ZuluSCSI_platform.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™
  3. *
  4. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
  5. *
  6. * https://www.gnu.org/licenses/gpl-3.0.html
  7. * ----
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version. 
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16. * GNU General Public License for more details. 
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  20. **/
  21. #include "ZuluSCSI_platform.h"
  22. #include "gd32f4xx_sdio.h"
  23. #include "gd32f4xx_fmc.h"
  24. #include "gd32f4xx_fwdgt.h"
  25. #include "gd32_sdio_sdcard.h"
  26. #include "ZuluSCSI_log.h"
  27. #include "ZuluSCSI_config.h"
  28. #include "usb_hs.h"
  29. #include "usbd_conf.h"
  30. #include "greenpak.h"
  31. #include <SdFat.h>
  32. #include <scsi.h>
  33. #include <assert.h>
  34. #include "usb_serial.h"
  35. #include <ZuluSCSI_settings.h>
  36. extern bool g_rawdrive_active;
  37. extern "C" {
  38. const char *g_platform_name = PLATFORM_NAME;
  39. static bool g_enable_apple_quirks = false;
  40. static bool g_led_blinking = false;
  41. /*************************/
  42. /* Timing functions */
  43. /*************************/
  44. static volatile uint32_t g_millisecond_counter;
  45. static volatile uint32_t g_watchdog_timeout;
  46. static uint32_t g_ns_to_cycles; // Q0.32 fixed point format
  47. static void watchdog_handler(uint32_t *sp);
  48. unsigned long millis()
  49. {
  50. return g_millisecond_counter;
  51. }
  52. void delay(unsigned long ms)
  53. {
  54. uint32_t start = g_millisecond_counter;
  55. while ((uint32_t)(g_millisecond_counter - start) < ms);
  56. }
  57. void delay_ns(unsigned long ns)
  58. {
  59. uint32_t CNT_start = DWT->CYCCNT;
  60. if (ns <= 50) return; // Approximate call overhead
  61. ns -= 50;
  62. uint32_t cycles = ((uint64_t)ns * g_ns_to_cycles) >> 32;
  63. while ((uint32_t)(DWT->CYCCNT - CNT_start) < cycles);
  64. }
  65. void SysTick_Handler_inner(uint32_t *sp)
  66. {
  67. g_millisecond_counter++;
  68. if (g_watchdog_timeout > 0)
  69. {
  70. g_watchdog_timeout--;
  71. const uint32_t busreset_time = WATCHDOG_CRASH_TIMEOUT - WATCHDOG_BUS_RESET_TIMEOUT;
  72. if (g_watchdog_timeout <= busreset_time)
  73. {
  74. if (!scsiDev.resetFlag)
  75. {
  76. logmsg("WATCHDOG TIMEOUT at PC ", sp[6], " LR ", sp[5], " attempting bus reset");
  77. scsiDev.resetFlag = 1;
  78. }
  79. if (g_watchdog_timeout == 0)
  80. {
  81. watchdog_handler(sp);
  82. }
  83. }
  84. }
  85. }
  86. __attribute__((interrupt, naked))
  87. void SysTick_Handler(void)
  88. {
  89. // Take note of stack pointer so that we can print debug
  90. // info in watchdog handler.
  91. asm("mrs r0, msp\n"
  92. "b SysTick_Handler_inner": : : "r0");
  93. }
  94. // This function is called by scsiPhy.cpp.
  95. // It resets the systick counter to give 1 millisecond of uninterrupted transfer time.
  96. // The total number of skips is kept track of to keep the correct time on average.
  97. void SysTick_Handle_PreEmptively()
  98. {
  99. static int skipped_clocks = 0;
  100. __disable_irq();
  101. uint32_t loadval = SysTick->LOAD;
  102. skipped_clocks += loadval - SysTick->VAL;
  103. SysTick->VAL = 0;
  104. if (skipped_clocks > loadval)
  105. {
  106. // We have skipped enough ticks that it is time to fake a call
  107. // to SysTick interrupt handler.
  108. skipped_clocks -= loadval;
  109. uint32_t stack_frame[8] = {0};
  110. stack_frame[6] = (uint32_t)__builtin_return_address(0);
  111. SysTick_Handler_inner(stack_frame);
  112. }
  113. __enable_irq();
  114. }
  115. uint32_t platform_sys_clock_in_hz()
  116. {
  117. return rcu_clock_freq_get(CK_SYS);
  118. }
  119. /***************/
  120. /* GPIO init */
  121. /***************/
  122. // Initialize SPI and GPIO configuration
  123. // Clock has already been initialized by system_gd32f20x.c
  124. void platform_init()
  125. {
  126. SystemCoreClockUpdate();
  127. // Enable SysTick to drive millis()
  128. // \todo not sure if this is needed
  129. // nvic_priority_group_set(NVIC_PRIGROUP_PRE2_SUB2);
  130. g_millisecond_counter = 0;
  131. SysTick_Config(SystemCoreClock / 1000U);
  132. NVIC_SetPriority(SysTick_IRQn, 0x00U);
  133. // Enable DWT counter to drive delay_ns()
  134. g_ns_to_cycles = ((uint64_t)SystemCoreClock << 32) / 1000000000;
  135. CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
  136. DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;
  137. // Enable debug output on SWO pin
  138. DBG_CTL0 |= DBG_CTL0_TRACE_IOEN;
  139. // if (TPI->ACPR == 0)
  140. {
  141. CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
  142. TPI->ACPR = SystemCoreClock / 115200 - 1; // Serial speed baudrate for SWO
  143. // TPI->ACPR = SystemCoreClock / 2000000 - 1; // 2 Mbps baudrate for SWO
  144. // TPI->ACPR = SystemCoreClock / 30000000 - 1; // 30 Mbps baudrate for SWO
  145. TPI->SPPR = 2;
  146. TPI->FFCR = 0x100; // TPIU packet framing disabled
  147. // DWT->CTRL |= (1 << DWT_CTRL_EXCTRCENA_Pos);
  148. // DWT->CTRL |= (1 << DWT_CTRL_CYCTAP_Pos)
  149. // | (15 << DWT_CTRL_POSTPRESET_Pos)
  150. // | (1 << DWT_CTRL_PCSAMPLENA_Pos)
  151. // | (3 << DWT_CTRL_SYNCTAP_Pos)
  152. // | (1 << DWT_CTRL_CYCCNTENA_Pos);
  153. ITM->LAR = 0xC5ACCE55;
  154. ITM->TCR = (1 << ITM_TCR_DWTENA_Pos)
  155. | (1 << ITM_TCR_SYNCENA_Pos)
  156. | (1 << ITM_TCR_ITMENA_Pos);
  157. ITM->TER = 0xFFFFFFFF; // Enable all stimulus ports
  158. }
  159. // Enable needed clocks for GPIO
  160. rcu_periph_clock_enable(RCU_GPIOA);
  161. rcu_periph_clock_enable(RCU_GPIOB);
  162. rcu_periph_clock_enable(RCU_GPIOC);
  163. rcu_periph_clock_enable(RCU_GPIOD);
  164. rcu_periph_clock_enable(RCU_GPIOE);
  165. rcu_periph_clock_enable(RCU_GPIOF);
  166. rcu_periph_clock_enable(RCU_GPIOG);
  167. // Switch to SWD debug port (disable JTAG) to release PB4 as GPIO
  168. gpio_mode_set(GPIOB, GPIO_MODE_INPUT, GPIO_PUPD_NONE, GPIO_PIN_4);
  169. // SCSI pins.
  170. // Initialize open drain outputs to high.
  171. SCSI_RELEASE_OUTPUTS();
  172. gpio_mode_set(SCSI_OUT_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_DATA_MASK | SCSI_OUT_REQ);
  173. gpio_mode_set(SCSI_OUT_IO_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_IO_PIN);
  174. gpio_mode_set(SCSI_OUT_CD_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_CD_PIN);
  175. gpio_mode_set(SCSI_OUT_SEL_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_SEL_PIN);
  176. gpio_mode_set(SCSI_OUT_MSG_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_MSG_PIN);
  177. gpio_mode_set(SCSI_OUT_RST_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_RST_PIN);
  178. gpio_mode_set(SCSI_OUT_BSY_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_OUT_BSY_PIN);
  179. gpio_output_options_set(SCSI_OUT_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_DATA_MASK | SCSI_OUT_REQ);
  180. gpio_output_options_set(SCSI_OUT_IO_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_IO_PIN);
  181. gpio_output_options_set(SCSI_OUT_CD_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_CD_PIN);
  182. gpio_output_options_set(SCSI_OUT_SEL_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_SEL_PIN);
  183. gpio_output_options_set(SCSI_OUT_MSG_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_MSG_PIN);
  184. gpio_output_options_set(SCSI_OUT_RST_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_RST_PIN);
  185. gpio_output_options_set(SCSI_OUT_BSY_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SCSI_OUT_BSY_PIN);
  186. gpio_mode_set(SCSI_IN_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_IN_MASK);
  187. gpio_mode_set(SCSI_ATN_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_ATN_PIN);
  188. gpio_mode_set(SCSI_BSY_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_BSY_PIN);
  189. gpio_mode_set(SCSI_SEL_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_SEL_PIN);
  190. gpio_mode_set(SCSI_ACK_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_ACK_PIN);
  191. gpio_mode_set(SCSI_RST_PORT, GPIO_MODE_INPUT, GPIO_PUPD_NONE, SCSI_RST_PIN);
  192. // Terminator enable
  193. gpio_bit_set(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
  194. gpio_mode_set(SCSI_TERM_EN_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, SCSI_TERM_EN_PIN);
  195. gpio_output_options_set(SCSI_TERM_EN_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, SCSI_TERM_EN_PIN);
  196. #ifndef SD_USE_SDIO
  197. // SD card pins using SPI
  198. gpio_init(SD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SD_CS_PIN);
  199. gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_CLK_PIN);
  200. gpio_init(SD_PORT, GPIO_MODE_IPU, 0, SD_MISO_PIN);
  201. gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_MOSI_PIN);
  202. #else
  203. // SD card pins using SDIO
  204. gpio_mode_set(SD_SDIO_DATA_PORT, GPIO_MODE_AF, GPIO_PUPD_NONE, SD_SDIO_D0 | SD_SDIO_D1 | SD_SDIO_D2 | SD_SDIO_D3);
  205. gpio_output_options_set(SD_SDIO_DATA_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SD_SDIO_D0 | SD_SDIO_D1 | SD_SDIO_D2 | SD_SDIO_D3);
  206. gpio_af_set(SD_SDIO_DATA_PORT, GPIO_AF_12, SD_SDIO_D0 | SD_SDIO_D1 | SD_SDIO_D2 | SD_SDIO_D3);
  207. gpio_mode_set(SD_SDIO_CLK_PORT, GPIO_MODE_AF, GPIO_PUPD_NONE, SD_SDIO_CLK);
  208. gpio_output_options_set(SD_SDIO_CLK_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SD_SDIO_CLK);
  209. gpio_af_set(SD_SDIO_CLK_PORT, GPIO_AF_12, SD_SDIO_CLK);
  210. gpio_mode_set(SD_SDIO_CMD_PORT, GPIO_MODE_AF, GPIO_PUPD_NONE, SD_SDIO_CMD);
  211. gpio_output_options_set(SD_SDIO_CMD_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, SD_SDIO_CMD);
  212. gpio_af_set(SD_SDIO_CMD_PORT, GPIO_AF_12, SD_SDIO_CMD);
  213. #endif
  214. // @TODO confirm dip switch 1 is not longer JTAG NJTRST
  215. // Switch to SWD debug port (disable JTAG) to release PB4 as GPIO
  216. //gpio_pin_remap_config(GPIO_SWJ_SWDPENABLE_REMAP, ENABLE);
  217. // DIP switches
  218. gpio_mode_set(DIP_PORT, GPIO_MODE_INPUT, GPIO_PUPD_PULLDOWN, DIPSW1_PIN | DIPSW2_PIN | DIPSW3_PIN);
  219. // LED pins
  220. gpio_bit_set(LED_PORT, LED_PINS);
  221. gpio_mode_set(LED_PORT, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, LED_PINS);
  222. gpio_output_options_set(LED_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, LED_PINS);
  223. // SWO trace pin on PB3
  224. gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_3);
  225. gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ, GPIO_PIN_3);
  226. gpio_af_set(GPIOB, GPIO_AF_0, GPIO_PIN_3);
  227. }
  228. void platform_late_init()
  229. {
  230. logmsg("Platform: ", g_platform_name);
  231. logmsg("FW Version: ", g_log_firmwareversion);
  232. if (gpio_input_bit_get(DIP_PORT, DIPSW3_PIN))
  233. {
  234. logmsg("DIPSW3 is ON: Enabling SCSI termination");
  235. gpio_bit_reset(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
  236. }
  237. else
  238. {
  239. logmsg("DIPSW3 is OFF: SCSI termination disabled");
  240. }
  241. if (gpio_input_bit_get(DIP_PORT, DIPSW2_PIN))
  242. {
  243. logmsg("DIPSW2 is ON: enabling debug messages");
  244. g_log_debug = true;
  245. }
  246. else
  247. {
  248. g_log_debug = false;
  249. }
  250. if (gpio_input_bit_get(DIP_PORT, DIPSW1_PIN))
  251. {
  252. logmsg("DIPSW1 is ON: enabling Apple quirks by default");
  253. g_enable_apple_quirks = true;
  254. }
  255. usb_hs_init();
  256. greenpak_load_firmware();
  257. }
  258. void platform_post_sd_card_init() {}
  259. void platform_write_led(bool state)
  260. {
  261. if (g_led_blinking) return;
  262. if (g_scsi_settings.getSystem()->invertStatusLed)
  263. state = !state;
  264. if (state)
  265. gpio_bit_reset(LED_PORT, LED_PINS);
  266. else
  267. gpio_bit_set(LED_PORT, LED_PINS);
  268. }
  269. void platform_set_blink_status(bool status)
  270. {
  271. g_led_blinking = status;
  272. }
  273. void platform_write_led_override(bool state)
  274. {
  275. if (g_scsi_settings.getSystem()->invertStatusLed)
  276. state = !state;
  277. if (state)
  278. gpio_bit_reset(LED_PORT, LED_PINS);
  279. else
  280. gpio_bit_set(LED_PORT, LED_PINS);
  281. }
  282. void platform_disable_led(void)
  283. {
  284. gpio_mode_set(LED_PORT, GPIO_MODE_INPUT, GPIO_PUPD_PULLUP, LED_PINS);
  285. logmsg("Disabling status LED");
  286. }
  287. uint8_t platform_no_sd_card_on_init_error_code()
  288. {
  289. return 0x80 | SD_CMD_RESP_TIMEOUT;
  290. }
  291. /*****************************************/
  292. /* Debug logging and watchdog */
  293. /*****************************************/
  294. // Send log data to USB UART if USB is connected.
  295. // Data is retrieved from the shared log ring buffer and
  296. // this function sends as much as fits in USB CDC buffer.
  297. // \todo add serial logging for the F4
  298. static void usb_log_poll()
  299. {
  300. static uint32_t logpos = 0;
  301. if (usb_serial_ready())
  302. {
  303. // Retrieve pointer to log start and determine number of bytes available.
  304. uint32_t available = 0;
  305. const char *data = log_get_buffer(&logpos, &available);
  306. // Limit to CDC packet size
  307. uint32_t len = available;
  308. if (len == 0) return;
  309. if (len > USB_CDC_DATA_PACKET_SIZE) len = USB_CDC_DATA_PACKET_SIZE;
  310. // Update log position by the actual number of bytes sent
  311. // If USB CDC buffer is full, this may be 0
  312. usb_serial_send((uint8_t*)data, len);
  313. logpos -= available - len;
  314. }
  315. }
  316. /*****************************************/
  317. /* Crash handlers */
  318. /*****************************************/
  319. extern SdFs SD;
  320. // Writes log data to the PB3 SWO pin
  321. void platform_log(const char *s)
  322. {
  323. while (*s)
  324. {
  325. // Write to SWO pin
  326. while (ITM->PORT[0].u32 == 0);
  327. ITM->PORT[0].u8 = *s++;
  328. }
  329. }
  330. void platform_emergency_log_save()
  331. {
  332. if (g_rawdrive_active)
  333. return;
  334. platform_set_sd_callback(NULL, NULL);
  335. SD.begin(SD_CONFIG_CRASH);
  336. FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  337. if (!crashfile.isOpen())
  338. {
  339. // Try to reinitialize
  340. int max_retry = 10;
  341. while (max_retry-- > 0 && !SD.begin(SD_CONFIG_CRASH));
  342. crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  343. }
  344. uint32_t startpos = 0;
  345. crashfile.write(log_get_buffer(&startpos));
  346. crashfile.write(log_get_buffer(&startpos));
  347. crashfile.flush();
  348. crashfile.close();
  349. }
  350. extern uint32_t _estack;
  351. __attribute__((noinline))
  352. void show_hardfault(uint32_t *sp)
  353. {
  354. uint32_t pc = sp[6];
  355. uint32_t lr = sp[5];
  356. uint32_t cfsr = SCB->CFSR;
  357. logmsg("--------------");
  358. logmsg("CRASH!");
  359. logmsg("Platform: ", g_platform_name);
  360. logmsg("FW Version: ", g_log_firmwareversion);
  361. logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  362. logmsg("scsiDev.phase: ", (int)scsiDev.phase);
  363. logmsg("CFSR: ", cfsr);
  364. logmsg("SP: ", (uint32_t)sp);
  365. logmsg("PC: ", pc);
  366. logmsg("LR: ", lr);
  367. logmsg("R0: ", sp[0]);
  368. logmsg("R1: ", sp[1]);
  369. logmsg("R2: ", sp[2]);
  370. logmsg("R3: ", sp[3]);
  371. uint32_t *p = (uint32_t*)((uint32_t)sp & ~3);
  372. for (int i = 0; i < 8; i++)
  373. {
  374. if (p == &_estack) break; // End of stack
  375. logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  376. p += 4;
  377. }
  378. platform_emergency_log_save();
  379. while (1)
  380. {
  381. // Flash the crash address on the LED
  382. // Short pulse means 0, long pulse means 1
  383. int base_delay = 1000;
  384. for (int i = 31; i >= 0; i--)
  385. {
  386. LED_OFF();
  387. for (int j = 0; j < base_delay; j++) delay_ns(100000);
  388. int delay = (pc & (1 << i)) ? (3 * base_delay) : base_delay;
  389. LED_ON();
  390. for (int j = 0; j < delay; j++) delay_ns(100000);
  391. LED_OFF();
  392. }
  393. for (int j = 0; j < base_delay * 10; j++) delay_ns(100000);
  394. }
  395. }
  396. __attribute__((naked, interrupt))
  397. void HardFault_Handler(void)
  398. {
  399. // Copies stack pointer into first argument
  400. asm("mrs r0, msp\n"
  401. "b show_hardfault": : : "r0");
  402. }
  403. __attribute__((naked, interrupt))
  404. void MemManage_Handler(void)
  405. {
  406. asm("mrs r0, msp\n"
  407. "b show_hardfault": : : "r0");
  408. }
  409. __attribute__((naked, interrupt))
  410. void BusFault_Handler(void)
  411. {
  412. asm("mrs r0, msp\n"
  413. "b show_hardfault": : : "r0");
  414. }
  415. __attribute__((naked, interrupt))
  416. void UsageFault_Handler(void)
  417. {
  418. asm("mrs r0, msp\n"
  419. "b show_hardfault": : : "r0");
  420. }
  421. void __assert_func(const char *file, int line, const char *func, const char *expr)
  422. {
  423. uint32_t dummy = 0;
  424. logmsg("--------------");
  425. logmsg("ASSERT FAILED!");
  426. logmsg("Platform: ", g_platform_name);
  427. logmsg("FW Version: ", g_log_firmwareversion);
  428. logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  429. logmsg("scsiDev.phase: ", (int)scsiDev.phase);
  430. logmsg("Assert failed: ", file , ":", line, " in ", func, ":", expr);
  431. uint32_t *p = (uint32_t*)((uint32_t)&dummy & ~3);
  432. for (int i = 0; i < 8; i++)
  433. {
  434. if (p == &_estack) break; // End of stack
  435. logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  436. p += 4;
  437. }
  438. platform_emergency_log_save();
  439. while(1)
  440. {
  441. LED_OFF();
  442. for (int j = 0; j < 1000; j++) delay_ns(100000);
  443. LED_ON();
  444. for (int j = 0; j < 1000; j++) delay_ns(100000);
  445. }
  446. }
  447. } /* extern "C" */
  448. static void watchdog_handler(uint32_t *sp)
  449. {
  450. logmsg("-------------- WATCHDOG TIMEOUT");
  451. show_hardfault(sp);
  452. }
  453. void platform_reset_watchdog()
  454. {
  455. // This uses a software watchdog based on systick timer interrupt.
  456. // It gives us opportunity to collect better debug info than the
  457. // full hardware reset that would be caused by hardware watchdog.
  458. g_watchdog_timeout = WATCHDOG_CRASH_TIMEOUT;
  459. }
  460. void platform_reset_mcu()
  461. {
  462. // reset in 2 sec ( 1 / (32KHz / 32) * 2000 == 2sec)
  463. fwdgt_config(2000, FWDGT_PSC_DIV32);
  464. fwdgt_enable();
  465. }
  466. // Poll function that is called every few milliseconds.
  467. // Can be left empty or used for platform-specific processing.
  468. void platform_poll()
  469. {
  470. // adc_poll();
  471. usb_log_poll();
  472. }
  473. uint8_t platform_get_buttons()
  474. {
  475. return 0;
  476. }
  477. /***********************/
  478. /* Flash reprogramming */
  479. /***********************/
  480. #define SECTOR_NUMBER_TO_ID_ERROR 0xFFFFFFFF
  481. static uint32_t sector_number_to_id(uint32_t sector_number)
  482. {
  483. if(11 >= sector_number){
  484. return CTL_SN(sector_number);
  485. }else if(23 >= sector_number){
  486. return CTL_SN(sector_number + 4);
  487. }else if(27 >= sector_number){
  488. return CTL_SN(sector_number - 12);
  489. }
  490. return SECTOR_NUMBER_TO_ID_ERROR;
  491. }
  492. static bool erase_flash_sector(uint32_t sector)
  493. {
  494. fmc_unlock();
  495. fmc_flag_clear(FMC_FLAG_END | FMC_FLAG_OPERR | FMC_FLAG_WPERR | FMC_FLAG_PGMERR | FMC_FLAG_PGSERR);
  496. uint32_t sector_id = sector_number_to_id(sector);
  497. if (sector_id == SECTOR_NUMBER_TO_ID_ERROR)
  498. {
  499. logmsg("Sector ", (int) sector, " does not exist");
  500. return false;
  501. }
  502. if (FMC_READY != fmc_sector_erase(sector_id))
  503. {
  504. logmsg("Failed flash failed to erase sector, ", (int) sector);
  505. LED_OFF();
  506. return false;
  507. }
  508. fmc_lock();
  509. return true;
  510. }
  511. static bool write_flash(uint32_t offset, uint32_t length, uint8_t buffer[PLATFORM_FLASH_WRITE_BUFFER_SIZE])
  512. {
  513. fmc_unlock();
  514. fmc_flag_clear(FMC_FLAG_END | FMC_FLAG_OPERR | FMC_FLAG_WPERR | FMC_FLAG_PGMERR | FMC_FLAG_PGSERR);
  515. fmc_state_enum status;
  516. uint32_t *buf32 = (uint32_t*)buffer;
  517. uint32_t memory_address = FLASH_BASE + offset;
  518. uint32_t num_words = length / 4;
  519. if (length % 4 == 0)
  520. {
  521. for (int i = 0; i < num_words; i++)
  522. {
  523. status = fmc_word_program(memory_address, buf32[i]);
  524. if (status != FMC_READY)
  525. {
  526. logmsg("Flash write failed at address: ", memory_address, " with code ", (int)status);
  527. return false;
  528. }
  529. memory_address += 4;
  530. }
  531. }
  532. else
  533. {
  534. logmsg("Firmware size expected to be word (4byte) aligned");
  535. }
  536. fmc_lock();
  537. memory_address = FLASH_BASE + offset;
  538. for (int i = 0; i < num_words; i++)
  539. {
  540. uint32_t expected = buf32[i];
  541. uint32_t actual = *(volatile uint32_t*)(memory_address);
  542. if (actual != expected)
  543. {
  544. logmsg("Flash word verify failed memory address ", memory_address, " got ", actual, " expected ", expected);
  545. return false;
  546. }
  547. memory_address += 4;
  548. }
  549. return true;
  550. }
  551. // the size of the main code without the bootloader
  552. static uint32_t firmware_size(FsFile &file)
  553. {
  554. uint32_t fwsize = file.size();
  555. if (fwsize <= PLATFORM_BOOTLOADER_SIZE )
  556. {
  557. logmsg("Firmware file size too small: ", fwsize, " bootloader fits in the first : ", PLATFORM_BOOTLOADER_SIZE, " bytes");
  558. return false;
  559. }
  560. return fwsize - PLATFORM_BOOTLOADER_SIZE;
  561. }
  562. bool platform_firmware_erase(FsFile &file)
  563. {
  564. uint32_t bootloader_sector_index = 0;
  565. uint32_t bootloader_sector_byte_count = 0;
  566. const uint32_t map_length = sizeof(platform_flash_sector_map)/sizeof(platform_flash_sector_map[0]);
  567. // Find at which sector the bootloader ends so it isn't overwritten
  568. for(;;)
  569. {
  570. if (bootloader_sector_index < map_length)
  571. {
  572. bootloader_sector_byte_count += platform_flash_sector_map[bootloader_sector_index];
  573. if (bootloader_sector_byte_count < PLATFORM_BOOTLOADER_SIZE)
  574. {
  575. bootloader_sector_index++;
  576. }
  577. else
  578. {
  579. break;
  580. }
  581. }
  582. else
  583. {
  584. logmsg("Bootloader does not fit in flash");
  585. return false;
  586. }
  587. }
  588. // find the last sector the mainline firmware ends
  589. uint32_t fwsize = firmware_size(file);
  590. uint32_t firmware_sector_start = bootloader_sector_index + 1;
  591. uint32_t last_sector_index = firmware_sector_start;
  592. uint32_t last_sector_byte_count = 0;
  593. for(;;)
  594. {
  595. if (last_sector_index < map_length)
  596. {
  597. last_sector_byte_count += platform_flash_sector_map[last_sector_index];
  598. if (fwsize > last_sector_byte_count)
  599. {
  600. last_sector_index++;
  601. }
  602. else
  603. {
  604. break;
  605. }
  606. }
  607. else
  608. {
  609. logmsg("Firmware too large: ", (int) fwsize,
  610. " space left after the bootloader ", last_sector_byte_count,
  611. " total flash size ", (int)PLATFORM_FLASH_TOTAL_SIZE);
  612. return false;
  613. }
  614. }
  615. // Erase the sectors the mainline firmware will be written to
  616. for (int i = firmware_sector_start; i <= last_sector_index; i++)
  617. {
  618. if (i % 2 == 0)
  619. {
  620. LED_ON();
  621. }
  622. else
  623. {
  624. LED_OFF();
  625. }
  626. if (!erase_flash_sector(i))
  627. {
  628. logmsg("Flash failed to erase sector ", i);
  629. return false;
  630. }
  631. }
  632. LED_OFF();
  633. return true;
  634. }
  635. bool platform_firmware_program(FsFile &file)
  636. {
  637. // write the mainline firmware to flash
  638. int32_t bytes_read = 0;
  639. uint32_t address_offset = PLATFORM_BOOTLOADER_SIZE;
  640. // Make sure the buffer is aligned to word boundary
  641. static uint32_t buffer32[PLATFORM_FLASH_WRITE_BUFFER_SIZE / 4];
  642. uint8_t *buffer = (uint8_t*)buffer32;
  643. if (!file.seek(PLATFORM_BOOTLOADER_SIZE))
  644. {
  645. logmsg("Seek failed");
  646. return false;
  647. }
  648. dbgmsg("Writing flash at firmware offset ", address_offset, " data ", bytearray(buffer, 4));
  649. for(;;)
  650. {
  651. if ((address_offset - PLATFORM_BOOTLOADER_SIZE) / PLATFORM_FLASH_WRITE_BUFFER_SIZE % 2)
  652. {
  653. LED_ON();
  654. }
  655. else
  656. {
  657. LED_OFF();
  658. }
  659. bytes_read = file.read(buffer, PLATFORM_FLASH_WRITE_BUFFER_SIZE);
  660. if ( bytes_read < 0)
  661. {
  662. logmsg("Firmware file read failed, error code ", (int) bytes_read);
  663. return false;
  664. }
  665. if (!write_flash(address_offset, bytes_read, buffer))
  666. {
  667. logmsg("Failed to write flash at offset: ", address_offset, " bytes read: ",(int) bytes_read);
  668. return false;
  669. }
  670. // check the mainline firmware is valid
  671. if (address_offset == PLATFORM_BOOTLOADER_SIZE)
  672. {
  673. if (buffer[3] != 0x20 || buffer[7] != 0x08)
  674. {
  675. logmsg("Invalid firmware file, starts with: ", bytearray(buffer, 16));
  676. return false;
  677. }
  678. }
  679. if (bytes_read < PLATFORM_FLASH_WRITE_BUFFER_SIZE)
  680. {
  681. break;
  682. }
  683. address_offset += bytes_read;
  684. }
  685. LED_OFF();
  686. return true;
  687. }
  688. void platform_boot_to_main_firmware()
  689. {
  690. uint32_t *mainprogram_start = (uint32_t*)(0x08000000 + PLATFORM_BOOTLOADER_SIZE);
  691. SCB->VTOR = (uint32_t)mainprogram_start;
  692. __asm__(
  693. "msr msp, %0\n\t"
  694. "bx %1" : : "r" (mainprogram_start[0]),
  695. "r" (mainprogram_start[1]) : "memory");
  696. }
  697. /**************************************/
  698. /* SCSI configuration based on DIPSW1 */
  699. /**************************************/
  700. void platform_config_hook(S2S_TargetCfg *config)
  701. {
  702. // Enable Apple quirks by dip switch
  703. if (g_enable_apple_quirks)
  704. {
  705. if (config->quirks == S2S_CFG_QUIRKS_NONE)
  706. {
  707. config->quirks = S2S_CFG_QUIRKS_APPLE;
  708. }
  709. }
  710. }
  711. /**********************************************/
  712. /* Mapping from data bytes to GPIO BOP values */
  713. /**********************************************/
  714. #define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1)
  715. #define X(n) (\
  716. ((n & 0x01) ? (SCSI_OUT_DB0 << 16) : SCSI_OUT_DB0) | \
  717. ((n & 0x02) ? (SCSI_OUT_DB1 << 16) : SCSI_OUT_DB1) | \
  718. ((n & 0x04) ? (SCSI_OUT_DB2 << 16) : SCSI_OUT_DB2) | \
  719. ((n & 0x08) ? (SCSI_OUT_DB3 << 16) : SCSI_OUT_DB3) | \
  720. ((n & 0x10) ? (SCSI_OUT_DB4 << 16) : SCSI_OUT_DB4) | \
  721. ((n & 0x20) ? (SCSI_OUT_DB5 << 16) : SCSI_OUT_DB5) | \
  722. ((n & 0x40) ? (SCSI_OUT_DB6 << 16) : SCSI_OUT_DB6) | \
  723. ((n & 0x80) ? (SCSI_OUT_DB7 << 16) : SCSI_OUT_DB7) | \
  724. (PARITY(n) ? (SCSI_OUT_DBP << 16) : SCSI_OUT_DBP) | \
  725. (SCSI_OUT_REQ) \
  726. )
  727. const uint32_t g_scsi_out_byte_to_bop[256] =
  728. {
  729. X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f),
  730. X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f),
  731. X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f),
  732. X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f),
  733. X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f),
  734. X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f),
  735. X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f),
  736. X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f),
  737. X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f),
  738. X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f),
  739. X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf),
  740. X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf),
  741. X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf),
  742. X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf),
  743. X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef),
  744. X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff)
  745. };
  746. #undef X