| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455 |
- /* Data flow in SCSI acceleration:
- *
- * 1. Application provides a buffer of bytes to send.
- * 2. Code in this module adds parity bit to the bytes and packs two bytes into 32 bit words.
- * 3. DMA controller copies the words to PIO peripheral FIFO.
- * 4. PIO peripheral handles low-level SCSI handshake and writes bytes and parity to GPIO.
- */
- #include "ZuluSCSI_platform.h"
- #include "ZuluSCSI_log.h"
- #include "scsi_accel_rp2040.h"
- #include "scsi_accel.pio.h"
- #include <hardware/pio.h>
- #include <hardware/dma.h>
- #include <hardware/irq.h>
- #include <hardware/structs/iobank0.h>
- #define SCSI_DMA_PIO pio0
- #define SCSI_DMA_SM 0
- #define SCSI_DMA_CH 0
- enum scsidma_buf_sel_t { SCSIBUF_NONE = 0, SCSIBUF_A = 1, SCSIBUF_B = 2 };
- #define DMA_BUF_SIZE 128
- static struct {
- uint8_t *app_buf; // Buffer provided by application
- uint32_t app_bytes; // Bytes available in application buffer
- uint32_t dma_bytes; // Bytes that have been converted to DMA buffer so far
-
- uint8_t *next_app_buf; // Next buffer from application after current one finishes
- uint32_t next_app_bytes; // Bytes in next buffer
- // PIO configurations
- uint32_t pio_offset_async_write;
- uint32_t pio_offset_async_read;
- pio_sm_config pio_cfg_async_write;
- pio_sm_config pio_cfg_async_read;
- // DMA configurations
- dma_channel_config dma_write_config;
- // We use two DMA buffers alternatively
- // The buffer contains the data bytes with parity added.
- scsidma_buf_sel_t dma_current_buf;
- uint32_t dma_countA;
- uint32_t dma_countB;
- uint32_t dma_bufA[DMA_BUF_SIZE];
- uint32_t dma_bufB[DMA_BUF_SIZE];
- } g_scsi_dma;
- enum scsidma_state_t { SCSIDMA_IDLE = 0,
- SCSIDMA_WRITE, SCSIDMA_WRITE_DONE,
- SCSIDMA_READ };
- static volatile scsidma_state_t g_scsi_dma_state;
- static bool g_channels_claimed = false;
- // Fill DMA buffer and return number of words ready to be transferred
- static uint32_t refill_dmabuf(uint32_t *buf)
- {
- uint32_t count = (g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes) / 2;
- if (count > DMA_BUF_SIZE) count = DMA_BUF_SIZE;
- uint16_t *src = (uint16_t*)&g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
- uint16_t *end = src + count;
- uint32_t *dst = buf;
- while (src < end)
- {
- uint16_t input = *src++;
- *dst++ = (g_scsi_parity_lookup[input & 0xFF])
- | ((g_scsi_parity_lookup[input >> 8]) << 16);
- }
- g_scsi_dma.dma_bytes += count * 2;
- // Check if this buffer has been fully processed
- if (g_scsi_dma.dma_bytes >= g_scsi_dma.app_bytes)
- {
- assert(g_scsi_dma.dma_bytes == g_scsi_dma.app_bytes);
- g_scsi_dma.dma_bytes = 0;
- g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
- g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
- g_scsi_dma.next_app_buf = 0;
- g_scsi_dma.next_app_bytes = 0;
- }
- return count;
- }
- // Select GPIO from PIO peripheral or from software controlled SIO
- static void scsidma_config_gpio()
- {
- if (g_scsi_dma_state == SCSIDMA_IDLE)
- {
- iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_SIO;
- }
- else if (g_scsi_dma_state == SCSIDMA_WRITE)
- {
- // Make sure the initial state of all pins is high and output
- pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DMA_SM, 0x3FF);
- pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DMA_SM, 0, 10, true);
- iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_PIO0;
- iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_PIO0;
- iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_PIO0;
- iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_PIO0;
- iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_PIO0;
- iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_PIO0;
- iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_PIO0;
- iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_PIO0;
- iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_PIO0;
- iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
- }
- else if (g_scsi_dma_state == SCSIDMA_READ)
- {
- // Data bus as input, REQ pin as output
- pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DMA_SM, 0x3FF);
- pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DMA_SM, 0, 9, false);
- pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DMA_SM, 9, 1, true);
- iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
- iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
- }
- }
- static void start_dma_write()
- {
- // Prefill both DMA buffers
- g_scsi_dma.dma_countA = refill_dmabuf(g_scsi_dma.dma_bufA);
- g_scsi_dma.dma_countB = refill_dmabuf(g_scsi_dma.dma_bufB);
-
- // Start DMA from buffer A
- g_scsi_dma.dma_current_buf = SCSIBUF_A;
- dma_channel_configure(SCSI_DMA_CH,
- &g_scsi_dma.dma_write_config,
- &SCSI_DMA_PIO->txf[SCSI_DMA_SM],
- g_scsi_dma.dma_bufA,
- g_scsi_dma.dma_countA,
- true
- );
- }
- static void scsi_dma_write_irq()
- {
- dma_hw->ints0 = 1 << SCSI_DMA_CH;
- if (g_scsi_dma.dma_current_buf == SCSIBUF_A)
- {
- // Transfer from buffer A finished
- g_scsi_dma.dma_countA = 0;
- g_scsi_dma.dma_current_buf = SCSIBUF_NONE;
- if (g_scsi_dma.dma_countB != 0)
- {
- // Start transferring buffer B immediately
- dma_channel_set_trans_count(SCSI_DMA_CH, g_scsi_dma.dma_countB, false);
- dma_channel_set_read_addr(SCSI_DMA_CH, g_scsi_dma.dma_bufB, true);
- g_scsi_dma.dma_current_buf = SCSIBUF_B;
- // Refill buffer A for next time
- g_scsi_dma.dma_countA = refill_dmabuf(g_scsi_dma.dma_bufA);
- }
- }
- else
- {
- // Transfer from buffer B finished
- g_scsi_dma.dma_countB = 0;
- g_scsi_dma.dma_current_buf = SCSIBUF_NONE;
- if (g_scsi_dma.dma_countA != 0)
- {
- // Start transferring buffer A immediately
- dma_channel_set_trans_count(SCSI_DMA_CH, g_scsi_dma.dma_countA, false);
- dma_channel_set_read_addr(SCSI_DMA_CH, g_scsi_dma.dma_bufA, true);
- g_scsi_dma.dma_current_buf = SCSIBUF_A;
- // Refill buffer B for next time
- g_scsi_dma.dma_countB = refill_dmabuf(g_scsi_dma.dma_bufB);
- }
- }
- if (g_scsi_dma.dma_current_buf == SCSIBUF_NONE)
- {
- // Both buffers are empty, check if we have more data
- g_scsi_dma.dma_countA = refill_dmabuf(g_scsi_dma.dma_bufA);
- if (g_scsi_dma.dma_countA == 0)
- {
- // End of data for DMA, but PIO may still have bytes in its buffer
- g_scsi_dma_state = SCSIDMA_WRITE_DONE;
- }
- else
- {
- // Start transfer from buffer A
- dma_channel_set_trans_count(SCSI_DMA_CH, g_scsi_dma.dma_countA, false);
- dma_channel_set_read_addr(SCSI_DMA_CH, g_scsi_dma.dma_bufA, true);
- g_scsi_dma.dma_current_buf = SCSIBUF_A;
- // Refill B for the next interrupt
- g_scsi_dma.dma_countB = refill_dmabuf(g_scsi_dma.dma_bufB);
- }
- }
- }
- void scsi_accel_rp2040_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag)
- {
- // Number of bytes should always be divisible by 2.
- assert((count & 1) == 0);
- __disable_irq();
- if (g_scsi_dma_state == SCSIDMA_WRITE)
- {
- if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
- {
- // Combine with currently running request
- g_scsi_dma.app_bytes += count;
- count = 0;
- }
- else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
- {
- // Combine with queued request
- g_scsi_dma.next_app_bytes += count;
- count = 0;
- }
- else if (!g_scsi_dma.next_app_buf)
- {
- // Add as queued request
- g_scsi_dma.next_app_buf = (uint8_t*)data;
- g_scsi_dma.next_app_bytes = count;
- count = 0;
- }
- }
- __enable_irq();
- // Check if the request was combined
- if (count == 0) return;
- if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_WRITE_DONE)
- {
- // Wait for previous request to finish
- scsi_accel_rp2040_finishWrite(resetFlag);
- if (*resetFlag)
- {
- return;
- }
- }
- bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
- g_scsi_dma_state = SCSIDMA_WRITE;
- g_scsi_dma.app_buf = (uint8_t*)data;
- g_scsi_dma.app_bytes = count;
- g_scsi_dma.dma_bytes = 0;
- g_scsi_dma.next_app_buf = 0;
- g_scsi_dma.next_app_bytes = 0;
- g_scsi_dma.dma_current_buf = SCSIBUF_NONE;
-
- if (must_reconfig_gpio)
- {
- SCSI_ENABLE_DATA_OUT();
- pio_sm_init(SCSI_DMA_PIO, SCSI_DMA_SM, g_scsi_dma.pio_offset_async_write, &g_scsi_dma.pio_cfg_async_write);
- scsidma_config_gpio();
- pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DMA_SM, true);
-
- dma_channel_set_irq0_enabled(SCSI_DMA_CH, true);
- irq_set_exclusive_handler(DMA_IRQ_0, scsi_dma_write_irq);
- irq_set_enabled(DMA_IRQ_0, true);
- }
- start_dma_write();
- }
- bool scsi_accel_rp2040_isWriteFinished(const uint8_t* data)
- {
- // Check if everything has completed
- if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_WRITE_DONE)
- {
- return true;
- }
- if (!data)
- return false;
-
- // Check if this data item is still in queue.
- __disable_irq();
- bool finished = true;
- if (data >= g_scsi_dma.app_buf + g_scsi_dma.dma_bytes &&
- data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
- {
- finished = false; // In current transfer
- }
- else if (data >= g_scsi_dma.next_app_buf &&
- data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
- {
- finished = false; // In queued transfer
- }
- __enable_irq();
- return finished;
- }
- void scsi_accel_rp2040_stopWrite(volatile int *resetFlag)
- {
- // Wait for TX fifo to be empty and ACK to go high
- uint32_t start = millis();
- while ((!pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_DMA_SM) || SCSI_IN(ACK)) && !*resetFlag)
- {
- if ((uint32_t)(millis() - start) > 5000)
- {
- azlog("scsi_accel_rp2040_stopWrite() timeout");
- *resetFlag = 1;
- break;
- }
- }
- dma_channel_abort(SCSI_DMA_CH);
- dma_channel_set_irq0_enabled(SCSI_DMA_CH, false);
- g_scsi_dma_state = SCSIDMA_IDLE;
- SCSI_RELEASE_DATA_REQ();
- scsidma_config_gpio();
- pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DMA_SM, false);
- }
- void scsi_accel_rp2040_finishWrite(volatile int *resetFlag)
- {
- uint32_t start = millis();
- while (g_scsi_dma_state != SCSIDMA_IDLE && !*resetFlag)
- {
- if ((uint32_t)(millis() - start) > 5000)
- {
- azlog("scsi_accel_rp2040_finishWrite() timeout");
- *resetFlag = 1;
- break;
- }
- if (g_scsi_dma_state == SCSIDMA_WRITE_DONE)
- {
- // DMA done, wait for PIO to finish also and reconfig GPIO.
- scsi_accel_rp2040_stopWrite(resetFlag);
- }
- }
- }
- void scsi_accel_rp2040_read(uint8_t *buf, uint32_t count, int *parityError, volatile int *resetFlag)
- {
- // The hardware would support DMA for reading from SCSI bus also, but currently
- // the rest of the software architecture does not. There is not much benefit
- // because there isn't much else to do before we get the data from the SCSI bus.
- //
- // Currently this method just reads from the PIO RX fifo directly in software loop.
-
- g_scsi_dma_state = SCSIDMA_READ;
- pio_sm_init(SCSI_DMA_PIO, SCSI_DMA_SM, g_scsi_dma.pio_offset_async_read, &g_scsi_dma.pio_cfg_async_read);
- scsidma_config_gpio();
- pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DMA_SM, true);
- // Set the number of bytes to read, must be divisible by 2.
- assert((count & 1) == 0);
- pio_sm_put(SCSI_DMA_PIO, SCSI_DMA_SM, count - 1);
- // Read results from PIO RX FIFO
- uint8_t *dst = buf;
- uint8_t *end = buf + count;
- uint32_t paritycheck = 0;
- while (dst < end)
- {
- if (*resetFlag)
- {
- break;
- }
- uint32_t available = pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DMA_SM);
- while (available > 0)
- {
- available--;
- uint32_t word = pio_sm_get(SCSI_DMA_PIO, SCSI_DMA_SM);
- paritycheck ^= word;
- word = ~word;
- *dst++ = word & 0xFF;
- *dst++ = word >> 16;
- }
- }
- // Check parity errors in whole block
- // This doesn't detect if there is even number of parity errors in block.
- uint8_t byte0 = ~(paritycheck & 0xFF);
- uint8_t byte1 = ~(paritycheck >> 16);
- if (paritycheck != ((g_scsi_parity_lookup[byte1] << 16) | g_scsi_parity_lookup[byte0]))
- {
- azlog("Parity error in scsi_accel_rp2040_read(): ", paritycheck);
- *parityError = 1;
- }
- g_scsi_dma_state = SCSIDMA_IDLE;
- SCSI_RELEASE_DATA_REQ();
- scsidma_config_gpio();
- pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DMA_SM, false);
- }
- void scsi_accel_rp2040_init()
- {
- g_scsi_dma_state = SCSIDMA_IDLE;
- scsidma_config_gpio();
- // Mark channels as being in use, unless it has been done already
- if (!g_channels_claimed)
- {
- pio_sm_claim(SCSI_DMA_PIO, SCSI_DMA_SM);
- dma_channel_claim(SCSI_DMA_CH);
- g_channels_claimed = true;
- }
- // Load PIO programs
- pio_clear_instruction_memory(SCSI_DMA_PIO);
-
- // Asynchronous SCSI write
- g_scsi_dma.pio_offset_async_write = pio_add_program(SCSI_DMA_PIO, &scsi_accel_async_write_program);
- g_scsi_dma.pio_cfg_async_write = scsi_accel_async_write_program_get_default_config(g_scsi_dma.pio_offset_async_write);
- sm_config_set_out_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_IO_DB0, 9);
- sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_OUT_REQ);
- sm_config_set_fifo_join(&g_scsi_dma.pio_cfg_async_write, PIO_FIFO_JOIN_TX);
- sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_write, true, false, 32);
- // Asynchronous SCSI read
- g_scsi_dma.pio_offset_async_read = pio_add_program(SCSI_DMA_PIO, &scsi_accel_async_read_program);
- g_scsi_dma.pio_cfg_async_read = scsi_accel_async_read_program_get_default_config(g_scsi_dma.pio_offset_async_read);
- sm_config_set_in_pins(&g_scsi_dma.pio_cfg_async_read, SCSI_IO_DB0);
- sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_read, SCSI_OUT_REQ);
- sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_write, true, false, 32);
- sm_config_set_in_shift(&g_scsi_dma.pio_cfg_async_read, true, true, 32);
- // Create DMA channel configuration so it can be applied quickly later
- dma_channel_config cfg = dma_channel_get_default_config(SCSI_DMA_CH);
- channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
- channel_config_set_read_increment(&cfg, true);
- channel_config_set_write_increment(&cfg, false);
- channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DMA_SM, true));
- g_scsi_dma.dma_write_config = cfg;
- }
|