scsi_accel_target.cpp 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™
  3. *
  4. * This work incorporates work from the following
  5. * Copyright (c) 2023 joshua stein <jcs@jcs.org>
  6. *
  7. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version.
  8. *
  9. * https://www.gnu.org/licenses/gpl-3.0.html
  10. * ----
  11. * This program is free software: you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation, either version 3 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  23. **/
  24. /* Data flow in SCSI acceleration:
  25. *
  26. * 1. Application provides a buffer of bytes to send.
  27. * 2. Code in this module adds parity bit to the bytes and packs two bytes into 32 bit words.
  28. * 3. DMA controller copies the words to PIO peripheral FIFO.
  29. * 4. PIO peripheral handles low-level SCSI handshake and writes bytes and parity to GPIO.
  30. */
  31. #include "ZuluSCSI_platform.h"
  32. #include "ZuluSCSI_log.h"
  33. #include "scsi_accel_target.h"
  34. #include "timings_RP2MCU.h"
  35. #include <hardware/pio.h>
  36. #include <hardware/dma.h>
  37. #include <hardware/irq.h>
  38. #include <hardware/structs/iobank0.h>
  39. #include <hardware/sync.h>
  40. #include <pico/multicore.h>
  41. #ifdef ENABLE_AUDIO_OUTPUT_SPDIF
  42. #include "audio_spdif.h"
  43. #endif // ENABLE_AUDIO_OUTPUT_SPDIF
  44. #include "scsi_accel_target_RP2MCU.pio.h"
  45. // SCSI bus write acceleration uses up to 3 PIO state machines:
  46. // SM0: Convert data bytes to lookup addresses to add parity
  47. // SM1: Write data to SCSI bus
  48. // SM2: For synchronous mode only, count ACK pulses
  49. #ifdef ZULUSCSI_NETWORK
  50. # define SCSI_DMA_PIO pio0
  51. # define SCSI_PARITY_SM 1
  52. # define SCSI_DATA_SM 2
  53. # define SCSI_SYNC_SM 3
  54. #else
  55. # define SCSI_DMA_PIO pio0
  56. # define SCSI_PARITY_SM 0
  57. # define SCSI_DATA_SM 1
  58. # define SCSI_SYNC_SM 2
  59. #endif // ZULUSCSI_NETWORK
  60. // SCSI bus write acceleration uses 3 or 4 DMA channels (data flow A->B->C->D):
  61. // A: Bytes from RAM to scsi_parity PIO
  62. // B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
  63. // C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
  64. // D: For sync transfers, scsi_sync_write to scsi_sync_write_pacer PIO
  65. //
  66. // SCSI bus read acceleration uses 4 DMA channels (data flow D->C->B->A):
  67. // A: Bytes from scsi_read_parity PIO to memory buffer
  68. // B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
  69. // C: Addresses from scsi_accel_read PIO to lookup DMA READ_ADDR register
  70. // D: From pacer to data state machine to trigger transfers
  71. #ifdef ZULUSCSI_NETWORK
  72. # define SCSI_DMA_CH_A 6
  73. # define SCSI_DMA_CH_B 7
  74. # define SCSI_DMA_CH_C 8
  75. # define SCSI_DMA_CH_D 9
  76. #else
  77. # define SCSI_DMA_CH_A 0
  78. # define SCSI_DMA_CH_B 1
  79. # define SCSI_DMA_CH_C 2
  80. # define SCSI_DMA_CH_D 3
  81. #endif
  82. static struct {
  83. uint8_t *app_buf; // Buffer provided by application
  84. uint32_t app_bytes; // Bytes available in application buffer
  85. uint32_t dma_bytes; // Bytes that have been scheduled for DMA so far
  86. uint8_t *next_app_buf; // Next buffer from application after current one finishes
  87. uint32_t next_app_bytes; // Bytes in next buffer
  88. // Synchronous mode?
  89. int syncOffset;
  90. int syncPeriod;
  91. int syncOffsetDivider; // Autopush/autopull threshold for the write pacer state machine
  92. int syncOffsetPreload; // Number of items to preload in the RX fifo of scsi_sync_write
  93. // PIO configurations
  94. uint32_t pio_offset_parity;
  95. uint32_t pio_offset_async_write;
  96. uint32_t pio_offset_sync_write_pacer;
  97. uint32_t pio_offset_sync_write;
  98. uint32_t pio_offset_read;
  99. uint32_t pio_offset_read_parity;
  100. uint32_t pio_offset_sync_read_pacer;
  101. pio_sm_config pio_cfg_parity;
  102. pio_sm_config pio_cfg_async_write;
  103. pio_sm_config pio_cfg_sync_write_pacer;
  104. pio_sm_config pio_cfg_sync_write;
  105. pio_sm_config pio_cfg_read;
  106. pio_sm_config pio_cfg_read_parity;
  107. pio_sm_config pio_cfg_sync_read_pacer;
  108. bool pio_removed_parity;
  109. bool pio_removed_async_write;
  110. bool pio_removed_sync_write_pacer;
  111. bool pio_removed_sync_write;
  112. bool pio_removed_read;
  113. bool pio_removed_read_parity;
  114. bool pio_removed_sync_read_pacer;
  115. // DMA configurations for write
  116. dma_channel_config dmacfg_write_chA; // Data from RAM to scsi_parity PIO
  117. dma_channel_config dmacfg_write_chB; // Addresses from scsi_parity PIO to lookup DMA
  118. dma_channel_config dmacfg_write_chC; // Data from g_scsi_parity_lookup to scsi write PIO
  119. dma_channel_config dmacfg_write_chD; // In synchronous mode only, transfer between state machines
  120. // DMA configurations for read
  121. dma_channel_config dmacfg_read_chA; // Data to destination memory buffer
  122. dma_channel_config dmacfg_read_chB; // From lookup table to scsi_read_parity PIO
  123. dma_channel_config dmacfg_read_chC; // From scsi_accel_read to channel B READ_ADDR
  124. dma_channel_config dmacfg_read_chD; // From pacer to data state machine
  125. } g_scsi_dma;
  126. enum scsidma_state_t { SCSIDMA_IDLE = 0,
  127. SCSIDMA_WRITE, SCSIDMA_WRITE_DONE,
  128. SCSIDMA_READ, SCSIDMA_READ_DONE };
  129. static const char* scsidma_states[5] = {"IDLE", "WRITE", "WRITE_DONE", "READ", "READ_DONE"};
  130. static volatile scsidma_state_t g_scsi_dma_state;
  131. static bool g_channels_claimed = false;
  132. static void scsidma_config_gpio();
  133. void scsi_accel_log_state()
  134. {
  135. logmsg("SCSI DMA state: ", scsidma_states[g_scsi_dma_state]);
  136. logmsg("Current buffer: ", g_scsi_dma.dma_bytes, "/", g_scsi_dma.app_bytes, ", next ", g_scsi_dma.next_app_bytes, " bytes");
  137. logmsg("SyncOffset: ", g_scsi_dma.syncOffset, " SyncPeriod ", g_scsi_dma.syncPeriod);
  138. logmsg("PIO Parity SM:",
  139. " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_PARITY_SM),
  140. ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_PARITY_SM),
  141. ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_PARITY_SM),
  142. ", instr ", SCSI_DMA_PIO->sm[SCSI_PARITY_SM].instr);
  143. logmsg("PIO Data SM:",
  144. " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM),
  145. ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM),
  146. ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM),
  147. ", instr ", SCSI_DMA_PIO->sm[SCSI_DATA_SM].instr);
  148. logmsg("PIO Sync SM:",
  149. " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM),
  150. ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM),
  151. ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM),
  152. ", instr ", SCSI_DMA_PIO->sm[SCSI_SYNC_SM].instr);
  153. logmsg("DMA CH A:",
  154. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_A].ctrl_trig,
  155. " count: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count);
  156. logmsg("DMA CH B:",
  157. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_B].ctrl_trig,
  158. " count: ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count);
  159. logmsg("DMA CH C:",
  160. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_C].ctrl_trig,
  161. " count: ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count);
  162. logmsg("DMA CH D:",
  163. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_D].ctrl_trig,
  164. " count: ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count);
  165. logmsg("GPIO states: ", sio_hw->gpio_in);
  166. }
  167. /****************************************/
  168. /* Accelerated writes to SCSI bus */
  169. /****************************************/
  170. // Load the SCSI parity state machine with the address of the parity lookup table.
  171. // Also sets up DMA channels B and C
  172. static void config_parity_sm_for_write()
  173. {
  174. // Load base address to state machine register X
  175. uint32_t addrbase = (uint32_t)&g_scsi_parity_lookup[0];
  176. assert((addrbase & 0x1FF) == 0);
  177. pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_parity, &g_scsi_dma.pio_cfg_parity);
  178. pio_sm_put(SCSI_DMA_PIO, SCSI_PARITY_SM, addrbase >> 9);
  179. pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_pull(false, false));
  180. pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_mov(pio_x, pio_osr));
  181. // DMA channel B will copy addresses from parity PIO to DMA channel C read address register.
  182. // It is triggered by the parity SM RX FIFO request
  183. dma_channel_configure(SCSI_DMA_CH_B,
  184. &g_scsi_dma.dmacfg_write_chB,
  185. &dma_hw->ch[SCSI_DMA_CH_C].al3_read_addr_trig,
  186. &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
  187. 1, true);
  188. // DMA channel C will read g_scsi_parity_lookup to copy data + parity to SCSI write state machine.
  189. // It is triggered by SCSI write machine TX FIFO request and chains to re-enable channel B.
  190. dma_channel_configure(SCSI_DMA_CH_C,
  191. &g_scsi_dma.dmacfg_write_chC,
  192. &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
  193. NULL,
  194. 1, false);
  195. }
  196. static void start_dma_write()
  197. {
  198. if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
  199. {
  200. // Buffer has been fully processed, swap it
  201. g_scsi_dma.dma_bytes = 0;
  202. g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
  203. g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
  204. g_scsi_dma.next_app_buf = 0;
  205. g_scsi_dma.next_app_bytes = 0;
  206. }
  207. // Check if we are all done.
  208. // From SCSIDMA_WRITE_DONE state we can either go to IDLE in stopWrite()
  209. // or back to WRITE in startWrite().
  210. uint32_t bytes_to_send = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
  211. if (bytes_to_send == 0)
  212. {
  213. g_scsi_dma_state = SCSIDMA_WRITE_DONE;
  214. return;
  215. }
  216. uint8_t *src_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
  217. g_scsi_dma.dma_bytes += bytes_to_send;
  218. // Start DMA from current buffer to parity generator
  219. dma_channel_configure(SCSI_DMA_CH_A,
  220. &g_scsi_dma.dmacfg_write_chA,
  221. &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
  222. src_buf,
  223. bytes_to_send,
  224. true
  225. );
  226. }
  227. void scsi_accel_rp2040_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag)
  228. {
  229. // Any read requests should be matched with a stopRead()
  230. assert(g_scsi_dma_state != SCSIDMA_READ && g_scsi_dma_state != SCSIDMA_READ_DONE);
  231. uint32_t saved_irq = save_and_disable_interrupts();
  232. if (g_scsi_dma_state == SCSIDMA_WRITE)
  233. {
  234. if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
  235. {
  236. // Combine with currently running request
  237. g_scsi_dma.app_bytes += count;
  238. count = 0;
  239. }
  240. else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  241. {
  242. // Combine with queued request
  243. g_scsi_dma.next_app_bytes += count;
  244. count = 0;
  245. }
  246. else if (!g_scsi_dma.next_app_buf)
  247. {
  248. // Add as queued request
  249. g_scsi_dma.next_app_buf = (uint8_t*)data;
  250. g_scsi_dma.next_app_bytes = count;
  251. count = 0;
  252. }
  253. }
  254. restore_interrupts(saved_irq);
  255. // Check if the request was combined
  256. if (count == 0) return;
  257. if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_WRITE_DONE)
  258. {
  259. // Wait for previous request to finish
  260. scsi_accel_rp2040_finishWrite(resetFlag);
  261. if (*resetFlag)
  262. {
  263. return;
  264. }
  265. }
  266. bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
  267. g_scsi_dma_state = SCSIDMA_WRITE;
  268. g_scsi_dma.app_buf = (uint8_t*)data;
  269. g_scsi_dma.app_bytes = count;
  270. g_scsi_dma.dma_bytes = 0;
  271. g_scsi_dma.next_app_buf = 0;
  272. g_scsi_dma.next_app_bytes = 0;
  273. if (must_reconfig_gpio)
  274. {
  275. SCSI_ENABLE_DATA_OUT();
  276. if (g_scsi_dma.syncOffset == 0)
  277. {
  278. // Asynchronous write
  279. config_parity_sm_for_write();
  280. pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_async_write, &g_scsi_dma.pio_cfg_async_write);
  281. scsidma_config_gpio();
  282. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
  283. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
  284. }
  285. else
  286. {
  287. // Synchronous write
  288. // Data state machine writes data to SCSI bus and dummy bits to its RX fifo.
  289. // Sync state machine empties the dummy bits every time ACK is received, to control the transmit pace.
  290. config_parity_sm_for_write();
  291. pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_sync_write, &g_scsi_dma.pio_cfg_sync_write);
  292. pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_write_pacer, &g_scsi_dma.pio_cfg_sync_write_pacer);
  293. scsidma_config_gpio();
  294. // Prefill RX fifo to set the syncOffset
  295. for (int i = 0; i < g_scsi_dma.syncOffsetPreload; i++)
  296. {
  297. pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM,
  298. pio_encode_push(false, false) | pio_encode_sideset(1, 1));
  299. }
  300. // Fill the pacer TX fifo
  301. // DMA should start transferring only after ACK pulses are received
  302. for (int i = 0; i < 4; i++)
  303. {
  304. pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, 0);
  305. }
  306. // Fill the pacer OSR
  307. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM,
  308. pio_encode_mov(pio_osr, pio_null));
  309. // Start DMA transfer to move dummy bits to write pacer
  310. dma_channel_configure(SCSI_DMA_CH_D,
  311. &g_scsi_dma.dmacfg_write_chD,
  312. &SCSI_DMA_PIO->txf[SCSI_SYNC_SM],
  313. &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
  314. 0xFFFFFFFF,
  315. true
  316. );
  317. // Enable state machines
  318. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
  319. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
  320. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
  321. }
  322. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
  323. }
  324. start_dma_write();
  325. }
  326. bool scsi_accel_rp2040_isWriteFinished(const uint8_t* data)
  327. {
  328. // Check if everything has completed
  329. if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_WRITE_DONE)
  330. {
  331. return true;
  332. }
  333. if (!data)
  334. return false;
  335. // Check if this data item is still in queue.
  336. bool finished = true;
  337. uint32_t saved_irq = save_and_disable_interrupts();
  338. if (data >= g_scsi_dma.app_buf &&
  339. data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
  340. (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].al1_read_addr)
  341. {
  342. finished = false; // In current transfer
  343. }
  344. else if (data >= g_scsi_dma.next_app_buf &&
  345. data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  346. {
  347. finished = false; // In queued transfer
  348. }
  349. restore_interrupts(saved_irq);
  350. return finished;
  351. }
  352. // Once DMA has finished, check if all PIO queues have been drained
  353. static bool scsi_accel_rp2040_isWriteDone()
  354. {
  355. // Check if data is still waiting in PIO FIFO
  356. if (!pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
  357. !pio_sm_is_rx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
  358. !pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_DATA_SM))
  359. {
  360. return false;
  361. }
  362. if (g_scsi_dma.syncOffset > 0)
  363. {
  364. // Check if all bytes of synchronous write have been acknowledged
  365. if (pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM) > g_scsi_dma.syncOffsetPreload)
  366. return false;
  367. }
  368. else
  369. {
  370. // Check if state machine has written out its OSR
  371. if (pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM) != g_scsi_dma.pio_offset_async_write)
  372. return false;
  373. }
  374. // Check if ACK of the final byte has finished
  375. if (SCSI_IN(ACK))
  376. return false;
  377. return true;
  378. }
  379. static void scsi_accel_rp2040_stopWrite(volatile int *resetFlag)
  380. {
  381. // Wait for TX fifo to be empty and ACK to go high
  382. // For synchronous writes wait for all ACKs to be received also
  383. uint32_t start = millis();
  384. while (!scsi_accel_rp2040_isWriteDone() && !*resetFlag)
  385. {
  386. if ((uint32_t)(millis() - start) > 5000)
  387. {
  388. logmsg("scsi_accel_rp2040_stopWrite() timeout");
  389. scsi_accel_log_state();
  390. *resetFlag = 1;
  391. break;
  392. }
  393. }
  394. dma_channel_abort(SCSI_DMA_CH_A);
  395. dma_channel_abort(SCSI_DMA_CH_B);
  396. dma_channel_abort(SCSI_DMA_CH_C);
  397. dma_channel_abort(SCSI_DMA_CH_D);
  398. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
  399. g_scsi_dma_state = SCSIDMA_IDLE;
  400. SCSI_RELEASE_DATA_REQ();
  401. scsidma_config_gpio();
  402. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
  403. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
  404. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
  405. }
  406. void scsi_accel_rp2040_finishWrite(volatile int *resetFlag)
  407. {
  408. uint32_t start = millis();
  409. while (g_scsi_dma_state != SCSIDMA_IDLE && !*resetFlag)
  410. {
  411. if ((uint32_t)(millis() - start) > 5000)
  412. {
  413. logmsg("scsi_accel_rp2040_finishWrite() timeout");
  414. scsi_accel_log_state();
  415. *resetFlag = 1;
  416. break;
  417. }
  418. if (g_scsi_dma_state == SCSIDMA_WRITE_DONE || *resetFlag)
  419. {
  420. // DMA done, wait for PIO to finish also and reconfig GPIO.
  421. scsi_accel_rp2040_stopWrite(resetFlag);
  422. }
  423. }
  424. }
  425. /****************************************/
  426. /* Accelerated reads from SCSI bus */
  427. /****************************************/
  428. // Load the SCSI read state machine with the address of the parity lookup table.
  429. // Also sets up DMA channels B, C and D
  430. static void config_parity_sm_for_read()
  431. {
  432. // Configure parity check state machine
  433. pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_read_parity, &g_scsi_dma.pio_cfg_read_parity);
  434. // Load base address to state machine register X
  435. uint32_t addrbase = (uint32_t)&g_scsi_parity_check_lookup[0];
  436. assert((addrbase & 0x3FF) == 0);
  437. pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_read, &g_scsi_dma.pio_cfg_read);
  438. pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, addrbase >> 10);
  439. pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
  440. pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_mov(pio_y, pio_osr) | pio_encode_sideset(1, 1));
  441. // For synchronous mode, the REQ pin is driven by SCSI_SYNC_SM, so disable it in SCSI_DATA_SM
  442. if (g_scsi_dma.syncOffset > 0)
  443. {
  444. pio_sm_set_sideset_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
  445. }
  446. // DMA channel B will read g_scsi_parity_check_lookup and write to scsi_read_parity PIO.
  447. dma_channel_configure(SCSI_DMA_CH_B,
  448. &g_scsi_dma.dmacfg_read_chB,
  449. &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
  450. NULL,
  451. 1, false);
  452. // DMA channel C will copy addresses from data PIO to DMA channel B read address register.
  453. // It is triggered by the data SM RX FIFO request.
  454. // This triggers channel B by writing to READ_ADDR_TRIG
  455. // Channel B chaining re-enables this channel.
  456. dma_channel_configure(SCSI_DMA_CH_C,
  457. &g_scsi_dma.dmacfg_read_chC,
  458. &dma_hw->ch[SCSI_DMA_CH_B].al3_read_addr_trig,
  459. &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
  460. 1, true);
  461. if (g_scsi_dma.syncOffset == 0)
  462. {
  463. // DMA channel D will copy dummy words to scsi_accel_read PIO to set the number
  464. // of bytes to transfer.
  465. static const uint32_t dummy = 0;
  466. dma_channel_configure(SCSI_DMA_CH_D,
  467. &g_scsi_dma.dmacfg_read_chD,
  468. &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
  469. &dummy,
  470. 0, false);
  471. }
  472. else
  473. {
  474. pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_read_pacer, &g_scsi_dma.pio_cfg_sync_read_pacer);
  475. // DMA channel D will copy words from scsi_sync_read_pacer to scsi_accel_read PIO
  476. // to control the offset between REQ pulses sent and ACK pulses received.
  477. dma_channel_configure(SCSI_DMA_CH_D,
  478. &g_scsi_dma.dmacfg_read_chD,
  479. &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
  480. &SCSI_DMA_PIO->rxf[SCSI_SYNC_SM],
  481. 0, false);
  482. }
  483. // Clear PIO IRQ flag that is used to detect parity error
  484. SCSI_DMA_PIO->irq = 1;
  485. }
  486. static void start_dma_read()
  487. {
  488. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
  489. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
  490. pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_PARITY_SM);
  491. pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_DATA_SM);
  492. if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
  493. {
  494. // Buffer has been fully processed, swap it
  495. g_scsi_dma.dma_bytes = 0;
  496. g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
  497. g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
  498. g_scsi_dma.next_app_buf = 0;
  499. g_scsi_dma.next_app_bytes = 0;
  500. }
  501. // Check if we are all done.
  502. // From SCSIDMA_READ_DONE state we can either go to IDLE in stopRead()
  503. // or back to READ in startWrite().
  504. uint32_t bytes_to_read = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
  505. if (bytes_to_read == 0)
  506. {
  507. g_scsi_dma_state = SCSIDMA_READ_DONE;
  508. return;
  509. }
  510. if (g_scsi_dma.syncOffset == 0)
  511. {
  512. // Start sending dummy words to scsi_accel_read state machine
  513. dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
  514. }
  515. else
  516. {
  517. // Set number of bytes to receive to the scsi_sync_read_pacer state machine register X
  518. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
  519. hw_clear_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
  520. pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, bytes_to_read - 1);
  521. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
  522. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_mov(pio_x, pio_osr) | pio_encode_sideset(1, 1));
  523. hw_set_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
  524. // Prefill FIFOs to get correct syncOffset
  525. int prefill = 12 - g_scsi_dma.syncOffset;
  526. // Always at least 1 word to avoid race condition between REQ and ACK pulses
  527. if (prefill < 1) prefill = 1;
  528. // Up to 4 words in SCSI_DATA_SM TX fifo
  529. for (int i = 0; i < 4 && prefill > 0; i++)
  530. {
  531. pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
  532. prefill--;
  533. }
  534. // Up to 8 words in SCSI_SYNC_SM RX fifo
  535. for (int i = 0; i < 8 && prefill > 0; i++)
  536. {
  537. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_push(false, false) | pio_encode_sideset(1, 1));
  538. prefill--;
  539. }
  540. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_jmp(g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_sideset(1, 1));
  541. // Start transfers
  542. dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
  543. }
  544. // Start DMA to fill the destination buffer
  545. uint8_t *dest_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
  546. g_scsi_dma.dma_bytes += bytes_to_read;
  547. dma_channel_configure(SCSI_DMA_CH_A,
  548. &g_scsi_dma.dmacfg_read_chA,
  549. dest_buf,
  550. &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
  551. bytes_to_read,
  552. true
  553. );
  554. // Ready to start the data and parity check state machines
  555. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
  556. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
  557. if (g_scsi_dma.syncOffset > 0)
  558. {
  559. // Start sending REQ pulses
  560. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
  561. }
  562. }
  563. void scsi_accel_rp2040_startRead(uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
  564. {
  565. // Any write requests should be matched with a stopWrite()
  566. assert(g_scsi_dma_state != SCSIDMA_WRITE && g_scsi_dma_state != SCSIDMA_WRITE_DONE);
  567. uint32_t saved_irq = save_and_disable_interrupts();
  568. if (g_scsi_dma_state == SCSIDMA_READ)
  569. {
  570. if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
  571. {
  572. // Combine with currently running request
  573. g_scsi_dma.app_bytes += count;
  574. count = 0;
  575. }
  576. else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  577. {
  578. // Combine with queued request
  579. g_scsi_dma.next_app_bytes += count;
  580. count = 0;
  581. }
  582. else if (!g_scsi_dma.next_app_buf)
  583. {
  584. // Add as queued request
  585. g_scsi_dma.next_app_buf = (uint8_t*)data;
  586. g_scsi_dma.next_app_bytes = count;
  587. count = 0;
  588. }
  589. }
  590. restore_interrupts(saved_irq);
  591. // Check if the request was combined
  592. if (count == 0) return;
  593. if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_READ_DONE)
  594. {
  595. // Wait for previous request to finish
  596. scsi_accel_rp2040_finishRead(NULL, 0, parityError, resetFlag);
  597. if (*resetFlag)
  598. {
  599. return;
  600. }
  601. }
  602. bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
  603. g_scsi_dma_state = SCSIDMA_READ;
  604. g_scsi_dma.app_buf = (uint8_t*)data;
  605. g_scsi_dma.app_bytes = count;
  606. g_scsi_dma.dma_bytes = 0;
  607. g_scsi_dma.next_app_buf = 0;
  608. g_scsi_dma.next_app_bytes = 0;
  609. if (must_reconfig_gpio)
  610. {
  611. config_parity_sm_for_read();
  612. scsidma_config_gpio();
  613. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
  614. }
  615. start_dma_read();
  616. }
  617. bool scsi_accel_rp2040_isReadFinished(const uint8_t* data)
  618. {
  619. // Check if everything has completed
  620. if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_READ_DONE)
  621. {
  622. return true;
  623. }
  624. if (!data)
  625. return false;
  626. // Check if this data item is still in queue.
  627. bool finished = true;
  628. uint32_t saved_irq = save_and_disable_interrupts();
  629. if (data >= g_scsi_dma.app_buf &&
  630. data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
  631. (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].write_addr)
  632. {
  633. finished = false; // In current transfer
  634. }
  635. else if (data >= g_scsi_dma.next_app_buf &&
  636. data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  637. {
  638. finished = false; // In queued transfer
  639. }
  640. restore_interrupts(saved_irq);
  641. return finished;
  642. }
  643. static void scsi_accel_rp2040_stopRead()
  644. {
  645. dma_channel_abort(SCSI_DMA_CH_A);
  646. dma_channel_abort(SCSI_DMA_CH_B);
  647. dma_channel_abort(SCSI_DMA_CH_C);
  648. dma_channel_abort(SCSI_DMA_CH_D);
  649. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
  650. g_scsi_dma_state = SCSIDMA_IDLE;
  651. SCSI_RELEASE_DATA_REQ();
  652. scsidma_config_gpio();
  653. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
  654. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
  655. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
  656. }
  657. void scsi_accel_rp2040_finishRead(const uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
  658. {
  659. uint32_t start = millis();
  660. const uint8_t *query_addr = (data ? (data + count - 1) : NULL);
  661. while (!scsi_accel_rp2040_isReadFinished(query_addr) && !*resetFlag)
  662. {
  663. if ((uint32_t)(millis() - start) > 5000)
  664. {
  665. logmsg("scsi_accel_rp2040_finishRead timeout");
  666. scsi_accel_log_state();
  667. *resetFlag = 1;
  668. break;
  669. }
  670. }
  671. if (g_scsi_dma_state == SCSIDMA_READ_DONE || *resetFlag)
  672. {
  673. // This was last buffer, release bus
  674. scsi_accel_rp2040_stopRead();
  675. }
  676. // Check if any parity errors have been detected during the transfer so far
  677. if (parityError != NULL && (SCSI_DMA_PIO->irq & 1))
  678. {
  679. dbgmsg("scsi_accel_rp2040_finishRead(", bytearray(data, count), ") detected parity error");
  680. *parityError = true;
  681. }
  682. }
  683. /*******************************************************/
  684. /* Write SCSI PIO program timings and ACK pin */
  685. /*******************************************************/
  686. static void zulu_pio_remove_program(PIO pio, const pio_program_t *program, uint loaded_offset, bool &removed)
  687. {
  688. if (!removed)
  689. {
  690. pio_remove_program(pio, program, loaded_offset);
  691. removed = true;
  692. }
  693. }
  694. static int pio_add_scsi_accel_async_write_program()
  695. {
  696. zulu_pio_remove_program(SCSI_DMA_PIO,
  697. &scsi_accel_async_write_program,
  698. g_scsi_dma.pio_offset_async_write,
  699. g_scsi_dma.pio_removed_async_write);
  700. uint16_t rewrote_instructions[sizeof(scsi_accel_async_write_program_instructions)/sizeof(scsi_accel_async_write_program_instructions[0])];
  701. pio_program rewrote_program = {rewrote_instructions,
  702. scsi_accel_async_write_program.length,
  703. scsi_accel_async_write_program.origin,
  704. scsi_accel_async_write_program.pio_version};
  705. memcpy(rewrote_instructions,
  706. scsi_accel_async_write_program_instructions,
  707. sizeof(scsi_accel_async_write_program_instructions));
  708. // out null, 23 side 1 [0] ;[REQ_DLY-2] ; Discard unused bits, wait for data preset time
  709. uint8_t delay = g_zuluscsi_timings->scsi.req_delay - 2;
  710. assert( delay <= 0xF);
  711. rewrote_instructions[2] |= pio_encode_delay(delay);
  712. // wait 1 gpio ACK side 1 ; Wait for ACK to be inactive
  713. rewrote_instructions[3] = pio_encode_wait_gpio(true, SCSI_IN_ACK) | pio_encode_sideset(1, 1);
  714. // wait 0 gpio ACK side 0 ; Assert REQ, wait for ACK low
  715. rewrote_instructions[4] = pio_encode_wait_gpio(false, SCSI_IN_ACK) | pio_encode_sideset(1, 0);
  716. g_scsi_dma.pio_removed_async_write = false;
  717. return pio_add_program(SCSI_DMA_PIO, &rewrote_program);
  718. }
  719. static int pio_add_scsi_accel_read_program()
  720. {
  721. zulu_pio_remove_program(SCSI_DMA_PIO,
  722. &scsi_accel_read_program,
  723. g_scsi_dma.pio_offset_read,
  724. g_scsi_dma.pio_removed_read);
  725. uint16_t rewrote_instructions[sizeof(scsi_accel_read_program_instructions)/sizeof(scsi_accel_read_program_instructions[0])];
  726. pio_program rewrote_program = {
  727. rewrote_instructions,
  728. scsi_accel_read_program.length,
  729. scsi_accel_read_program.origin,
  730. scsi_accel_read_program.pio_version};
  731. memcpy(rewrote_instructions,
  732. scsi_accel_read_program_instructions,
  733. sizeof(scsi_accel_read_program_instructions));
  734. // wait 1 gpio ACK side 1 ; Wait for ACK high
  735. rewrote_instructions[1] = pio_encode_wait_gpio(true, SCSI_IN_ACK) | pio_encode_sideset(1, 1);
  736. // wait 0 gpio ACK side 0 ; Assert REQ, wait for ACK low
  737. rewrote_instructions[3] = pio_encode_wait_gpio(false, SCSI_IN_ACK) | pio_encode_sideset(1, 0);
  738. g_scsi_dma.pio_removed_read = false;
  739. return pio_add_program(SCSI_DMA_PIO, &rewrote_program);
  740. }
  741. static int pio_add_scsi_sync_write_pacer_program()
  742. {
  743. zulu_pio_remove_program(SCSI_DMA_PIO,
  744. &scsi_sync_write_pacer_program,
  745. g_scsi_dma.pio_offset_sync_write_pacer,
  746. g_scsi_dma.pio_removed_sync_write_pacer);
  747. uint16_t rewrote_instructions[sizeof(scsi_sync_write_pacer_program_instructions)/sizeof(scsi_sync_write_pacer_program_instructions[0])];
  748. pio_program rewrote_program = {
  749. rewrote_instructions,
  750. scsi_sync_write_pacer_program.length,
  751. scsi_sync_write_pacer_program.origin,
  752. scsi_sync_write_pacer_program.pio_version};
  753. memcpy(rewrote_instructions,
  754. scsi_sync_write_pacer_program_instructions,
  755. sizeof(scsi_sync_write_pacer_program_instructions));
  756. // wait 1 gpio ACK
  757. rewrote_instructions[0] = pio_encode_wait_gpio(true, SCSI_IN_ACK);
  758. // wait 0 gpio ACK ; Wait for falling edge on ACK
  759. rewrote_instructions[1] = pio_encode_wait_gpio(false, SCSI_IN_ACK);
  760. g_scsi_dma.pio_removed_sync_write_pacer = false;
  761. return pio_add_program(SCSI_DMA_PIO, &rewrote_program);
  762. }
  763. static int pio_add_scsi_parity_program()
  764. {
  765. g_scsi_dma.pio_removed_parity = false;
  766. return pio_add_program(SCSI_DMA_PIO, &scsi_parity_program);
  767. }
  768. static int pio_add_scsi_sync_read_pacer_program()
  769. {
  770. g_scsi_dma.pio_removed_sync_read_pacer = false;
  771. return pio_add_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program);
  772. }
  773. static int pio_add_scsi_read_parity_program()
  774. {
  775. g_scsi_dma.pio_removed_read_parity = false;
  776. return pio_add_program(SCSI_DMA_PIO, &scsi_read_parity_program);
  777. }
  778. static int pio_add_scsi_sync_write_program()
  779. {
  780. g_scsi_dma.pio_removed_sync_write = false;
  781. return pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_program);
  782. }
  783. /*******************************************************/
  784. /* Initialization functions common to read/write */
  785. /*******************************************************/
  786. static void scsi_dma_irq()
  787. {
  788. #ifndef ENABLE_AUDIO_OUTPUT_SPDIF
  789. dma_hw->ints0 = (1 << SCSI_DMA_CH_A);
  790. #else
  791. // see audio_spdif.h for whats going on here
  792. if (dma_hw->intr & (1 << SCSI_DMA_CH_A)) {
  793. dma_hw->ints0 = (1 << SCSI_DMA_CH_A);
  794. } else {
  795. audio_dma_irq();
  796. return;
  797. }
  798. #endif
  799. scsidma_state_t state = g_scsi_dma_state;
  800. if (state == SCSIDMA_WRITE)
  801. {
  802. // Start writing from next buffer, if any, or set state to SCSIDMA_WRITE_DONE
  803. start_dma_write();
  804. }
  805. else if (state == SCSIDMA_READ)
  806. {
  807. // Start reading into next buffer, if any, or set state to SCSIDMA_READ_DONE
  808. start_dma_read();
  809. }
  810. }
  811. // Select GPIO from PIO peripheral or from software controlled SIO
  812. static void scsidma_config_gpio()
  813. {
  814. if (g_scsi_dma_state == SCSIDMA_IDLE)
  815. {
  816. iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
  817. iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
  818. iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
  819. iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
  820. iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
  821. iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
  822. iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
  823. iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
  824. iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
  825. iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_SIO;
  826. }
  827. else if (g_scsi_dma_state == SCSIDMA_WRITE)
  828. {
  829. // Make sure the initial state of all pins is high and output
  830. pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_IO_DATA_MASK | (1 << SCSI_OUT_REQ));
  831. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_IO_DB0, 9, true);
  832. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_OUT_REQ, 1, true);
  833. io_bank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_PIO0;
  834. io_bank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_PIO0;
  835. io_bank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_PIO0;
  836. io_bank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_PIO0;
  837. io_bank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_PIO0;
  838. io_bank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_PIO0;
  839. io_bank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_PIO0;
  840. io_bank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_PIO0;
  841. io_bank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_PIO0;
  842. io_bank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
  843. }
  844. else if (g_scsi_dma_state == SCSIDMA_READ)
  845. {
  846. if (g_scsi_dma.syncOffset == 0)
  847. {
  848. // Asynchronous read
  849. // Data bus as input, REQ pin as output
  850. pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_IO_DATA_MASK | (1 << SCSI_OUT_REQ));
  851. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_IO_DB0, 9, false);
  852. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_OUT_REQ, 1, true);
  853. }
  854. else
  855. {
  856. // Synchronous read, REQ pin is written by SYNC_SM
  857. pio_sm_set_pins(SCSI_DMA_PIO, SCSI_SYNC_SM, SCSI_IO_DATA_MASK | (1 << SCSI_OUT_REQ));
  858. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, SCSI_IO_DB0, 9, false);
  859. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_SYNC_SM, SCSI_OUT_REQ, 1, true);
  860. }
  861. io_bank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
  862. io_bank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
  863. io_bank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
  864. io_bank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
  865. io_bank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
  866. io_bank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
  867. io_bank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
  868. io_bank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
  869. io_bank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
  870. io_bank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
  871. }
  872. }
  873. void scsi_accel_rp2040_init()
  874. {
  875. g_scsi_dma_state = SCSIDMA_IDLE;
  876. scsidma_config_gpio();
  877. static bool first_init = true;
  878. if (first_init)
  879. {
  880. g_scsi_dma.pio_removed_parity = true;
  881. g_scsi_dma.pio_removed_async_write = true;
  882. g_scsi_dma.pio_removed_sync_write_pacer = true;
  883. g_scsi_dma.pio_removed_sync_write = true;
  884. g_scsi_dma.pio_removed_read = true;
  885. g_scsi_dma.pio_removed_read_parity = true;
  886. g_scsi_dma.pio_removed_sync_read_pacer = true;
  887. first_init = false;
  888. }
  889. if (g_channels_claimed) {
  890. // Un-claim all SCSI state machines
  891. pio_sm_unclaim(SCSI_DMA_PIO, SCSI_PARITY_SM);
  892. pio_sm_unclaim(SCSI_DMA_PIO, SCSI_DATA_SM);
  893. pio_sm_unclaim(SCSI_DMA_PIO, SCSI_SYNC_SM);
  894. // Remove all SCSI programs
  895. zulu_pio_remove_program(SCSI_DMA_PIO, &scsi_parity_program, g_scsi_dma.pio_offset_parity, g_scsi_dma.pio_removed_parity);
  896. zulu_pio_remove_program(SCSI_DMA_PIO, &scsi_accel_async_write_program, g_scsi_dma.pio_offset_async_write, g_scsi_dma.pio_removed_async_write);
  897. zulu_pio_remove_program(SCSI_DMA_PIO, &scsi_sync_write_pacer_program, g_scsi_dma.pio_offset_sync_write_pacer, g_scsi_dma.pio_removed_sync_write_pacer);
  898. zulu_pio_remove_program(SCSI_DMA_PIO, &scsi_accel_read_program, g_scsi_dma.pio_offset_read, g_scsi_dma.pio_removed_read);
  899. zulu_pio_remove_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program, g_scsi_dma.pio_offset_sync_read_pacer, g_scsi_dma.pio_removed_sync_read_pacer);
  900. zulu_pio_remove_program(SCSI_DMA_PIO, &scsi_read_parity_program, g_scsi_dma.pio_offset_read_parity, g_scsi_dma.pio_removed_read_parity);
  901. zulu_pio_remove_program(SCSI_DMA_PIO, &scsi_sync_write_program, g_scsi_dma.pio_offset_sync_write, g_scsi_dma.pio_removed_sync_write);
  902. // Un-claim all SCSI DMA channels
  903. dma_channel_unclaim(SCSI_DMA_CH_A);
  904. dma_channel_unclaim(SCSI_DMA_CH_B);
  905. dma_channel_unclaim(SCSI_DMA_CH_C);
  906. dma_channel_unclaim(SCSI_DMA_CH_D);
  907. // Set flag to re-initialize SCSI PIO system
  908. g_channels_claimed = false;
  909. }
  910. if (!g_channels_claimed)
  911. {
  912. // Mark channels as being in use, unless it has been done already
  913. pio_sm_claim(SCSI_DMA_PIO, SCSI_PARITY_SM);
  914. pio_sm_claim(SCSI_DMA_PIO, SCSI_DATA_SM);
  915. pio_sm_claim(SCSI_DMA_PIO, SCSI_SYNC_SM);
  916. dma_channel_claim(SCSI_DMA_CH_A);
  917. dma_channel_claim(SCSI_DMA_CH_B);
  918. dma_channel_claim(SCSI_DMA_CH_C);
  919. dma_channel_claim(SCSI_DMA_CH_D);
  920. g_channels_claimed = true;
  921. }
  922. // Parity lookup generator
  923. g_scsi_dma.pio_offset_parity = pio_add_scsi_parity_program();
  924. g_scsi_dma.pio_cfg_parity = scsi_parity_program_get_default_config(g_scsi_dma.pio_offset_parity);
  925. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_parity, true, false, 32);
  926. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_parity, true, true, 32);
  927. // Asynchronous SCSI write
  928. g_scsi_dma.pio_offset_async_write = pio_add_scsi_accel_async_write_program();
  929. g_scsi_dma.pio_cfg_async_write = scsi_accel_async_write_program_get_default_config(g_scsi_dma.pio_offset_async_write);
  930. sm_config_set_out_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_IO_DB0, 9);
  931. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_OUT_REQ);
  932. sm_config_set_fifo_join(&g_scsi_dma.pio_cfg_async_write, PIO_FIFO_JOIN_TX);
  933. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_write, true, false, 32);
  934. // Synchronous SCSI write pacer / ACK handler
  935. g_scsi_dma.pio_offset_sync_write_pacer = pio_add_scsi_sync_write_pacer_program();
  936. g_scsi_dma.pio_cfg_sync_write_pacer = scsi_sync_write_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_write_pacer);
  937. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, 1);
  938. // Asynchronous / synchronous SCSI read
  939. g_scsi_dma.pio_offset_read = pio_add_scsi_accel_read_program();
  940. g_scsi_dma.pio_cfg_read = scsi_accel_read_program_get_default_config(g_scsi_dma.pio_offset_read);
  941. sm_config_set_in_pins(&g_scsi_dma.pio_cfg_read, SCSI_IO_DB0);
  942. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_read, SCSI_OUT_REQ);
  943. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read, true, false, 32);
  944. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read, true, true, 32);
  945. // Synchronous SCSI read pacer
  946. g_scsi_dma.pio_offset_sync_read_pacer = pio_add_scsi_sync_read_pacer_program();
  947. g_scsi_dma.pio_cfg_sync_read_pacer = scsi_sync_read_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_read_pacer);
  948. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_read_pacer, SCSI_OUT_REQ);
  949. // Read parity check
  950. g_scsi_dma.pio_offset_read_parity = pio_add_scsi_read_parity_program();
  951. g_scsi_dma.pio_cfg_read_parity = scsi_read_parity_program_get_default_config(g_scsi_dma.pio_offset_read_parity);
  952. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read_parity, true, true, 32);
  953. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read_parity, true, false, 32);
  954. // Synchronous SCSI data writer
  955. g_scsi_dma.pio_offset_sync_write = pio_add_scsi_sync_write_program();
  956. g_scsi_dma.pio_cfg_sync_write = scsi_sync_write_program_get_default_config(g_scsi_dma.pio_offset_sync_write);
  957. sm_config_set_out_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_IO_DB0, 9);
  958. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_OUT_REQ);
  959. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 32);
  960. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 1);
  961. // Create DMA channel configurations so they can be applied quickly later
  962. // For write to SCSI BUS:
  963. // Channel A: Bytes from RAM to scsi_parity PIO
  964. dma_channel_config cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
  965. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
  966. channel_config_set_read_increment(&cfg, true);
  967. channel_config_set_write_increment(&cfg, false);
  968. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, true));
  969. g_scsi_dma.dmacfg_write_chA = cfg;
  970. // Channel B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
  971. cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
  972. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  973. channel_config_set_read_increment(&cfg, false);
  974. channel_config_set_write_increment(&cfg, false);
  975. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
  976. g_scsi_dma.dmacfg_write_chB = cfg;
  977. // Channel C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
  978. // When done, chain to channel B
  979. cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
  980. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
  981. channel_config_set_read_increment(&cfg, false);
  982. channel_config_set_write_increment(&cfg, false);
  983. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
  984. channel_config_set_chain_to(&cfg, SCSI_DMA_CH_B);
  985. g_scsi_dma.dmacfg_write_chC = cfg;
  986. // Channel D: In synchronous mode a second DMA channel is used to transfer dummy bits
  987. // from first state machine to second one.
  988. cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
  989. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  990. channel_config_set_read_increment(&cfg, false);
  991. channel_config_set_write_increment(&cfg, false);
  992. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_SYNC_SM, true));
  993. g_scsi_dma.dmacfg_write_chD = cfg;
  994. // For read from SCSI BUS:
  995. // Channel A: Bytes from scsi_read_parity PIO to destination memory buffer
  996. // This takes the bottom 8 bits which is the data without parity bit.
  997. // Triggered by scsi_read_parity RX FIFO.
  998. cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
  999. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
  1000. channel_config_set_read_increment(&cfg, false);
  1001. channel_config_set_write_increment(&cfg, true);
  1002. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
  1003. g_scsi_dma.dmacfg_read_chA = cfg;
  1004. // Channel B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
  1005. // Triggered by channel C writing to READ_ADDR_TRIG
  1006. // Re-enables channel C by chaining after done.
  1007. cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
  1008. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
  1009. channel_config_set_read_increment(&cfg, false);
  1010. channel_config_set_write_increment(&cfg, false);
  1011. channel_config_set_dreq(&cfg, DREQ_FORCE);
  1012. channel_config_set_chain_to(&cfg, SCSI_DMA_CH_C);
  1013. cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
  1014. g_scsi_dma.dmacfg_read_chB = cfg;
  1015. // Channel C: Addresses from scsi_read PIO to channel B READ_ADDR register
  1016. // A single transfer starts when PIO RX FIFO has data.
  1017. // The DMA channel is re-enabled by channel B chaining.
  1018. cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
  1019. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  1020. channel_config_set_read_increment(&cfg, false);
  1021. channel_config_set_write_increment(&cfg, false);
  1022. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, false));
  1023. g_scsi_dma.dmacfg_read_chC = cfg;
  1024. // Channel D: In synchronous mode a second DMA channel is used to transfer dummy words
  1025. // from first state machine to second one to control the pace of data transfer.
  1026. // In asynchronous mode this just transfers words to control the number of bytes.
  1027. cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
  1028. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  1029. channel_config_set_read_increment(&cfg, false);
  1030. channel_config_set_write_increment(&cfg, false);
  1031. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
  1032. g_scsi_dma.dmacfg_read_chD = cfg;
  1033. // Interrupts are used for data buffer swapping
  1034. irq_set_exclusive_handler(DMA_IRQ_0, scsi_dma_irq);
  1035. irq_set_enabled(DMA_IRQ_0, true);
  1036. }
  1037. bool scsi_accel_rp2040_setSyncMode(int syncOffset, int syncPeriod)
  1038. {
  1039. if (g_scsi_dma_state != SCSIDMA_IDLE)
  1040. {
  1041. logmsg("ERROR: SCSI DMA was in state ", (int)g_scsi_dma_state, " when changing sync mode, forcing bus reset");
  1042. scsi_accel_log_state();
  1043. return false;
  1044. }
  1045. if (syncOffset != g_scsi_dma.syncOffset || syncPeriod != g_scsi_dma.syncPeriod)
  1046. {
  1047. g_scsi_dma.syncOffset = syncOffset;
  1048. g_scsi_dma.syncPeriod = syncPeriod;
  1049. if (syncOffset > 0)
  1050. {
  1051. // Set up offset amount to PIO state machine configs.
  1052. // The RX fifo of scsi_sync_write has 4 slots.
  1053. // We can preload it with 0-3 items and set the autopush threshold 1, 2, 4 ... 32
  1054. // to act as a divider. This allows offsets 1 to 128 bytes.
  1055. // SCSI2SD code currently only uses offsets up to 15.
  1056. if (syncOffset <= 4)
  1057. {
  1058. g_scsi_dma.syncOffsetDivider = 1;
  1059. g_scsi_dma.syncOffsetPreload = 5 - syncOffset;
  1060. }
  1061. else if (syncOffset <= 8)
  1062. {
  1063. g_scsi_dma.syncOffsetDivider = 2;
  1064. g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 2;
  1065. }
  1066. else if (syncOffset <= 16)
  1067. {
  1068. g_scsi_dma.syncOffsetDivider = 4;
  1069. g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 4;
  1070. }
  1071. else
  1072. {
  1073. g_scsi_dma.syncOffsetDivider = 4;
  1074. g_scsi_dma.syncOffsetPreload = 0;
  1075. }
  1076. // To properly detect when all bytes have been ACKed,
  1077. // we need at least one vacant slot in the FIFO.
  1078. if (g_scsi_dma.syncOffsetPreload > 3)
  1079. g_scsi_dma.syncOffsetPreload = 3;
  1080. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, g_scsi_dma.syncOffsetDivider);
  1081. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, g_scsi_dma.syncOffsetDivider);
  1082. // Set up the timing parameters to PIO program
  1083. // The scsi_sync_write PIO program consists of three instructions.
  1084. // The delays are in clock cycles, each taking 6.66 ns. (@150 MHz)
  1085. // delay0: Delay from data write to REQ assertion (data setup)
  1086. // delay1: Delay from REQ assert to REQ deassert (req pulse width)
  1087. // delay2: Delay from REQ deassert to data write (negation period)
  1088. // see timings.c for delay periods in clock cycles
  1089. int delay0, delay1, delay2;
  1090. // setup timings for sync_read_pacer
  1091. // total period = rdelay0 + redelay1
  1092. // rdelay0: wait for transfer period (total_period + rtotal_period_adjust - rdelay1)
  1093. // rdelay1: req assert period
  1094. int rdelay1;
  1095. uint32_t up_rounder = g_zuluscsi_timings->scsi.clk_period_ps / 2 + 1;
  1096. uint32_t delay_in_ps = (syncPeriod * 4) * 1000;
  1097. // This is the period in clock cycles rounded up
  1098. int totalPeriod = (delay_in_ps + up_rounder) / g_zuluscsi_timings->scsi.clk_period_ps;
  1099. int rtotalPeriod = totalPeriod;
  1100. if (syncPeriod < 25)
  1101. {
  1102. // Fast-20 SCSI timing: 15 ns assertion period
  1103. // The hardware rise and fall time require some extra delay,
  1104. // These delays are in addition to the 1 cycle that the PIO takes to execute the instruction
  1105. totalPeriod += g_zuluscsi_timings->scsi_20.total_period_adjust;
  1106. delay0 = g_zuluscsi_timings->scsi_20.delay0; //Data setup time, should be min 11.5ns according to the spec for FAST-20
  1107. delay1 = g_zuluscsi_timings->scsi_20.delay1; //pulse width, should be min 15ns according to the spec for FAST-20
  1108. delay2 = totalPeriod - delay0 - delay1 - 3; //Data hold time, should be min 16.5ns according to the spec for FAST-20
  1109. if (delay2 < 0) delay2 = 0;
  1110. if (delay2 > 15) delay2 = 15;
  1111. rdelay1 = g_zuluscsi_timings->scsi_20.rdelay1;
  1112. rtotalPeriod += g_zuluscsi_timings->scsi_20.rtotal_period_adjust;
  1113. }
  1114. else if (syncPeriod < 50 )
  1115. {
  1116. // Fast-10 SCSI timing: 30 ns assertion period, 25 ns skew delay
  1117. // The hardware rise and fall time require some extra delay,
  1118. totalPeriod += g_zuluscsi_timings->scsi_10.total_period_adjust;
  1119. delay0 = g_zuluscsi_timings->scsi_10.delay0; // 4;
  1120. delay1 = g_zuluscsi_timings->scsi_10.delay1; // 6;
  1121. delay2 = totalPeriod - delay0 - delay1 - 3;
  1122. if (delay2 < 0) delay2 = 0;
  1123. if (delay2 > 15) delay2 = 15;
  1124. rdelay1 = g_zuluscsi_timings->scsi_10.rdelay1;
  1125. rtotalPeriod += g_zuluscsi_timings->scsi_10.rtotal_period_adjust;
  1126. }
  1127. else
  1128. {
  1129. // Slow SCSI timing: 90 ns assertion period, 55 ns skew delay
  1130. totalPeriod += g_zuluscsi_timings->scsi_5.total_period_adjust;
  1131. delay0 = g_zuluscsi_timings->scsi_5.delay0;
  1132. delay1 = g_zuluscsi_timings->scsi_5.delay1;
  1133. delay2 = totalPeriod - delay0 - delay1 - 3;
  1134. if (delay2 < 0) delay2 = 0;
  1135. if (delay2 > 15) delay2 = 15;
  1136. rdelay1 = g_zuluscsi_timings->scsi_5.rdelay1;
  1137. rtotalPeriod += g_zuluscsi_timings->scsi_5.rtotal_period_adjust;
  1138. }
  1139. // Patch the delay values into the instructions in scsi_sync_write.
  1140. // The code in scsi_accel.pio must have delay set to 0 for this to work correctly.
  1141. uint16_t instr0 = scsi_sync_write_program_instructions[0] | pio_encode_delay(delay0);
  1142. uint16_t instr1 = scsi_sync_write_program_instructions[1] | pio_encode_delay(delay1);
  1143. uint16_t instr2 = scsi_sync_write_program_instructions[2] | pio_encode_delay(delay2);
  1144. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 0] = instr0;
  1145. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 1] = instr1;
  1146. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 2] = instr2;
  1147. // And similar patching for scsi_sync_read_pacer
  1148. int rdelay0 = rtotalPeriod - rdelay1 - 2;
  1149. if (rdelay0 > 15) rdelay0 = 15;
  1150. if (rdelay0 < 0) rdelay0 = 0;
  1151. uint16_t rinstr0 = scsi_sync_read_pacer_program_instructions[0] | pio_encode_delay(rdelay0);
  1152. uint16_t rinstr1 = (scsi_sync_read_pacer_program_instructions[1] + g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_delay(rdelay1);
  1153. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 0] = rinstr0;
  1154. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 1] = rinstr1;
  1155. }
  1156. }
  1157. return true;
  1158. }