scsiPhy.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. /**
  2. * SCSI2SD V6 - Copyright (C) 2013 Michael McMaster <michael@codesrc.com>
  3. * ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™
  4. *
  5. * This file is licensed under the GPL version 3 or any later version.  
  6. * It is derived from scsiPhy.c in SCSI2SD V6.
  7. *
  8. * https://www.gnu.org/licenses/gpl-3.0.html
  9. * ----
  10. * This program is free software: you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation, either version 3 of the License, or
  13. * (at your option) any later version. 
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18. * GNU General Public License for more details. 
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  22. **/
  23. // Implements the low level interface to SCSI bus
  24. // Partially derived from scsiPhy.c from SCSI2SD-V6
  25. #include "scsiPhy.h"
  26. #include "ZuluSCSI_platform.h"
  27. #include "ZuluSCSI_log.h"
  28. #include "ZuluSCSI_log_trace.h"
  29. #include "ZuluSCSI_config.h"
  30. #include "scsi_accel_target.h"
  31. #include "hardware/structs/iobank0.h"
  32. #include <scsi2sd.h>
  33. extern "C" {
  34. #include <scsi.h>
  35. #include <scsi2sd_time.h>
  36. }
  37. /***********************/
  38. /* SCSI status signals */
  39. /***********************/
  40. extern "C" bool scsiStatusATN()
  41. {
  42. return SCSI_IN(ATN);
  43. }
  44. extern "C" bool scsiStatusBSY()
  45. {
  46. return SCSI_IN(BSY);
  47. }
  48. /************************/
  49. /* SCSI selection logic */
  50. /************************/
  51. volatile uint8_t g_scsi_sts_selection;
  52. volatile uint8_t g_scsi_ctrl_bsy;
  53. void scsi_bsy_deassert_interrupt()
  54. {
  55. if (SCSI_IN(SEL) && !SCSI_IN(BSY))
  56. {
  57. // Check if any of the targets we simulate is selected
  58. uint8_t sel_bits = SCSI_IN_DATA();
  59. int sel_id = -1;
  60. for (int i = 0; i < S2S_MAX_TARGETS; i++)
  61. {
  62. if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
  63. {
  64. if (sel_bits & (1 << scsiDev.targets[i].targetId))
  65. {
  66. sel_id = scsiDev.targets[i].targetId;
  67. break;
  68. }
  69. }
  70. }
  71. if (sel_id >= 0)
  72. {
  73. // Set ATN flag here unconditionally, real value is only known after
  74. // OUT_BSY is enabled in scsiStatusSEL() below.
  75. g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | SCSI_STS_SELECTION_ATN | sel_id;
  76. }
  77. // selFlag is required for Philips P2000C which releases it after 600ns
  78. // without waiting for BSY.
  79. // Also required for some early Mac Plus roms
  80. scsiDev.selFlag = *SCSI_STS_SELECTED;
  81. }
  82. }
  83. extern "C" bool scsiStatusSEL()
  84. {
  85. if (g_scsi_ctrl_bsy)
  86. {
  87. // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
  88. // Instead update the state here.
  89. // Releasing happens with bus release.
  90. g_scsi_ctrl_bsy = 0;
  91. #ifdef ZULUSCSI_BS2
  92. // From BS2 repository commit 8971584485c42, not sure of purpose.
  93. SCSI_OUT(CD, 0);
  94. SCSI_OUT(MSG, 0);
  95. SCSI_ENABLE_CONTROL_OUT();
  96. #endif
  97. SCSI_OUT(BSY, 1);
  98. // On RP2040 hardware the ATN signal is only available after OUT_BSY enables
  99. // the IO buffer U105, so check the signal status here.
  100. delay_100ns();
  101. if (!scsiStatusATN())
  102. {
  103. // This is a SCSI1 host that does send IDENTIFY message
  104. scsiDev.atnFlag = 0;
  105. scsiDev.target->unitAttention = 0;
  106. scsiDev.compatMode = COMPAT_SCSI1;
  107. }
  108. }
  109. return SCSI_IN(SEL);
  110. }
  111. /************************/
  112. /* SCSI bus reset logic */
  113. /************************/
  114. static void scsi_rst_assert_interrupt()
  115. {
  116. // Glitch filtering
  117. bool rst1 = SCSI_IN(RST);
  118. delay_ns(500);
  119. bool rst2 = SCSI_IN(RST);
  120. if (rst1 && rst2)
  121. {
  122. dbgmsg("BUS RESET");
  123. scsiDev.resetFlag = 1;
  124. }
  125. }
  126. static void scsiPhyIRQ(uint gpio, uint32_t events)
  127. {
  128. if (gpio == SCSI_IN_BSY || gpio == SCSI_IN_SEL)
  129. {
  130. // Note BSY / SEL interrupts only when we are not driving OUT_BSY low ourselves.
  131. // The BSY input pin may be shared with other signals.
  132. #if SCSI_OUT_BSY > 31
  133. if (sio_hw->gpio_hi_out & (1 << (SCSI_OUT_BSY - 32)))
  134. #else
  135. if (sio_hw->gpio_out & (1 << SCSI_OUT_BSY))
  136. #endif
  137. {
  138. scsi_bsy_deassert_interrupt();
  139. }
  140. }
  141. else if (gpio == SCSI_IN_RST)
  142. {
  143. scsi_rst_assert_interrupt();
  144. }
  145. }
  146. // This function is called to initialize the phy code.
  147. // It is called after power-on and after SCSI bus reset.
  148. extern "C" void scsiPhyReset(void)
  149. {
  150. SCSI_RELEASE_OUTPUTS();
  151. g_scsi_sts_selection = 0;
  152. g_scsi_ctrl_bsy = 0;
  153. scsi_accel_rp2040_init();
  154. // Enable BSY, RST and SEL interrupts
  155. // Note: RP2040 library currently supports only one callback,
  156. // so it has to be same for both pins.
  157. gpio_set_irq_enabled_with_callback(SCSI_IN_BSY, GPIO_IRQ_EDGE_RISE, true, scsiPhyIRQ);
  158. gpio_set_irq_enabled(SCSI_IN_RST, GPIO_IRQ_EDGE_FALL, true);
  159. // Check BSY line status when SEL goes active.
  160. // This is needed to handle SCSI-1 hosts that use the single initiator mode.
  161. // The host will just assert the SEL directly, without asserting BSY first.
  162. gpio_set_irq_enabled(SCSI_IN_SEL, GPIO_IRQ_EDGE_FALL, true);
  163. }
  164. /************************/
  165. /* SCSI bus phase logic */
  166. /************************/
  167. static SCSI_PHASE g_scsi_phase;
  168. extern "C" void scsiEnterPhase(int phase)
  169. {
  170. int delay = scsiEnterPhaseImmediate(phase);
  171. if (delay > 0)
  172. {
  173. s2s_delay_ns(delay);
  174. }
  175. }
  176. // Change state and return nanosecond delay to wait
  177. extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
  178. {
  179. if (phase != g_scsi_phase)
  180. {
  181. // ANSI INCITS 362-2002 SPI-3 10.7.1:
  182. // Phase changes are not allowed while REQ or ACK is asserted.
  183. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
  184. if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT))
  185. {
  186. // Akai S1000/S3000 seems to need extra delay before changing to data phase
  187. // after a command. The code in ZuluSCSI_disk.cpp tries to do this while waiting
  188. // for SD card, to avoid any extra latency.
  189. s2s_delay_ns(400000);
  190. }
  191. int oldphase = g_scsi_phase;
  192. g_scsi_phase = (SCSI_PHASE)phase;
  193. scsiLogPhaseChange(phase);
  194. // Select between synchronous vs. asynchronous SCSI writes
  195. bool syncstatus = false;
  196. if (scsiDev.target->syncOffset > 0 && (g_scsi_phase == DATA_IN || g_scsi_phase == DATA_OUT))
  197. {
  198. syncstatus = scsi_accel_rp2040_setSyncMode(scsiDev.target->syncOffset, scsiDev.target->syncPeriod);
  199. }
  200. else
  201. {
  202. syncstatus = scsi_accel_rp2040_setSyncMode(0, 0);
  203. }
  204. if (!syncstatus)
  205. {
  206. // SCSI DMA was not idle, we are in some kind of error state, force bus reset
  207. scsiDev.resetFlag = 1;
  208. return 0;
  209. }
  210. if (phase < 0)
  211. {
  212. // Other communication on bus or reset state
  213. SCSI_RELEASE_OUTPUTS();
  214. return 0;
  215. }
  216. else
  217. {
  218. // The phase control signals should be changed close to simultaneously.
  219. // The SCSI spec allows 400 ns for this, but some hosts do not seem to be that
  220. // tolerant. The Cortex-M0 is also quite slow in bit twiddling.
  221. //
  222. // To avoid unnecessary delays, precalculate an XOR mask and then apply it
  223. // simultaneously to all three signals.
  224. uint32_t gpio_new = 0;
  225. if (!(phase & __scsiphase_msg)) { gpio_new |= (1 << SCSI_OUT_MSG); }
  226. if (!(phase & __scsiphase_cd)) { gpio_new |= (1 << SCSI_OUT_CD); }
  227. if (!(phase & __scsiphase_io)) { gpio_new |= (1 << SCSI_OUT_IO); }
  228. uint32_t mask = (1 << SCSI_OUT_MSG) | (1 << SCSI_OUT_CD) | (1 << SCSI_OUT_IO);
  229. uint32_t gpio_xor = (sio_hw->gpio_out ^ gpio_new) & mask;
  230. sio_hw->gpio_togl = gpio_xor;
  231. SCSI_ENABLE_CONTROL_OUT();
  232. int delayNs = 400; // Bus settle delay
  233. if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
  234. {
  235. delayNs += 400; // Data release delay
  236. }
  237. if (scsiDev.compatMode < COMPAT_SCSI2)
  238. {
  239. // EMU EMAX needs 100uS ! 10uS is not enough.
  240. delayNs += 100000;
  241. }
  242. return delayNs;
  243. }
  244. }
  245. else
  246. {
  247. return 0;
  248. }
  249. }
  250. // Release all signals
  251. void scsiEnterBusFree(void)
  252. {
  253. g_scsi_phase = BUS_FREE;
  254. g_scsi_sts_selection = 0;
  255. g_scsi_ctrl_bsy = 0;
  256. scsiDev.cdbLen = 0;
  257. SCSI_RELEASE_OUTPUTS();
  258. }
  259. /********************/
  260. /* Transmit to host */
  261. /********************/
  262. #define SCSI_WAIT_ACTIVE(pin) \
  263. if (!SCSI_IN(pin)) { \
  264. if (!SCSI_IN(pin)) { \
  265. while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
  266. } \
  267. }
  268. // In synchronous mode the ACK pulse can be very short, so use edge IRQ to detect it.
  269. #define CHECK_EDGE(pin) \
  270. ((iobank0_hw->intr[pin / 8] >> (4 * (pin % 8))) & GPIO_IRQ_EDGE_FALL)
  271. #define SCSI_WAIT_ACTIVE_EDGE(pin) \
  272. if (!CHECK_EDGE(SCSI_IN_ ## pin)) { \
  273. while(!SCSI_IN(pin) && !CHECK_EDGE(SCSI_IN_ ## pin) && !scsiDev.resetFlag); \
  274. }
  275. #define SCSI_WAIT_INACTIVE(pin) \
  276. if (SCSI_IN(pin)) { \
  277. if (SCSI_IN(pin)) { \
  278. while(SCSI_IN(pin) && !scsiDev.resetFlag); \
  279. } \
  280. }
  281. // Write one byte to SCSI host using the handshake mechanism
  282. // This is suitable for both asynchronous and synchronous communication.
  283. static inline void scsiWriteOneByte(uint8_t value)
  284. {
  285. SCSI_OUT_DATA(value);
  286. delay_100ns(); // DB setup time before REQ
  287. gpio_acknowledge_irq(SCSI_IN_ACK, GPIO_IRQ_EDGE_FALL);
  288. SCSI_OUT(REQ, 1);
  289. SCSI_WAIT_ACTIVE_EDGE(ACK);
  290. SCSI_RELEASE_DATA_REQ();
  291. SCSI_WAIT_INACTIVE(ACK);
  292. }
  293. extern "C" void scsiWriteByte(uint8_t value)
  294. {
  295. scsiLogDataIn(&value, 1);
  296. scsiWriteOneByte(value);
  297. }
  298. extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
  299. {
  300. scsiStartWrite(data, count);
  301. scsiFinishWrite();
  302. }
  303. extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
  304. {
  305. scsiLogDataIn(data, count);
  306. scsi_accel_rp2040_startWrite(data, count, &scsiDev.resetFlag);
  307. }
  308. extern "C" bool scsiIsWriteFinished(const uint8_t *data)
  309. {
  310. return scsi_accel_rp2040_isWriteFinished(data);
  311. }
  312. extern "C" void scsiFinishWrite()
  313. {
  314. scsi_accel_rp2040_finishWrite(&scsiDev.resetFlag);
  315. }
  316. /*********************/
  317. /* Receive from host */
  318. /*********************/
  319. // Read one byte from SCSI host using the handshake mechanism.
  320. static inline uint8_t scsiReadOneByte(int* parityError)
  321. {
  322. SCSI_OUT(REQ, 1);
  323. SCSI_WAIT_ACTIVE(ACK);
  324. delay_100ns();
  325. uint16_t r = SCSI_IN_DATA();
  326. SCSI_OUT(REQ, 0);
  327. SCSI_WAIT_INACTIVE(ACK);
  328. if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ (SCSI_IO_DATA_MASK >> SCSI_IO_SHIFT)))
  329. {
  330. logmsg("Parity error in scsiReadOneByte(): ", (uint32_t)r);
  331. *parityError = 1;
  332. }
  333. return (uint8_t)r;
  334. }
  335. extern "C" uint8_t scsiReadByte(void)
  336. {
  337. uint8_t r = scsiReadOneByte(NULL);
  338. scsiLogDataOut(&r, 1);
  339. return r;
  340. }
  341. extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
  342. {
  343. *parityError = 0;
  344. if (!(scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY)) { parityError = NULL; }
  345. scsiStartRead(data, count, parityError);
  346. scsiFinishRead(data, count, parityError);
  347. }
  348. extern "C" void scsiStartRead(uint8_t* data, uint32_t count, int *parityError)
  349. {
  350. if (!(scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY)) { parityError = NULL; }
  351. scsi_accel_rp2040_startRead(data, count, parityError, &scsiDev.resetFlag);
  352. }
  353. extern "C" void scsiFinishRead(uint8_t* data, uint32_t count, int *parityError)
  354. {
  355. if (!(scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY)) { parityError = NULL; }
  356. scsi_accel_rp2040_finishRead(data, count, parityError, &scsiDev.resetFlag);
  357. scsiLogDataOut(data, count);
  358. }
  359. extern "C" bool scsiIsReadFinished(const uint8_t *data)
  360. {
  361. return scsi_accel_rp2040_isReadFinished(data);
  362. }