value);    delay_100ns(); // DB setup time before REQ    SCSI_OUT(REQ, 1);    SCSI_WAIT_ACTIVE(ACK);    SCSI_RELEASE_DATA_REQ();    SCSI_WAIT_INACTIVE(ACK);}extern "C" void scsiWriteByte(uint8_t value){    scsiLogDataIn(&value, 1);    scsiWriteOneByte(value);}extern "C" void scsiWrite(const uint8_t* data, uint32_t count){    scsiLogDataIn(data, count);    for (uint32_t i = 0; i < count; i++)    {        if (scsiDev.resetFlag) break;        scsiWriteOneByte(data[i]);    }}extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count){    // If the platform supports DMA for either SD card access or for SCSI bus,    // this function can be used to execute SD card transfers in parallel with    // SCSI transfers. This usually doubles the transfer speed.    //    // For simplicity, this example only implements blocking writes.    scsiWrite(data, count);}extern "C" bool scsiIsWriteFinished(const uint8_t *data){    // Asynchronous writes are not implemented in this example.    return true;}extern "C" void scsiFinishWrite(){    // Asynchronous writes are not implemented in this example.}/*********************//* Receive from host *//*********************/// Read one byte from SCSI host using the handshake mechanism.static inline uint8_t scsiReadOneByte(void){    SCSI_OUT(REQ, 1);    SCSI_WAIT_ACTIVE(ACK);    delay_100ns();    uint8_t r = SCSI_IN_DATA();    SCSI_OUT(REQ, 0);    SCSI_WAIT_INACTIVE(ACK);    return r;}extern "C" uint8_t scsiReadByte(void){    uint8_t r = scsiReadOneByte();    scsiLogDataOut(&r, 1);    return r;}extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError){    *parityError = 0;    for (uint32_t i = 0; i < count; i++)    {        if (scsiDev.resetFlag) break;        data[i] = scsiReadOneByte();    }    scsiLogDataOut(data, count);}
 |