scsiPhy.cpp 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. // Implements the low level interface to SCSI bus
  2. // Partially derived from scsiPhy.c from SCSI2SD-V6
  3. #include "scsiPhy.h"
  4. #include "AzulSCSI_platform.h"
  5. #include "scsi_accel_asm.h"
  6. #include "scsi_accel_dma.h"
  7. #include "scsi_accel_greenpak.h"
  8. #include "AzulSCSI_log.h"
  9. #include "AzulSCSI_log_trace.h"
  10. #include <scsi2sd.h>
  11. extern "C" {
  12. #include <scsi.h>
  13. #include <time.h>
  14. }
  15. static void init_irqs();
  16. /***********************/
  17. /* SCSI status signals */
  18. /***********************/
  19. extern "C" bool scsiStatusATN()
  20. {
  21. return SCSI_IN(ATN);
  22. }
  23. extern "C" bool scsiStatusBSY()
  24. {
  25. return SCSI_IN(BSY);
  26. }
  27. /************************/
  28. /* SCSI selection logic */
  29. /************************/
  30. volatile uint8_t g_scsi_sts_selection;
  31. volatile uint8_t g_scsi_ctrl_bsy;
  32. static void scsi_bsy_deassert_interrupt()
  33. {
  34. if (SCSI_IN(SEL) && !SCSI_IN(BSY))
  35. {
  36. uint8_t sel_bits = SCSI_IN_DATA();
  37. int sel_id = -1;
  38. for (int i = 0; i < S2S_MAX_TARGETS; i++)
  39. {
  40. if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
  41. {
  42. if (sel_bits & (1 << scsiDev.targets[i].targetId))
  43. {
  44. sel_id = scsiDev.targets[i].targetId;
  45. break;
  46. }
  47. }
  48. }
  49. if (sel_id >= 0)
  50. {
  51. uint8_t atn_flag = SCSI_IN(ATN) ? SCSI_STS_SELECTION_ATN : 0;
  52. g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | atn_flag | sel_id;
  53. }
  54. // selFlag is required for Philips P2000C which releases it after 600ns
  55. // without waiting for BSY.
  56. // Also required for some early Mac Plus roms
  57. scsiDev.selFlag = *SCSI_STS_SELECTED;
  58. }
  59. }
  60. extern "C" bool scsiStatusSEL()
  61. {
  62. if (g_scsi_ctrl_bsy)
  63. {
  64. // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
  65. // Instead update the state here.
  66. // Releasing happens with bus release.
  67. g_scsi_ctrl_bsy = 0;
  68. SCSI_OUT(BSY, 1);
  69. }
  70. return SCSI_IN(SEL);
  71. }
  72. /************************/
  73. /* SCSI bus reset logic */
  74. /************************/
  75. static void scsi_rst_assert_interrupt()
  76. {
  77. bool rst1 = SCSI_IN(RST);
  78. delay_ns(500);
  79. bool rst2 = SCSI_IN(RST);
  80. if (rst1 && rst2)
  81. {
  82. azdbg("BUS RESET");
  83. scsiDev.resetFlag = 1;
  84. }
  85. }
  86. extern "C" void scsiPhyReset(void)
  87. {
  88. SCSI_RELEASE_OUTPUTS();
  89. g_scsi_sts_selection = 0;
  90. g_scsi_ctrl_bsy = 0;
  91. init_irqs();
  92. #ifdef SCSI_ACCEL_DMA_AVAILABLE
  93. scsi_accel_dma_init();
  94. #endif
  95. }
  96. /************************/
  97. /* SCSI bus phase logic */
  98. /************************/
  99. static SCSI_PHASE g_scsi_phase;
  100. extern "C" void scsiEnterPhase(int phase)
  101. {
  102. int delay = scsiEnterPhaseImmediate(phase);
  103. if (delay > 0)
  104. {
  105. s2s_delay_ns(delay);
  106. }
  107. }
  108. // Change state and return nanosecond delay to wait
  109. extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
  110. {
  111. // ANSI INCITS 362-2002 SPI-3 10.7.1:
  112. // Phase changes are not allowed while REQ or ACK is asserted.
  113. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
  114. if (phase != g_scsi_phase)
  115. {
  116. int oldphase = g_scsi_phase;
  117. g_scsi_phase = (SCSI_PHASE)phase;
  118. scsiLogPhaseChange(phase);
  119. if (phase < 0)
  120. {
  121. // Other communication on bus or reset state
  122. SCSI_RELEASE_OUTPUTS();
  123. return 0;
  124. }
  125. else
  126. {
  127. SCSI_OUT(MSG, phase & __scsiphase_msg);
  128. SCSI_OUT(CD, phase & __scsiphase_cd);
  129. SCSI_OUT(IO, phase & __scsiphase_io);
  130. int delayNs = 400; // Bus settle delay
  131. if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
  132. {
  133. delayNs += 400; // Data release delay
  134. }
  135. if (scsiDev.compatMode < COMPAT_SCSI2)
  136. {
  137. // EMU EMAX needs 100uS ! 10uS is not enough.
  138. delayNs += 100000;
  139. }
  140. return delayNs;
  141. }
  142. }
  143. else
  144. {
  145. return 0;
  146. }
  147. }
  148. // Release all signals
  149. void scsiEnterBusFree(void)
  150. {
  151. g_scsi_phase = BUS_FREE;
  152. g_scsi_sts_selection = 0;
  153. g_scsi_ctrl_bsy = 0;
  154. scsiDev.cdbLen = 0;
  155. SCSI_RELEASE_OUTPUTS();
  156. }
  157. /********************/
  158. /* Transmit to host */
  159. /********************/
  160. #define SCSI_WAIT_ACTIVE(pin) \
  161. if (!SCSI_IN(pin)) { \
  162. if (!SCSI_IN(pin)) { \
  163. while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
  164. } \
  165. }
  166. #define SCSI_WAIT_INACTIVE(pin) \
  167. if (SCSI_IN(pin)) { \
  168. if (SCSI_IN(pin)) { \
  169. while(SCSI_IN(pin) && !scsiDev.resetFlag); \
  170. } \
  171. }
  172. static inline void scsiWriteOneByte(uint8_t value)
  173. {
  174. SCSI_OUT_DATA(value);
  175. delay_100ns(); // DB setup time before REQ
  176. SCSI_OUT(REQ, 1);
  177. SCSI_WAIT_ACTIVE(ACK);
  178. SCSI_RELEASE_DATA_REQ(); // Release data and REQ
  179. SCSI_WAIT_INACTIVE(ACK);
  180. }
  181. extern "C" void scsiWriteByte(uint8_t value)
  182. {
  183. scsiLogDataIn(&value, 1);
  184. scsiWriteOneByte(value);
  185. }
  186. extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
  187. {
  188. scsiStartWrite(data, count);
  189. scsiFinishWrite();
  190. }
  191. static struct {
  192. const uint8_t *data;
  193. uint32_t count;
  194. } g_scsi_writereq;
  195. extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
  196. {
  197. scsiLogDataIn(data, count);
  198. #ifdef SCSI_ACCEL_DMA_AVAILABLE
  199. if (gpio_input_bit_get(DIP_PORT, DIPSW1_PIN))
  200. {
  201. scsi_accel_dma_startWrite(data, count, &scsiDev.resetFlag);
  202. return;
  203. }
  204. #endif
  205. if (g_scsi_writereq.count)
  206. {
  207. if (data == g_scsi_writereq.data + g_scsi_writereq.count)
  208. {
  209. // Combine with previous one
  210. g_scsi_writereq.count += count;
  211. return;
  212. }
  213. else
  214. {
  215. // Actually execute previous request
  216. scsiFinishWrite();
  217. }
  218. }
  219. // Queue polling write requests.
  220. // This allows better parallelism with SD card transfers.
  221. g_scsi_writereq.data = data;
  222. g_scsi_writereq.count = count;
  223. }
  224. static void processPollingWrite(uint32_t count)
  225. {
  226. if (count > g_scsi_writereq.count)
  227. count = g_scsi_writereq.count;
  228. const uint8_t *data = g_scsi_writereq.data;
  229. uint32_t count_words = count / 4;
  230. if (count_words * 4 == count)
  231. {
  232. // Use accelerated subroutine
  233. if (greenpak_is_ready())
  234. {
  235. scsi_accel_greenpak_send((const uint32_t*)data, count_words, &scsiDev.resetFlag);
  236. }
  237. else
  238. {
  239. scsi_accel_asm_send((const uint32_t*)data, count_words, &scsiDev.resetFlag);
  240. }
  241. }
  242. else
  243. {
  244. for (uint32_t i = 0; i < count; i++)
  245. {
  246. if (scsiDev.resetFlag) break;
  247. scsiWriteOneByte(data[i]);
  248. }
  249. }
  250. g_scsi_writereq.count -= count;
  251. if (g_scsi_writereq.count)
  252. {
  253. g_scsi_writereq.data += count;
  254. }
  255. else
  256. {
  257. g_scsi_writereq.data = NULL;
  258. }
  259. }
  260. static bool isPollingWriteFinished(const uint8_t *data)
  261. {
  262. if (g_scsi_writereq.count)
  263. {
  264. if (data == NULL)
  265. {
  266. return false;
  267. }
  268. else if (data >= g_scsi_writereq.data &&
  269. data < g_scsi_writereq.data + g_scsi_writereq.count)
  270. {
  271. return false;
  272. }
  273. }
  274. return true;
  275. }
  276. extern "C" bool scsiIsWriteFinished(const uint8_t *data)
  277. {
  278. #ifdef SCSI_ACCEL_DMA_AVAILABLE
  279. if (!scsi_accel_dma_isWriteFinished(data))
  280. return false;
  281. #endif
  282. // Check if there is still a polling transfer in progress
  283. if (!isPollingWriteFinished(data))
  284. {
  285. // Process the transfer piece-by-piece while waiting
  286. // for SD card to react.
  287. processPollingWrite(256);
  288. return isPollingWriteFinished(data);
  289. }
  290. return true;
  291. }
  292. extern "C" void scsiFinishWrite()
  293. {
  294. #ifdef SCSI_ACCEL_DMA_AVAILABLE
  295. scsi_accel_dma_finishWrite(&scsiDev.resetFlag);
  296. #endif
  297. // Finish previously started polling write request.
  298. if (g_scsi_writereq.count)
  299. {
  300. processPollingWrite(g_scsi_writereq.count);
  301. }
  302. }
  303. /*********************/
  304. /* Receive from host */
  305. /*********************/
  306. static inline uint8_t scsiReadOneByte(void)
  307. {
  308. SCSI_OUT(REQ, 1);
  309. SCSI_WAIT_ACTIVE(ACK);
  310. delay_100ns();
  311. uint8_t r = SCSI_IN_DATA();
  312. SCSI_OUT(REQ, 0);
  313. SCSI_WAIT_INACTIVE(ACK);
  314. return r;
  315. }
  316. extern "C" uint8_t scsiReadByte(void)
  317. {
  318. uint8_t r = scsiReadOneByte();
  319. scsiLogDataOut(&r, 1);
  320. return r;
  321. }
  322. extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
  323. {
  324. *parityError = 0;
  325. uint32_t count_words = count / 4;
  326. if (count_words * 4 == count)
  327. {
  328. // Use accelerated subroutine
  329. scsi_accel_asm_recv((uint32_t*)data, count_words, &scsiDev.resetFlag);
  330. }
  331. else
  332. {
  333. for (uint32_t i = 0; i < count; i++)
  334. {
  335. if (scsiDev.resetFlag) break;
  336. data[i] = scsiReadOneByte();
  337. }
  338. }
  339. scsiLogDataOut(data, count);
  340. }
  341. /**********************/
  342. /* Interrupt handlers */
  343. /**********************/
  344. extern "C"
  345. void SCSI_RST_IRQ (void)
  346. {
  347. if (exti_interrupt_flag_get(SCSI_RST_EXTI))
  348. {
  349. exti_interrupt_flag_clear(SCSI_RST_EXTI);
  350. scsi_rst_assert_interrupt();
  351. }
  352. if (exti_interrupt_flag_get(SCSI_BSY_EXTI))
  353. {
  354. exti_interrupt_flag_clear(SCSI_BSY_EXTI);
  355. scsi_bsy_deassert_interrupt();
  356. }
  357. }
  358. #if SCSI_RST_IRQn != SCSI_BSY_IRQn
  359. extern "C"
  360. void SCSI_BSY_IRQ (void)
  361. {
  362. SCSI_RST_IRQ();
  363. }
  364. #endif
  365. static void init_irqs()
  366. {
  367. // Falling edge of RST pin
  368. gpio_exti_source_select(SCSI_RST_EXTI_SOURCE_PORT, SCSI_RST_EXTI_SOURCE_PIN);
  369. exti_init(SCSI_RST_EXTI, EXTI_INTERRUPT, EXTI_TRIG_FALLING);
  370. NVIC_SetPriority(SCSI_RST_IRQn, 1);
  371. NVIC_EnableIRQ(SCSI_RST_IRQn);
  372. // Rising edge of BSY pin
  373. gpio_exti_source_select(SCSI_BSY_EXTI_SOURCE_PORT, SCSI_BSY_EXTI_SOURCE_PIN);
  374. exti_init(SCSI_BSY_EXTI, EXTI_INTERRUPT, EXTI_TRIG_RISING);
  375. NVIC_SetPriority(SCSI_BSY_IRQn, 1);
  376. NVIC_EnableIRQ(SCSI_BSY_IRQn);
  377. }