BlueSCSI_initiator.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845
  1. /*
  2. * ZuluSCSI
  3. * Copyright (c) 2022 Rabbit Hole Computing
  4. *
  5. * Main program for initiator mode.
  6. */
  7. #include "BlueSCSI_config.h"
  8. #include "BlueSCSI_log.h"
  9. #include "BlueSCSI_log_trace.h"
  10. #include "BlueSCSI_initiator.h"
  11. #include <BlueSCSI_platform.h>
  12. #include <minIni.h>
  13. #include "SdFat.h"
  14. #include <scsi2sd.h>
  15. extern "C" {
  16. #include <scsi.h>
  17. }
  18. #ifndef PLATFORM_HAS_INITIATOR_MODE
  19. void scsiInitiatorInit()
  20. {
  21. }
  22. void scsiInitiatorMainLoop()
  23. {
  24. }
  25. int scsiInitiatorRunCommand(const uint8_t *command, size_t cmdlen,
  26. uint8_t *bufIn, size_t bufInLen,
  27. const uint8_t *bufOut, size_t bufOutLen)
  28. {
  29. return -1;
  30. }
  31. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  32. {
  33. return false;
  34. }
  35. #else
  36. /*************************************
  37. * High level initiator mode logic *
  38. *************************************/
  39. static struct {
  40. // Bitmap of all drives that have been imaged
  41. uint32_t drives_imaged;
  42. uint8_t initiator_id;
  43. // Is imaging a drive in progress, or are we scanning?
  44. bool imaging;
  45. // Information about currently selected drive
  46. int target_id;
  47. uint32_t sectorsize;
  48. uint32_t sectorcount;
  49. uint32_t sectorcount_all;
  50. uint32_t sectors_done;
  51. uint32_t max_sector_per_transfer;
  52. uint32_t badSectorCount;
  53. uint8_t ansiVersion;
  54. uint8_t maxRetryCount;
  55. uint8_t deviceType;
  56. // Retry information for sector reads.
  57. // If a large read fails, retry is done sector-by-sector.
  58. int retrycount;
  59. uint32_t failposition;
  60. bool ejectWhenDone;
  61. FsFile target_file;
  62. } g_initiator_state;
  63. extern SdFs SD;
  64. // Initialization of initiator mode
  65. void scsiInitiatorInit()
  66. {
  67. scsiHostPhyReset();
  68. g_initiator_state.initiator_id = ini_getl("SCSI", "InitiatorID", 7, CONFIGFILE);
  69. if (g_initiator_state.initiator_id > 7)
  70. {
  71. log("InitiatorID set to illegal value in, ", CONFIGFILE, ", defaulting to 7");
  72. g_initiator_state.initiator_id = 7;
  73. } else
  74. {
  75. log_f("InitiatorID set to ID %d", g_initiator_state.initiator_id);
  76. }
  77. g_initiator_state.maxRetryCount = ini_getl("SCSI", "InitiatorMaxRetry", 5, CONFIGFILE);
  78. // treat initiator id as already imaged drive so it gets skipped
  79. g_initiator_state.drives_imaged = 1 << g_initiator_state.initiator_id;
  80. g_initiator_state.imaging = false;
  81. g_initiator_state.target_id = -1;
  82. g_initiator_state.sectorsize = 0;
  83. g_initiator_state.sectorcount = 0;
  84. g_initiator_state.sectors_done = 0;
  85. g_initiator_state.retrycount = 0;
  86. g_initiator_state.failposition = 0;
  87. g_initiator_state.max_sector_per_transfer = 512;
  88. g_initiator_state.ansiVersion = 0;
  89. g_initiator_state.badSectorCount = 0;
  90. g_initiator_state.deviceType = DEVICE_TYPE_DIRECT_ACCESS;
  91. g_initiator_state.ejectWhenDone = false;
  92. }
  93. // Update progress bar LED during transfers
  94. static void scsiInitiatorUpdateLed()
  95. {
  96. // Update status indicator, the led blinks every 5 seconds and is on the longer the more data has been transferred
  97. const int period = 256;
  98. int phase = (millis() % period);
  99. int duty = g_initiator_state.sectors_done * period / g_initiator_state.sectorcount;
  100. // Minimum and maximum time to verify that the blink is visible
  101. if (duty < 50) duty = 50;
  102. if (duty > period - 50) duty = period - 50;
  103. if (phase <= duty)
  104. {
  105. LED_ON();
  106. }
  107. else
  108. {
  109. LED_OFF();
  110. }
  111. }
  112. void delay_with_poll(uint32_t ms)
  113. {
  114. uint32_t start = millis();
  115. while ((uint32_t)(millis() - start) < ms)
  116. {
  117. platform_poll();
  118. delay(1);
  119. }
  120. }
  121. // High level logic of the initiator mode
  122. void scsiInitiatorMainLoop()
  123. {
  124. SCSI_RELEASE_OUTPUTS();
  125. SCSI_ENABLE_INITIATOR();
  126. if (g_scsiHostPhyReset)
  127. {
  128. log("Executing BUS RESET after aborted command");
  129. scsiHostPhyReset();
  130. }
  131. if (!g_initiator_state.imaging)
  132. {
  133. // Scan for SCSI drives one at a time
  134. g_initiator_state.target_id = (g_initiator_state.target_id + 1) % 8;
  135. g_initiator_state.sectors_done = 0;
  136. g_initiator_state.retrycount = 0;
  137. g_initiator_state.max_sector_per_transfer = 512;
  138. g_initiator_state.badSectorCount = 0;
  139. g_initiator_state.ejectWhenDone = false;
  140. if (!(g_initiator_state.drives_imaged & (1 << g_initiator_state.target_id)))
  141. {
  142. delay_with_poll(1000);
  143. uint8_t inquiry_data[36] = {0};
  144. LED_ON();
  145. bool startstopok =
  146. scsiTestUnitReady(g_initiator_state.target_id) &&
  147. scsiStartStopUnit(g_initiator_state.target_id, true);
  148. bool readcapok = startstopok &&
  149. scsiInitiatorReadCapacity(g_initiator_state.target_id,
  150. &g_initiator_state.sectorcount,
  151. &g_initiator_state.sectorsize);
  152. bool inquiryok = startstopok &&
  153. scsiInquiry(g_initiator_state.target_id, inquiry_data);
  154. g_initiator_state.ansiVersion = inquiry_data[2] & 0x7;
  155. LED_OFF();
  156. uint64_t total_bytes = 0;
  157. if (readcapok)
  158. {
  159. log("SCSI ID ", g_initiator_state.target_id,
  160. " capacity ", (int)g_initiator_state.sectorcount,
  161. " sectors x ", (int)g_initiator_state.sectorsize, " bytes");
  162. log_f("SCSI-%d: Vendor: %.8s, Product: %.16s, Version: %.4s",
  163. g_initiator_state.ansiVersion,
  164. &inquiry_data[8],
  165. &inquiry_data[16],
  166. &inquiry_data[32]);
  167. // Check for well known ejectable media.
  168. if(strncmp((char*)(&inquiry_data[8]), "IOMEGA", 6) == 0 &&
  169. strncmp((char*)(&inquiry_data[16]), "ZIP", 3) == 0)
  170. {
  171. g_initiator_state.ejectWhenDone = true;
  172. }
  173. g_initiator_state.sectorcount_all = g_initiator_state.sectorcount;
  174. total_bytes = (uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize;
  175. log("Drive total size is ", (int)(total_bytes / (1024 * 1024)), " MiB");
  176. if (total_bytes >= 0xFFFFFFFF && SD.fatType() != FAT_TYPE_EXFAT)
  177. {
  178. // Note: the FAT32 limit is 4 GiB - 1 byte
  179. log("Image files equal or larger than 4 GiB are only possible on exFAT filesystem");
  180. log("Please reformat the SD card with exFAT format to image this drive.");
  181. g_initiator_state.sectorsize = 0;
  182. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  183. }
  184. if(g_initiator_state.ansiVersion < 0x02)
  185. {
  186. // this is a SCSI-1 drive, use READ6 and 256 bytes to be safe.
  187. g_initiator_state.max_sector_per_transfer = 256;
  188. }
  189. }
  190. else if (startstopok)
  191. {
  192. log("SCSI ID ", g_initiator_state.target_id, " responds but ReadCapacity command failed");
  193. log("Possibly SCSI-1 drive? Attempting to read up to 1 GB.");
  194. g_initiator_state.sectorsize = 512;
  195. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 2097152;
  196. g_initiator_state.max_sector_per_transfer = 128;
  197. }
  198. else
  199. {
  200. log("* No response from SCSI ID ", g_initiator_state.target_id);
  201. g_initiator_state.sectorsize = 0;
  202. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  203. }
  204. const char *filename_format = "HD00_imaged.hda";
  205. if (inquiryok)
  206. {
  207. g_initiator_state.deviceType = inquiry_data[0] & 0x1F;
  208. if (g_initiator_state.deviceType == DEVICE_TYPE_CD)
  209. {
  210. filename_format = "CD00_imaged.iso";
  211. g_initiator_state.ejectWhenDone = true;
  212. }
  213. else if(g_initiator_state.deviceType != DEVICE_TYPE_DIRECT_ACCESS)
  214. {
  215. log("Unhandled device type: ", g_initiator_state.deviceType, ". Handling it as Direct Access Device.");
  216. }
  217. }
  218. if (g_initiator_state.sectorcount > 0)
  219. {
  220. char filename[32] = {0};
  221. int lun = 0;
  222. strncpy(filename, filename_format, sizeof(filename) - 1);
  223. filename[2] += g_initiator_state.target_id;
  224. uint64_t sd_card_free_bytes = (uint64_t)SD.vol()->freeClusterCount() * SD.vol()->bytesPerCluster();
  225. if(sd_card_free_bytes < total_bytes)
  226. {
  227. log("SD Card only has ", (int)(sd_card_free_bytes / (1024 * 1024)), " MiB - not enough free space to image this drive!");
  228. g_initiator_state.imaging = false;
  229. return;
  230. }
  231. while(SD.exists(filename))
  232. {
  233. filename[3] = lun++ + '0';
  234. }
  235. if(lun != 0)
  236. {
  237. log("Using filename: ", filename, " to avoid overwriting existing file.");
  238. }
  239. g_initiator_state.target_file = SD.open(filename, O_WRONLY | O_CREAT | O_TRUNC);
  240. if (!g_initiator_state.target_file.isOpen())
  241. {
  242. log("Failed to open file for writing: ", filename);
  243. return;
  244. }
  245. if (SD.fatType() == FAT_TYPE_EXFAT)
  246. {
  247. // Only preallocate on exFAT, on FAT32 preallocating can result in false garbage data in the
  248. // file if write is interrupted.
  249. log("Preallocating image file");
  250. g_initiator_state.target_file.preAllocate((uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize);
  251. }
  252. log("Starting to copy drive data to ", filename);
  253. g_initiator_state.imaging = true;
  254. }
  255. }
  256. }
  257. else
  258. {
  259. // Copy sectors from SCSI drive to file
  260. if (g_initiator_state.sectors_done >= g_initiator_state.sectorcount)
  261. {
  262. scsiStartStopUnit(g_initiator_state.target_id, false);
  263. log("Finished imaging drive with id ", g_initiator_state.target_id);
  264. LED_OFF();
  265. if (g_initiator_state.sectorcount != g_initiator_state.sectorcount_all)
  266. {
  267. log("NOTE: Image size was limited to first 4 GiB due to SD card filesystem limit");
  268. log("Please reformat the SD card with exFAT format to image this drive fully");
  269. }
  270. if(g_initiator_state.badSectorCount != 0)
  271. {
  272. log_f("NOTE: There were %d bad sectors that could not be read off this drive.", g_initiator_state.badSectorCount);
  273. }
  274. if(!g_initiator_state.ejectWhenDone)
  275. {
  276. log("Marking this ID as imaged, wont ask it again.");
  277. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  278. }
  279. g_initiator_state.imaging = false;
  280. g_initiator_state.target_file.close();
  281. return;
  282. }
  283. scsiInitiatorUpdateLed();
  284. // How many sectors to read in one batch?
  285. int numtoread = g_initiator_state.sectorcount - g_initiator_state.sectors_done;
  286. if (numtoread > g_initiator_state.max_sector_per_transfer)
  287. numtoread = g_initiator_state.max_sector_per_transfer;
  288. // Retry sector-by-sector after failure
  289. if (g_initiator_state.sectors_done < g_initiator_state.failposition)
  290. numtoread = 1;
  291. uint32_t time_start = millis();
  292. bool status = scsiInitiatorReadDataToFile(g_initiator_state.target_id,
  293. g_initiator_state.sectors_done, numtoread, g_initiator_state.sectorsize,
  294. g_initiator_state.target_file);
  295. if (!status)
  296. {
  297. log("Failed to transfer ", numtoread, " sectors starting at ", (int)g_initiator_state.sectors_done);
  298. if (g_initiator_state.retrycount < g_initiator_state.maxRetryCount)
  299. {
  300. log("Retrying.. ", g_initiator_state.retrycount + 1, "/", (int)g_initiator_state.maxRetryCount);
  301. delay_with_poll(200);
  302. // This reset causes some drives to hang and seems to have no effect if left off.
  303. // scsiHostPhyReset();
  304. delay_with_poll(200);
  305. g_initiator_state.retrycount++;
  306. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  307. if (g_initiator_state.retrycount > 1 && numtoread > 1)
  308. {
  309. log("Multiple failures, retrying sector-by-sector");
  310. g_initiator_state.failposition = g_initiator_state.sectors_done + numtoread;
  311. }
  312. }
  313. else
  314. {
  315. log("Retry limit exceeded, skipping one sector");
  316. g_initiator_state.retrycount = 0;
  317. g_initiator_state.sectors_done++;
  318. g_initiator_state.badSectorCount++;
  319. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  320. }
  321. }
  322. else
  323. {
  324. g_initiator_state.retrycount = 0;
  325. g_initiator_state.sectors_done += numtoread;
  326. g_initiator_state.target_file.flush();
  327. int speed_kbps = numtoread * g_initiator_state.sectorsize / (millis() - time_start);
  328. log_f("SCSI read succeeded, sectors done: %d / %d speed %d kB/s - %.2f%%",
  329. g_initiator_state.sectors_done, g_initiator_state.sectorcount, speed_kbps,
  330. (float)(((float)g_initiator_state.sectors_done / (float)g_initiator_state.sectorcount) * 100.0));
  331. }
  332. }
  333. }
  334. /*************************************
  335. * Low level command implementations *
  336. *************************************/
  337. int scsiInitiatorRunCommand(int target_id,
  338. const uint8_t *command, size_t cmdLen,
  339. uint8_t *bufIn, size_t bufInLen,
  340. const uint8_t *bufOut, size_t bufOutLen,
  341. bool returnDataPhase)
  342. {
  343. if (!scsiHostPhySelect(target_id, g_initiator_state.initiator_id))
  344. {
  345. debuglog("------ Target ", target_id, " did not respond");
  346. scsiHostPhyRelease();
  347. return -1;
  348. }
  349. SCSI_PHASE phase;
  350. int status = -1;
  351. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  352. {
  353. platform_poll();
  354. if (phase == MESSAGE_IN)
  355. {
  356. uint8_t dummy = 0;
  357. scsiHostRead(&dummy, 1);
  358. }
  359. else if (phase == MESSAGE_OUT)
  360. {
  361. uint8_t identify_msg = 0x80;
  362. scsiHostWrite(&identify_msg, 1);
  363. }
  364. else if (phase == COMMAND)
  365. {
  366. scsiHostWrite(command, cmdLen);
  367. }
  368. else if (phase == DATA_IN)
  369. {
  370. if (returnDataPhase) return 0;
  371. if (bufInLen == 0)
  372. {
  373. log("DATA_IN phase but no data to receive!");
  374. status = -3;
  375. break;
  376. }
  377. if (scsiHostRead(bufIn, bufInLen) == 0)
  378. {
  379. log("scsiHostRead failed, tried to read ", (int)bufInLen, " bytes");
  380. status = -2;
  381. break;
  382. }
  383. }
  384. else if (phase == DATA_OUT)
  385. {
  386. if (returnDataPhase) return 0;
  387. if (bufOutLen == 0)
  388. {
  389. log("DATA_OUT phase but no data to send!");
  390. status = -3;
  391. break;
  392. }
  393. if (scsiHostWrite(bufOut, bufOutLen) < bufOutLen)
  394. {
  395. log("scsiHostWrite failed, was writing ", bytearray(bufOut, bufOutLen));
  396. status = -2;
  397. break;
  398. }
  399. }
  400. else if (phase == STATUS)
  401. {
  402. uint8_t tmp = -1;
  403. scsiHostRead(&tmp, 1);
  404. status = tmp;
  405. debuglog("------ STATUS: ", tmp);
  406. }
  407. }
  408. scsiHostPhyRelease();
  409. return status;
  410. }
  411. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  412. {
  413. uint8_t command[10] = {0x25, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  414. uint8_t response[8] = {0};
  415. int status = scsiInitiatorRunCommand(target_id,
  416. command, sizeof(command),
  417. response, sizeof(response),
  418. NULL, 0);
  419. if (status == 0)
  420. {
  421. *sectorcount = ((uint32_t)response[0] << 24)
  422. | ((uint32_t)response[1] << 16)
  423. | ((uint32_t)response[2] << 8)
  424. | ((uint32_t)response[3] << 0);
  425. *sectorcount += 1; // SCSI reports last sector address
  426. *sectorsize = ((uint32_t)response[4] << 24)
  427. | ((uint32_t)response[5] << 16)
  428. | ((uint32_t)response[6] << 8)
  429. | ((uint32_t)response[7] << 0);
  430. return true;
  431. }
  432. else if (status == 2)
  433. {
  434. uint8_t sense_key;
  435. scsiRequestSense(target_id, &sense_key);
  436. log("READ CAPACITY on target ", target_id, " failed, sense key ", sense_key);
  437. return false;
  438. }
  439. else
  440. {
  441. *sectorcount = *sectorsize = 0;
  442. return false;
  443. }
  444. }
  445. // Execute REQUEST SENSE command to get more information about error status
  446. bool scsiRequestSense(int target_id, uint8_t *sense_key)
  447. {
  448. uint8_t command[6] = {0x03, 0, 0, 0, 18, 0};
  449. uint8_t response[18] = {0};
  450. int status = scsiInitiatorRunCommand(target_id,
  451. command, sizeof(command),
  452. response, sizeof(response),
  453. NULL, 0);
  454. log("RequestSense response: ", bytearray(response, 18));
  455. *sense_key = response[2] & 0x0F;
  456. return status == 0;
  457. }
  458. // Execute UNIT START STOP command to load/unload media
  459. bool scsiStartStopUnit(int target_id, bool start)
  460. {
  461. uint8_t command[6] = {0x1B, 0x1, 0, 0, 0, 0};
  462. uint8_t response[4] = {0};
  463. if (start)
  464. {
  465. command[4] |= 1; // Start
  466. command[1] = 0; // Immediate
  467. }
  468. else // stop
  469. {
  470. if(g_initiator_state.deviceType == DEVICE_TYPE_CD)
  471. {
  472. command[4] = 0b00000010; // eject(6), stop(7).
  473. }
  474. }
  475. int status = scsiInitiatorRunCommand(target_id,
  476. command, sizeof(command),
  477. response, sizeof(response),
  478. NULL, 0);
  479. if (status == 2)
  480. {
  481. uint8_t sense_key;
  482. scsiRequestSense(target_id, &sense_key);
  483. log("START STOP UNIT on target ", target_id, " failed, sense key ", sense_key);
  484. }
  485. return status == 0;
  486. }
  487. // Execute INQUIRY command
  488. bool scsiInquiry(int target_id, uint8_t inquiry_data[36])
  489. {
  490. uint8_t command[6] = {0x12, 0, 0, 0, 36, 0};
  491. int status = scsiInitiatorRunCommand(target_id,
  492. command, sizeof(command),
  493. inquiry_data, 36,
  494. NULL, 0);
  495. return status == 0;
  496. }
  497. // Execute TEST UNIT READY command and handle unit attention state
  498. bool scsiTestUnitReady(int target_id)
  499. {
  500. for (int retries = 0; retries < 2; retries++)
  501. {
  502. uint8_t command[6] = {0x00, 0, 0, 0, 0, 0};
  503. int status = scsiInitiatorRunCommand(target_id,
  504. command, sizeof(command),
  505. NULL, 0,
  506. NULL, 0);
  507. if (status == 0)
  508. {
  509. return true;
  510. }
  511. else if (status == -1)
  512. {
  513. // No response to select
  514. return false;
  515. }
  516. else if (status == 2)
  517. {
  518. uint8_t sense_key;
  519. scsiRequestSense(target_id, &sense_key);
  520. if (sense_key == 6)
  521. {
  522. uint8_t inquiry[36];
  523. log("Target ", target_id, " reports UNIT_ATTENTION, running INQUIRY");
  524. scsiInquiry(target_id, inquiry);
  525. }
  526. else if (sense_key == 2)
  527. {
  528. log("Target ", target_id, " reports NOT_READY, running STARTSTOPUNIT");
  529. scsiStartStopUnit(target_id, true);
  530. }
  531. }
  532. else
  533. {
  534. log("Target ", target_id, " TEST UNIT READY response: ", status);
  535. }
  536. }
  537. return false;
  538. }
  539. // This uses callbacks to run SD and SCSI transfers in parallel
  540. static struct {
  541. uint32_t bytes_sd; // Number of bytes that have been transferred on SD card side
  542. uint32_t bytes_sd_scheduled; // Number of bytes scheduled for transfer on SD card side
  543. uint32_t bytes_scsi; // Number of bytes that have been scheduled for transfer on SCSI side
  544. uint32_t bytes_scsi_done; // Number of bytes that have been transferred on SCSI side
  545. uint32_t bytes_per_sector;
  546. bool all_ok;
  547. } g_initiator_transfer;
  548. static void initiatorReadSDCallback(uint32_t bytes_complete)
  549. {
  550. if (g_initiator_transfer.bytes_scsi_done < g_initiator_transfer.bytes_scsi)
  551. {
  552. // How many bytes remaining in the transfer?
  553. uint32_t remain = g_initiator_transfer.bytes_scsi - g_initiator_transfer.bytes_scsi_done;
  554. uint32_t len = remain;
  555. // Limit maximum amount of data transferred at one go, to give enough callbacks to SD driver.
  556. // Select the limit based on total bytes in the transfer.
  557. // Transfer size is reduced towards the end of transfer to reduce the dead time between
  558. // end of SCSI transfer and the SD write completing.
  559. uint32_t limit = g_initiator_transfer.bytes_scsi / 8;
  560. uint32_t bytesPerSector = g_initiator_transfer.bytes_per_sector;
  561. if (limit < PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE;
  562. if (limit > PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE;
  563. if (limit > len) limit = PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE;
  564. if (limit < bytesPerSector) limit = bytesPerSector;
  565. if (len > limit)
  566. {
  567. len = limit;
  568. }
  569. // Split read so that it doesn't wrap around buffer edge
  570. uint32_t bufsize = sizeof(scsiDev.data);
  571. uint32_t start = (g_initiator_transfer.bytes_scsi_done % bufsize);
  572. if (start + len > bufsize)
  573. len = bufsize - start;
  574. // Don't overwrite data that has not yet been written to SD card
  575. uint32_t sd_ready_cnt = g_initiator_transfer.bytes_sd + bytes_complete;
  576. if (g_initiator_transfer.bytes_scsi_done + len > sd_ready_cnt + bufsize)
  577. len = sd_ready_cnt + bufsize - g_initiator_transfer.bytes_scsi_done;
  578. if (sd_ready_cnt == g_initiator_transfer.bytes_sd_scheduled &&
  579. g_initiator_transfer.bytes_sd_scheduled + bytesPerSector <= g_initiator_transfer.bytes_scsi_done)
  580. {
  581. // Current SD transfer is complete, it is better we return now and offer a chance for the next
  582. // transfer to begin.
  583. return;
  584. }
  585. // Keep transfers a multiple of sector size.
  586. if (remain >= bytesPerSector && len % bytesPerSector != 0)
  587. {
  588. len -= len % bytesPerSector;
  589. }
  590. if (len == 0)
  591. return;
  592. // debuglog("SCSI read ", (int)start, " + ", (int)len, ", sd ready cnt ", (int)sd_ready_cnt, " ", (int)bytes_complete, ", scsi done ", (int)g_initiator_transfer.bytes_scsi_done);
  593. if (scsiHostRead(&scsiDev.data[start], len) != len)
  594. {
  595. log("Read failed at byte ", (int)g_initiator_transfer.bytes_scsi_done);
  596. g_initiator_transfer.all_ok = false;
  597. }
  598. g_initiator_transfer.bytes_scsi_done += len;
  599. }
  600. }
  601. static void scsiInitiatorWriteDataToSd(FsFile &file, bool use_callback)
  602. {
  603. // Figure out longest continuous block in buffer
  604. uint32_t bufsize = sizeof(scsiDev.data);
  605. uint32_t start = g_initiator_transfer.bytes_sd % bufsize;
  606. uint32_t len = g_initiator_transfer.bytes_scsi_done - g_initiator_transfer.bytes_sd;
  607. if (start + len > bufsize) len = bufsize - start;
  608. // Try to do writes in multiple of 512 bytes
  609. // This allows better performance for SD card access.
  610. if (len >= 512) len &= ~511;
  611. // Start writing to SD card and simultaneously reading more from SCSI bus
  612. uint8_t *buf = &scsiDev.data[start];
  613. // debuglog("SD write ", (int)start, " + ", (int)len);
  614. if (use_callback)
  615. {
  616. platform_set_sd_callback(&initiatorReadSDCallback, buf);
  617. }
  618. g_initiator_transfer.bytes_sd_scheduled = g_initiator_transfer.bytes_sd + len;
  619. if (file.write(buf, len) != len)
  620. {
  621. log("scsiInitiatorReadDataToFile: SD card write failed");
  622. g_initiator_transfer.all_ok = false;
  623. }
  624. platform_set_sd_callback(NULL, NULL);
  625. g_initiator_transfer.bytes_sd += len;
  626. }
  627. bool scsiInitiatorReadDataToFile(int target_id, uint32_t start_sector, uint32_t sectorcount, uint32_t sectorsize,
  628. FsFile &file)
  629. {
  630. int status = -1;
  631. // Read6 command supports 21 bit LBA - max of 0x1FFFFF
  632. // ref: https://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068j.pdf pg 134
  633. if (g_initiator_state.ansiVersion < 0x02 || (start_sector < 0x1FFFFF && sectorcount <= 256))
  634. {
  635. // Use READ6 command for compatibility with old SCSI1 drives
  636. uint8_t command[6] = {0x08,
  637. (uint8_t)(start_sector >> 16),
  638. (uint8_t)(start_sector >> 8),
  639. (uint8_t)start_sector,
  640. (uint8_t)sectorcount,
  641. 0x00
  642. };
  643. // Start executing command, return in data phase
  644. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  645. }
  646. else
  647. {
  648. // Use READ10 command for larger number of blocks
  649. uint8_t command[10] = {0x28, 0x00,
  650. (uint8_t)(start_sector >> 24), (uint8_t)(start_sector >> 16),
  651. (uint8_t)(start_sector >> 8), (uint8_t)start_sector,
  652. 0x00,
  653. (uint8_t)(sectorcount >> 8), (uint8_t)(sectorcount),
  654. 0x00
  655. };
  656. // Start executing command, return in data phase
  657. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  658. }
  659. if (status != 0)
  660. {
  661. uint8_t sense_key;
  662. scsiRequestSense(target_id, &sense_key);
  663. log("scsiInitiatorReadDataToFile: READ failed: ", status, " sense key ", sense_key);
  664. scsiHostPhyRelease();
  665. return false;
  666. }
  667. SCSI_PHASE phase;
  668. g_initiator_transfer.bytes_scsi = sectorcount * sectorsize;
  669. g_initiator_transfer.bytes_per_sector = sectorsize;
  670. g_initiator_transfer.bytes_sd = 0;
  671. g_initiator_transfer.bytes_sd_scheduled = 0;
  672. g_initiator_transfer.bytes_scsi_done = 0;
  673. g_initiator_transfer.all_ok = true;
  674. while (true)
  675. {
  676. platform_poll();
  677. phase = (SCSI_PHASE)scsiHostPhyGetPhase();
  678. if (phase != DATA_IN && phase != BUS_BUSY)
  679. {
  680. break;
  681. }
  682. // Read next block from SCSI bus if buffer empty
  683. if (g_initiator_transfer.bytes_sd == g_initiator_transfer.bytes_scsi_done)
  684. {
  685. initiatorReadSDCallback(0);
  686. }
  687. else
  688. {
  689. // Write data to SD card and simultaneously read more from SCSI
  690. scsiInitiatorUpdateLed();
  691. scsiInitiatorWriteDataToSd(file, true);
  692. }
  693. }
  694. // Write any remaining buffered data
  695. while (g_initiator_transfer.bytes_sd < g_initiator_transfer.bytes_scsi_done)
  696. {
  697. platform_poll();
  698. scsiInitiatorWriteDataToSd(file, false);
  699. }
  700. if (g_initiator_transfer.bytes_sd != g_initiator_transfer.bytes_scsi)
  701. {
  702. log("SCSI read from sector ", (int)start_sector, " was incomplete: expected ",
  703. (int)g_initiator_transfer.bytes_scsi, " got ", (int)g_initiator_transfer.bytes_sd, " bytes");
  704. g_initiator_transfer.all_ok = false;
  705. }
  706. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  707. {
  708. platform_poll();
  709. if (phase == MESSAGE_IN)
  710. {
  711. uint8_t dummy = 0;
  712. scsiHostRead(&dummy, 1);
  713. }
  714. else if (phase == MESSAGE_OUT)
  715. {
  716. uint8_t identify_msg = 0x80;
  717. scsiHostWrite(&identify_msg, 1);
  718. }
  719. else if (phase == STATUS)
  720. {
  721. uint8_t tmp = 0;
  722. scsiHostRead(&tmp, 1);
  723. status = tmp;
  724. debuglog("------ STATUS: ", tmp);
  725. }
  726. }
  727. scsiHostPhyRelease();
  728. return status == 0 && g_initiator_transfer.all_ok;
  729. }
  730. #endif