ZuluSCSI_initiator.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
  3. *
  4. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
  5. *
  6. * https://www.gnu.org/licenses/gpl-3.0.html
  7. * ----
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version. 
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16. * GNU General Public License for more details. 
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  20. **/
  21. /*
  22. * Main program for initiator mode.
  23. */
  24. #include "ZuluSCSI_config.h"
  25. #include "ZuluSCSI_log.h"
  26. #include "ZuluSCSI_log_trace.h"
  27. #include "ZuluSCSI_initiator.h"
  28. #include <ZuluSCSI_platform.h>
  29. #include <minIni.h>
  30. #include "SdFat.h"
  31. #include <scsi2sd.h>
  32. extern "C" {
  33. #include <scsi.h>
  34. }
  35. #ifndef PLATFORM_HAS_INITIATOR_MODE
  36. void scsiInitiatorInit()
  37. {
  38. }
  39. void scsiInitiatorMainLoop()
  40. {
  41. }
  42. int scsiInitiatorRunCommand(const uint8_t *command, size_t cmdlen,
  43. uint8_t *bufIn, size_t bufInLen,
  44. const uint8_t *bufOut, size_t bufOutLen)
  45. {
  46. return -1;
  47. }
  48. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  49. {
  50. return false;
  51. }
  52. #else
  53. /*************************************
  54. * High level initiator mode logic *
  55. *************************************/
  56. static struct {
  57. // Bitmap of all drives that have been imaged
  58. uint32_t drives_imaged;
  59. uint8_t initiator_id;
  60. // Is imaging a drive in progress, or are we scanning?
  61. bool imaging;
  62. // Information about currently selected drive
  63. int target_id;
  64. uint32_t sectorsize;
  65. uint32_t sectorcount;
  66. uint32_t sectorcount_all;
  67. uint32_t sectors_done;
  68. uint32_t max_sector_per_transfer;
  69. // Retry information for sector reads.
  70. // If a large read fails, retry is done sector-by-sector.
  71. int retrycount;
  72. uint32_t failposition;
  73. FsFile target_file;
  74. } g_initiator_state;
  75. extern SdFs SD;
  76. // Initialization of initiator mode
  77. void scsiInitiatorInit()
  78. {
  79. scsiHostPhyReset();
  80. g_initiator_state.initiator_id = ini_getl("SCSI", "InitiatorID", 7, CONFIGFILE);
  81. if (g_initiator_state.initiator_id > 7)
  82. {
  83. logmsg("InitiatorID set to illegal value in, ", CONFIGFILE, ", defaulting to 7");
  84. g_initiator_state.initiator_id = 7;
  85. }
  86. // treat initiator id as already imaged drive so it gets skipped
  87. g_initiator_state.drives_imaged = 1 << g_initiator_state.initiator_id;
  88. g_initiator_state.imaging = false;
  89. g_initiator_state.target_id = -1;
  90. g_initiator_state.sectorsize = 0;
  91. g_initiator_state.sectorcount = 0;
  92. g_initiator_state.sectors_done = 0;
  93. g_initiator_state.retrycount = 0;
  94. g_initiator_state.failposition = 0;
  95. g_initiator_state.max_sector_per_transfer = 512;
  96. }
  97. // Update progress bar LED during transfers
  98. static void scsiInitiatorUpdateLed()
  99. {
  100. // Update status indicator, the led blinks every 5 seconds and is on the longer the more data has been transferred
  101. const int period = 256;
  102. int phase = (millis() % period);
  103. int duty = g_initiator_state.sectors_done * period / g_initiator_state.sectorcount;
  104. // Minimum and maximum time to verify that the blink is visible
  105. if (duty < 50) duty = 50;
  106. if (duty > period - 50) duty = period - 50;
  107. if (phase <= duty)
  108. {
  109. LED_ON();
  110. }
  111. else
  112. {
  113. LED_OFF();
  114. }
  115. }
  116. void delay_with_poll(uint32_t ms)
  117. {
  118. uint32_t start = millis();
  119. while ((uint32_t)(millis() - start) < ms)
  120. {
  121. platform_poll();
  122. delay(1);
  123. }
  124. }
  125. // High level logic of the initiator mode
  126. void scsiInitiatorMainLoop()
  127. {
  128. if (g_scsiHostPhyReset)
  129. {
  130. logmsg("Executing BUS RESET after aborted command");
  131. scsiHostPhyReset();
  132. }
  133. if (!g_initiator_state.imaging)
  134. {
  135. // Scan for SCSI drives one at a time
  136. g_initiator_state.target_id = (g_initiator_state.target_id + 1) % 8;
  137. g_initiator_state.sectors_done = 0;
  138. g_initiator_state.retrycount = 0;
  139. g_initiator_state.max_sector_per_transfer = 512;
  140. if (!(g_initiator_state.drives_imaged & (1 << g_initiator_state.target_id)))
  141. {
  142. delay_with_poll(1000);
  143. uint8_t inquiry_data[36];
  144. LED_ON();
  145. bool startstopok =
  146. scsiTestUnitReady(g_initiator_state.target_id) &&
  147. scsiStartStopUnit(g_initiator_state.target_id, true);
  148. bool readcapok = startstopok &&
  149. scsiInitiatorReadCapacity(g_initiator_state.target_id,
  150. &g_initiator_state.sectorcount,
  151. &g_initiator_state.sectorsize);
  152. bool inquiryok = startstopok &&
  153. scsiInquiry(g_initiator_state.target_id, inquiry_data);
  154. LED_OFF();
  155. uint64_t total_bytes = 0;
  156. if (readcapok)
  157. {
  158. logmsg("SCSI ID ", g_initiator_state.target_id,
  159. " capacity ", (int)g_initiator_state.sectorcount,
  160. " sectors x ", (int)g_initiator_state.sectorsize, " bytes");
  161. g_initiator_state.sectorcount_all = g_initiator_state.sectorcount;
  162. total_bytes = (uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize;
  163. logmsg("Drive total size is ", (int)(total_bytes / (1024 * 1024)), " MiB");
  164. if (total_bytes >= 0xFFFFFFFF && SD.fatType() != FAT_TYPE_EXFAT)
  165. {
  166. // Note: the FAT32 limit is 4 GiB - 1 byte
  167. logmsg("Target SCSI ID ", g_initiator_state.target_id, " image size is equal or larger than 4 GiB.");
  168. logmsg("This is larger than the max filesize supported by SD card's filesystem");
  169. logmsg("Please reformat the SD card with exFAT format to image this target");
  170. g_initiator_state.drives_imaged |= 1 << g_initiator_state.target_id;
  171. return;
  172. }
  173. }
  174. else if (startstopok)
  175. {
  176. logmsg("SCSI id ", g_initiator_state.target_id, " responds but ReadCapacity command failed");
  177. logmsg("Possibly SCSI-1 drive? Attempting to read up to 1 GB.");
  178. g_initiator_state.sectorsize = 512;
  179. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 2097152;
  180. g_initiator_state.max_sector_per_transfer = 128;
  181. }
  182. else
  183. {
  184. dbgmsg("Failed to connect to SCSI id ", g_initiator_state.target_id);
  185. g_initiator_state.sectorsize = 0;
  186. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  187. }
  188. char filename_base[12];
  189. strncpy(filename_base, "HD00_imaged", sizeof(filename_base));
  190. const char *filename_extention = ".hda";
  191. if (inquiryok)
  192. {
  193. if ((inquiry_data[0] & 0x1F) == 5)
  194. {
  195. strncpy(filename_base, "CD00_imaged", sizeof(filename_base));
  196. filename_extention = ".iso";
  197. }
  198. }
  199. if (g_initiator_state.sectorcount > 0)
  200. {
  201. char filename[32] = {0};
  202. filename_base[2] += g_initiator_state.target_id;
  203. strncpy(filename, filename_base, sizeof(filename) - 1);
  204. strncat(filename, filename_extention, sizeof(filename) - 1);
  205. static int handling = -1;
  206. if (handling == -1)
  207. {
  208. handling = ini_getl("SCSI", "InitiatorImageHandling", 0, CONFIGFILE);
  209. }
  210. // Stop if a file already exists
  211. if (handling == 0)
  212. {
  213. if (SD.exists(filename))
  214. {
  215. logmsg("File, ", filename, ", already exists, InitiatorImageHandling set to stop if file exists.");
  216. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  217. return;
  218. }
  219. }
  220. // Create a new copy to the file 002-999
  221. else if (handling == 1)
  222. {
  223. for (uint32_t i = 1; i <= 1000; i++)
  224. {
  225. if (i == 1)
  226. {
  227. if (SD.exists(filename))
  228. continue;
  229. break;
  230. }
  231. else if(i >= 1000)
  232. {
  233. logmsg("Max images created from SCSI ID ", g_initiator_state.target_id, ", skipping image creation");
  234. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  235. return;
  236. }
  237. char filename_copy[6] = {0};
  238. snprintf(filename_copy, sizeof(filename_copy), "_%03lu", i);
  239. strncpy(filename, filename_base, sizeof(filename) - 1);
  240. strncat(filename, filename_copy, sizeof(filename) - 1);
  241. strncat(filename, filename_extention, sizeof(filename) - 1);
  242. if (SD.exists(filename))
  243. continue;
  244. break;
  245. }
  246. }
  247. // overwrite file if it exists
  248. else if (handling == 2)
  249. {
  250. if (SD.exists(filename))
  251. {
  252. logmsg("File, ",filename, " already exists, InitiatorImageHandling set to overwrite file");
  253. SD.remove(filename);
  254. }
  255. }
  256. // InitiatorImageHandling invalid setting
  257. else
  258. {
  259. static bool invalid_logged_once = false;
  260. if (!invalid_logged_once)
  261. {
  262. logmsg("InitiatorImageHandling is set to, ", handling, ", which is invalid");
  263. invalid_logged_once = true;
  264. }
  265. return;
  266. }
  267. uint64_t sd_card_free_bytes = (uint64_t)SD.vol()->freeClusterCount() * SD.vol()->bytesPerCluster();
  268. if (sd_card_free_bytes < total_bytes)
  269. {
  270. logmsg("SD Card only has ", (int)(sd_card_free_bytes / (1024 * 1024)),
  271. " MiB - not enough free space to image SCSI ID ", g_initiator_state.target_id);
  272. g_initiator_state.drives_imaged |= 1 << g_initiator_state.target_id;
  273. return;
  274. }
  275. g_initiator_state.target_file = SD.open(filename, O_RDWR | O_CREAT | O_TRUNC);
  276. if (!g_initiator_state.target_file.isOpen())
  277. {
  278. logmsg("Failed to open file for writing: ", filename);
  279. return;
  280. }
  281. if (SD.fatType() == FAT_TYPE_EXFAT)
  282. {
  283. // Only preallocate on exFAT, on FAT32 preallocating can result in false garbage data in the
  284. // file if write is interrupted.
  285. logmsg("Preallocating image file");
  286. g_initiator_state.target_file.preAllocate((uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize);
  287. }
  288. logmsg("Starting to copy drive data to ", filename);
  289. g_initiator_state.imaging = true;
  290. }
  291. }
  292. }
  293. else
  294. {
  295. // Copy sectors from SCSI drive to file
  296. if (g_initiator_state.sectors_done >= g_initiator_state.sectorcount)
  297. {
  298. scsiStartStopUnit(g_initiator_state.target_id, false);
  299. logmsg("Finished imaging drive with id ", g_initiator_state.target_id);
  300. LED_OFF();
  301. if (g_initiator_state.sectorcount != g_initiator_state.sectorcount_all)
  302. {
  303. logmsg("NOTE: Image size was limited to first 4 GiB due to SD card filesystem limit");
  304. logmsg("Please reformat the SD card with exFAT format to image this drive fully");
  305. }
  306. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  307. g_initiator_state.imaging = false;
  308. g_initiator_state.target_file.close();
  309. return;
  310. }
  311. scsiInitiatorUpdateLed();
  312. // How many sectors to read in one batch?
  313. int numtoread = g_initiator_state.sectorcount - g_initiator_state.sectors_done;
  314. if (numtoread > g_initiator_state.max_sector_per_transfer)
  315. numtoread = g_initiator_state.max_sector_per_transfer;
  316. // Retry sector-by-sector after failure
  317. if (g_initiator_state.sectors_done < g_initiator_state.failposition)
  318. numtoread = 1;
  319. uint32_t time_start = millis();
  320. bool status = scsiInitiatorReadDataToFile(g_initiator_state.target_id,
  321. g_initiator_state.sectors_done, numtoread, g_initiator_state.sectorsize,
  322. g_initiator_state.target_file);
  323. if (!status)
  324. {
  325. logmsg("Failed to transfer ", numtoread, " sectors starting at ", (int)g_initiator_state.sectors_done);
  326. if (g_initiator_state.retrycount < 5)
  327. {
  328. logmsg("Retrying.. ", g_initiator_state.retrycount, "/5");
  329. delay_with_poll(200);
  330. scsiHostPhyReset();
  331. delay_with_poll(200);
  332. g_initiator_state.retrycount++;
  333. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  334. if (g_initiator_state.retrycount > 1 && numtoread > 1)
  335. {
  336. logmsg("Multiple failures, retrying sector-by-sector");
  337. g_initiator_state.failposition = g_initiator_state.sectors_done + numtoread;
  338. }
  339. }
  340. else
  341. {
  342. logmsg("Retry limit exceeded, skipping one sector");
  343. g_initiator_state.retrycount = 0;
  344. g_initiator_state.sectors_done++;
  345. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  346. }
  347. }
  348. else
  349. {
  350. g_initiator_state.retrycount = 0;
  351. g_initiator_state.sectors_done += numtoread;
  352. g_initiator_state.target_file.flush();
  353. int speed_kbps = numtoread * g_initiator_state.sectorsize / (millis() - time_start);
  354. logmsg("SCSI read succeeded, sectors done: ",
  355. (int)g_initiator_state.sectors_done, " / ", (int)g_initiator_state.sectorcount,
  356. " speed ", speed_kbps, " kB/s");
  357. }
  358. }
  359. }
  360. /*************************************
  361. * Low level command implementations *
  362. *************************************/
  363. int scsiInitiatorRunCommand(int target_id,
  364. const uint8_t *command, size_t cmdLen,
  365. uint8_t *bufIn, size_t bufInLen,
  366. const uint8_t *bufOut, size_t bufOutLen,
  367. bool returnDataPhase)
  368. {
  369. if (!scsiHostPhySelect(target_id, g_initiator_state.initiator_id))
  370. {
  371. dbgmsg("------ Target ", target_id, " did not respond");
  372. scsiHostPhyRelease();
  373. return -1;
  374. }
  375. SCSI_PHASE phase;
  376. int status = -1;
  377. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  378. {
  379. platform_poll();
  380. if (phase == MESSAGE_IN)
  381. {
  382. uint8_t dummy = 0;
  383. scsiHostRead(&dummy, 1);
  384. }
  385. else if (phase == MESSAGE_OUT)
  386. {
  387. uint8_t identify_msg = 0x80;
  388. scsiHostWrite(&identify_msg, 1);
  389. }
  390. else if (phase == COMMAND)
  391. {
  392. scsiHostWrite(command, cmdLen);
  393. }
  394. else if (phase == DATA_IN)
  395. {
  396. if (returnDataPhase) return 0;
  397. if (bufInLen == 0)
  398. {
  399. logmsg("DATA_IN phase but no data to receive!");
  400. status = -3;
  401. break;
  402. }
  403. if (scsiHostRead(bufIn, bufInLen) == 0)
  404. {
  405. logmsg("scsiHostRead failed, tried to read ", (int)bufInLen, " bytes");
  406. status = -2;
  407. break;
  408. }
  409. }
  410. else if (phase == DATA_OUT)
  411. {
  412. if (returnDataPhase) return 0;
  413. if (bufOutLen == 0)
  414. {
  415. logmsg("DATA_OUT phase but no data to send!");
  416. status = -3;
  417. break;
  418. }
  419. if (scsiHostWrite(bufOut, bufOutLen) < bufOutLen)
  420. {
  421. logmsg("scsiHostWrite failed, was writing ", bytearray(bufOut, bufOutLen));
  422. status = -2;
  423. break;
  424. }
  425. }
  426. else if (phase == STATUS)
  427. {
  428. uint8_t tmp = -1;
  429. scsiHostRead(&tmp, 1);
  430. status = tmp;
  431. dbgmsg("------ STATUS: ", tmp);
  432. }
  433. }
  434. scsiHostPhyRelease();
  435. return status;
  436. }
  437. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  438. {
  439. uint8_t command[10] = {0x25, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  440. uint8_t response[8] = {0};
  441. int status = scsiInitiatorRunCommand(target_id,
  442. command, sizeof(command),
  443. response, sizeof(response),
  444. NULL, 0);
  445. if (status == 0)
  446. {
  447. *sectorcount = ((uint32_t)response[0] << 24)
  448. | ((uint32_t)response[1] << 16)
  449. | ((uint32_t)response[2] << 8)
  450. | ((uint32_t)response[3] << 0);
  451. *sectorcount += 1; // SCSI reports last sector address
  452. *sectorsize = ((uint32_t)response[4] << 24)
  453. | ((uint32_t)response[5] << 16)
  454. | ((uint32_t)response[6] << 8)
  455. | ((uint32_t)response[7] << 0);
  456. return true;
  457. }
  458. else if (status == 2)
  459. {
  460. uint8_t sense_key;
  461. scsiRequestSense(target_id, &sense_key);
  462. logmsg("READ CAPACITY on target ", target_id, " failed, sense key ", sense_key);
  463. return false;
  464. }
  465. else
  466. {
  467. *sectorcount = *sectorsize = 0;
  468. return false;
  469. }
  470. }
  471. // Execute REQUEST SENSE command to get more information about error status
  472. bool scsiRequestSense(int target_id, uint8_t *sense_key)
  473. {
  474. uint8_t command[6] = {0x03, 0, 0, 0, 18, 0};
  475. uint8_t response[18] = {0};
  476. int status = scsiInitiatorRunCommand(target_id,
  477. command, sizeof(command),
  478. response, sizeof(response),
  479. NULL, 0);
  480. dbgmsg("RequestSense response: ", bytearray(response, 18));
  481. *sense_key = response[2];
  482. return status == 0;
  483. }
  484. // Execute UNIT START STOP command to load/unload media
  485. bool scsiStartStopUnit(int target_id, bool start)
  486. {
  487. uint8_t command[6] = {0x1B, 0x1, 0, 0, 0, 0};
  488. uint8_t response[4] = {0};
  489. if (start)
  490. {
  491. command[4] |= 1; // Start
  492. command[1] = 0; // Immediate
  493. }
  494. int status = scsiInitiatorRunCommand(target_id,
  495. command, sizeof(command),
  496. response, sizeof(response),
  497. NULL, 0);
  498. if (status == 2)
  499. {
  500. uint8_t sense_key;
  501. scsiRequestSense(target_id, &sense_key);
  502. logmsg("START STOP UNIT on target ", target_id, " failed, sense key ", sense_key);
  503. }
  504. return status == 0;
  505. }
  506. // Execute INQUIRY command
  507. bool scsiInquiry(int target_id, uint8_t inquiry_data[36])
  508. {
  509. uint8_t command[6] = {0x12, 0, 0, 0, 36, 0};
  510. int status = scsiInitiatorRunCommand(target_id,
  511. command, sizeof(command),
  512. inquiry_data, 36,
  513. NULL, 0);
  514. return status == 0;
  515. }
  516. // Execute TEST UNIT READY command and handle unit attention state
  517. bool scsiTestUnitReady(int target_id)
  518. {
  519. for (int retries = 0; retries < 2; retries++)
  520. {
  521. uint8_t command[6] = {0x00, 0, 0, 0, 0, 0};
  522. int status = scsiInitiatorRunCommand(target_id,
  523. command, sizeof(command),
  524. NULL, 0,
  525. NULL, 0);
  526. if (status == 0)
  527. {
  528. return true;
  529. }
  530. else if (status == -1)
  531. {
  532. // No response to select
  533. return false;
  534. }
  535. else if (status == 2)
  536. {
  537. uint8_t sense_key;
  538. scsiRequestSense(target_id, &sense_key);
  539. if (sense_key == 6)
  540. {
  541. uint8_t inquiry[36];
  542. logmsg("Target ", target_id, " reports UNIT_ATTENTION, running INQUIRY");
  543. scsiInquiry(target_id, inquiry);
  544. }
  545. else if (sense_key == 2)
  546. {
  547. logmsg("Target ", target_id, " reports NOT_READY, running STARTSTOPUNIT");
  548. scsiStartStopUnit(target_id, true);
  549. }
  550. }
  551. else
  552. {
  553. logmsg("Target ", target_id, " TEST UNIT READY response: ", status);
  554. }
  555. }
  556. return false;
  557. }
  558. // This uses callbacks to run SD and SCSI transfers in parallel
  559. static struct {
  560. uint32_t bytes_sd; // Number of bytes that have been transferred on SD card side
  561. uint32_t bytes_sd_scheduled; // Number of bytes scheduled for transfer on SD card side
  562. uint32_t bytes_scsi; // Number of bytes that have been scheduled for transfer on SCSI side
  563. uint32_t bytes_scsi_done; // Number of bytes that have been transferred on SCSI side
  564. uint32_t bytes_per_sector;
  565. bool all_ok;
  566. } g_initiator_transfer;
  567. static void initiatorReadSDCallback(uint32_t bytes_complete)
  568. {
  569. if (g_initiator_transfer.bytes_scsi_done < g_initiator_transfer.bytes_scsi)
  570. {
  571. // How many bytes remaining in the transfer?
  572. uint32_t remain = g_initiator_transfer.bytes_scsi - g_initiator_transfer.bytes_scsi_done;
  573. uint32_t len = remain;
  574. // Limit maximum amount of data transferred at one go, to give enough callbacks to SD driver.
  575. // Select the limit based on total bytes in the transfer.
  576. // Transfer size is reduced towards the end of transfer to reduce the dead time between
  577. // end of SCSI transfer and the SD write completing.
  578. uint32_t limit = g_initiator_transfer.bytes_scsi / 8;
  579. uint32_t bytesPerSector = g_initiator_transfer.bytes_per_sector;
  580. if (limit < PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE;
  581. if (limit > PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE;
  582. if (limit > len) limit = PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE;
  583. if (limit < bytesPerSector) limit = bytesPerSector;
  584. if (len > limit)
  585. {
  586. len = limit;
  587. }
  588. // Split read so that it doesn't wrap around buffer edge
  589. uint32_t bufsize = sizeof(scsiDev.data);
  590. uint32_t start = (g_initiator_transfer.bytes_scsi_done % bufsize);
  591. if (start + len > bufsize)
  592. len = bufsize - start;
  593. // Don't overwrite data that has not yet been written to SD card
  594. uint32_t sd_ready_cnt = g_initiator_transfer.bytes_sd + bytes_complete;
  595. if (g_initiator_transfer.bytes_scsi_done + len > sd_ready_cnt + bufsize)
  596. len = sd_ready_cnt + bufsize - g_initiator_transfer.bytes_scsi_done;
  597. if (sd_ready_cnt == g_initiator_transfer.bytes_sd_scheduled &&
  598. g_initiator_transfer.bytes_sd_scheduled + bytesPerSector <= g_initiator_transfer.bytes_scsi_done)
  599. {
  600. // Current SD transfer is complete, it is better we return now and offer a chance for the next
  601. // transfer to begin.
  602. return;
  603. }
  604. // Keep transfers a multiple of sector size.
  605. if (remain >= bytesPerSector && len % bytesPerSector != 0)
  606. {
  607. len -= len % bytesPerSector;
  608. }
  609. if (len == 0)
  610. return;
  611. // dbgmsg("SCSI read ", (int)start, " + ", (int)len, ", sd ready cnt ", (int)sd_ready_cnt, " ", (int)bytes_complete, ", scsi done ", (int)g_initiator_transfer.bytes_scsi_done);
  612. if (scsiHostRead(&scsiDev.data[start], len) != len)
  613. {
  614. logmsg("Read failed at byte ", (int)g_initiator_transfer.bytes_scsi_done);
  615. g_initiator_transfer.all_ok = false;
  616. }
  617. g_initiator_transfer.bytes_scsi_done += len;
  618. }
  619. }
  620. static void scsiInitiatorWriteDataToSd(FsFile &file, bool use_callback)
  621. {
  622. // Figure out longest continuous block in buffer
  623. uint32_t bufsize = sizeof(scsiDev.data);
  624. uint32_t start = g_initiator_transfer.bytes_sd % bufsize;
  625. uint32_t len = g_initiator_transfer.bytes_scsi_done - g_initiator_transfer.bytes_sd;
  626. if (start + len > bufsize) len = bufsize - start;
  627. // Try to do writes in multiple of 512 bytes
  628. // This allows better performance for SD card access.
  629. if (len >= 512) len &= ~511;
  630. // Start writing to SD card and simultaneously reading more from SCSI bus
  631. uint8_t *buf = &scsiDev.data[start];
  632. // dbgmsg("SD write ", (int)start, " + ", (int)len);
  633. if (use_callback)
  634. {
  635. platform_set_sd_callback(&initiatorReadSDCallback, buf);
  636. }
  637. g_initiator_transfer.bytes_sd_scheduled = g_initiator_transfer.bytes_sd + len;
  638. if (file.write(buf, len) != len)
  639. {
  640. logmsg("scsiInitiatorReadDataToFile: SD card write failed");
  641. g_initiator_transfer.all_ok = false;
  642. }
  643. platform_set_sd_callback(NULL, NULL);
  644. g_initiator_transfer.bytes_sd += len;
  645. }
  646. bool scsiInitiatorReadDataToFile(int target_id, uint32_t start_sector, uint32_t sectorcount, uint32_t sectorsize,
  647. FsFile &file)
  648. {
  649. int status = -1;
  650. if (start_sector < 0xFFFFFF && sectorcount <= 256)
  651. {
  652. // Use READ6 command for compatibility with old SCSI1 drives
  653. uint8_t command[6] = {0x08,
  654. (uint8_t)(start_sector >> 16),
  655. (uint8_t)(start_sector >> 8),
  656. (uint8_t)start_sector,
  657. (uint8_t)sectorcount,
  658. 0x00
  659. };
  660. // Start executing command, return in data phase
  661. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  662. }
  663. else
  664. {
  665. // Use READ10 command for larger number of blocks
  666. uint8_t command[10] = {0x28, 0x00,
  667. (uint8_t)(start_sector >> 24), (uint8_t)(start_sector >> 16),
  668. (uint8_t)(start_sector >> 8), (uint8_t)start_sector,
  669. 0x00,
  670. (uint8_t)(sectorcount >> 8), (uint8_t)(sectorcount),
  671. 0x00
  672. };
  673. // Start executing command, return in data phase
  674. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  675. }
  676. if (status != 0)
  677. {
  678. uint8_t sense_key;
  679. scsiRequestSense(target_id, &sense_key);
  680. logmsg("scsiInitiatorReadDataToFile: READ failed: ", status, " sense key ", sense_key);
  681. scsiHostPhyRelease();
  682. return false;
  683. }
  684. SCSI_PHASE phase;
  685. g_initiator_transfer.bytes_scsi = sectorcount * sectorsize;
  686. g_initiator_transfer.bytes_per_sector = sectorsize;
  687. g_initiator_transfer.bytes_sd = 0;
  688. g_initiator_transfer.bytes_sd_scheduled = 0;
  689. g_initiator_transfer.bytes_scsi_done = 0;
  690. g_initiator_transfer.all_ok = true;
  691. while (true)
  692. {
  693. platform_poll();
  694. phase = (SCSI_PHASE)scsiHostPhyGetPhase();
  695. if (phase != DATA_IN && phase != BUS_BUSY)
  696. {
  697. break;
  698. }
  699. // Read next block from SCSI bus if buffer empty
  700. if (g_initiator_transfer.bytes_sd == g_initiator_transfer.bytes_scsi_done)
  701. {
  702. initiatorReadSDCallback(0);
  703. }
  704. else
  705. {
  706. // Write data to SD card and simultaneously read more from SCSI
  707. scsiInitiatorUpdateLed();
  708. scsiInitiatorWriteDataToSd(file, true);
  709. }
  710. }
  711. // Write any remaining buffered data
  712. while (g_initiator_transfer.bytes_sd < g_initiator_transfer.bytes_scsi_done)
  713. {
  714. platform_poll();
  715. scsiInitiatorWriteDataToSd(file, false);
  716. }
  717. if (g_initiator_transfer.bytes_sd != g_initiator_transfer.bytes_scsi)
  718. {
  719. logmsg("SCSI read from sector ", (int)start_sector, " was incomplete: expected ",
  720. (int)g_initiator_transfer.bytes_scsi, " got ", (int)g_initiator_transfer.bytes_sd, " bytes");
  721. g_initiator_transfer.all_ok = false;
  722. }
  723. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  724. {
  725. platform_poll();
  726. if (phase == MESSAGE_IN)
  727. {
  728. uint8_t dummy = 0;
  729. scsiHostRead(&dummy, 1);
  730. }
  731. else if (phase == MESSAGE_OUT)
  732. {
  733. uint8_t identify_msg = 0x80;
  734. scsiHostWrite(&identify_msg, 1);
  735. }
  736. else if (phase == STATUS)
  737. {
  738. uint8_t tmp = 0;
  739. scsiHostRead(&tmp, 1);
  740. status = tmp;
  741. dbgmsg("------ STATUS: ", tmp);
  742. }
  743. }
  744. scsiHostPhyRelease();
  745. return status == 0 && g_initiator_transfer.all_ok;
  746. }
  747. #endif