| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 | 
							- /*
 
-  * (c) Copyright 1993, 1994, Silicon Graphics, Inc.
 
-  * ALL RIGHTS RESERVED
 
-  * Permission to use, copy, modify, and distribute this software for
 
-  * any purpose and without fee is hereby granted, provided that the above
 
-  * copyright notice appear in all copies and that both the copyright notice
 
-  * and this permission notice appear in supporting documentation, and that
 
-  * the name of Silicon Graphics, Inc. not be used in advertising
 
-  * or publicity pertaining to distribution of the software without specific,
 
-  * written prior permission.
 
-  *
 
-  * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
 
-  * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
 
-  * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
 
-  * FITNESS FOR A PARTICULAR PURPOSE.  IN NO EVENT SHALL SILICON
 
-  * GRAPHICS, INC.  BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
 
-  * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
 
-  * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
 
-  * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
 
-  * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC.  HAS BEEN
 
-  * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
 
-  * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
 
-  * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
 
-  *
 
-  * US Government Users Restricted Rights
 
-  * Use, duplication, or disclosure by the Government is subject to
 
-  * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
 
-  * (c)(1)(ii) of the Rights in Technical Data and Computer Software
 
-  * clause at DFARS 252.227-7013 and/or in similar or successor
 
-  * clauses in the FAR or the DOD or NASA FAR Supplement.
 
-  * Unpublished-- rights reserved under the copyright laws of the
 
-  * United States.  Contractor/manufacturer is Silicon Graphics,
 
-  * Inc., 2011 N.  Shoreline Blvd., Mountain View, CA 94039-7311.
 
-  *
 
-  * OpenGL(TM) is a trademark of Silicon Graphics, Inc.
 
-  */
 
- /*
 
-  * Trackball code:
 
-  *
 
-  * Implementation of a virtual trackball.
 
-  * Implemented by Gavin Bell, lots of ideas from Thant Tessman and
 
-  *   the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
 
-  *
 
-  * Vector manip code:
 
-  *
 
-  * Original code from:
 
-  * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
 
-  *
 
-  * Much mucking with by:
 
-  * Gavin Bell
 
-  */
 
- #include <math.h>
 
- #include "trackball.h"
 
- /*
 
-  * This size should really be based on the distance from the center of
 
-  * rotation to the point on the object underneath the mouse.  That
 
-  * point would then track the mouse as closely as possible.  This is a
 
-  * simple example, though, so that is left as an Exercise for the
 
-  * Programmer.
 
-  */
 
- #define TRACKBALLSIZE  (0.8f)
 
- /*
 
-  * Local function prototypes (not defined in trackball.h)
 
-  */
 
- static float tb_project_to_sphere(float, float, float);
 
- static void normalize_quat(float [4]);
 
- void
 
- vzero(float *v)
 
- {
 
-     v[0] = 0.0;
 
-     v[1] = 0.0;
 
-     v[2] = 0.0;
 
- }
 
- void
 
- vset(float *v, float x, float y, float z)
 
- {
 
-     v[0] = x;
 
-     v[1] = y;
 
-     v[2] = z;
 
- }
 
- void
 
- vsub(const float *src1, const float *src2, float *dst)
 
- {
 
-     dst[0] = src1[0] - src2[0];
 
-     dst[1] = src1[1] - src2[1];
 
-     dst[2] = src1[2] - src2[2];
 
- }
 
- void
 
- vcopy(const float *v1, float *v2)
 
- {
 
-     register int i;
 
-     for (i = 0 ; i < 3 ; i++)
 
-         v2[i] = v1[i];
 
- }
 
- void
 
- vcross(const float *v1, const float *v2, float *cross)
 
- {
 
-     float temp[3];
 
-     temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
 
-     temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
 
-     temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
 
-     vcopy(temp, cross);
 
- }
 
- float
 
- vlength(const float *v)
 
- {
 
-     return (float) sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
 
- }
 
- void
 
- vscale(float *v, float div)
 
- {
 
-     v[0] *= div;
 
-     v[1] *= div;
 
-     v[2] *= div;
 
- }
 
- void
 
- vnormal(float *v)
 
- {
 
-     vscale(v, 1.0f/vlength(v));
 
- }
 
- float
 
- vdot(const float *v1, const float *v2)
 
- {
 
-     return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
 
- }
 
- void
 
- vadd(const float *src1, const float *src2, float *dst)
 
- {
 
-     dst[0] = src1[0] + src2[0];
 
-     dst[1] = src1[1] + src2[1];
 
-     dst[2] = src1[2] + src2[2];
 
- }
 
- /*
 
-  * Ok, simulate a track-ball.  Project the points onto the virtual
 
-  * trackball, then figure out the axis of rotation, which is the cross
 
-  * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
 
-  * Note:  This is a deformed trackball-- is a trackball in the center,
 
-  * but is deformed into a hyperbolic sheet of rotation away from the
 
-  * center.  This particular function was chosen after trying out
 
-  * several variations.
 
-  *
 
-  * It is assumed that the arguments to this routine are in the range
 
-  * (-1.0 ... 1.0)
 
-  */
 
- void
 
- trackball(float q[4], float p1x, float p1y, float p2x, float p2y)
 
- {
 
-     float a[3]; /* Axis of rotation */
 
-     float phi;  /* how much to rotate about axis */
 
-     float p1[3], p2[3], d[3];
 
-     float t;
 
-     if (p1x == p2x && p1y == p2y) {
 
-         /* Zero rotation */
 
-         vzero(q);
 
-         q[3] = 1.0;
 
-         return;
 
-     }
 
-     /*
 
-      * First, figure out z-coordinates for projection of P1 and P2 to
 
-      * deformed sphere
 
-      */
 
-     vset(p1, p1x, p1y, tb_project_to_sphere(TRACKBALLSIZE, p1x, p1y));
 
-     vset(p2, p2x, p2y, tb_project_to_sphere(TRACKBALLSIZE, p2x, p2y));
 
-     /*
 
-      *  Now, we want the cross product of P1 and P2
 
-      */
 
-     vcross(p2,p1,a);
 
-     /*
 
-      *  Figure out how much to rotate around that axis.
 
-      */
 
-     vsub(p1, p2, d);
 
-     t = vlength(d) / (2.0f*TRACKBALLSIZE);
 
-     /*
 
-      * Avoid problems with out-of-control values...
 
-      */
 
-     if (t > 1.0) t = 1.0;
 
-     if (t < -1.0) t = -1.0;
 
-     phi = 2.0f * (float) asin(t);
 
-     axis_to_quat(a,phi,q);
 
- }
 
- /*
 
-  *  Given an axis and angle, compute quaternion.
 
-  */
 
- void
 
- axis_to_quat(float a[3], float phi, float q[4])
 
- {
 
-     vnormal(a);
 
-     vcopy(a, q);
 
-     vscale(q, (float) sin(phi/2.0));
 
-     q[3] = (float) cos(phi/2.0);
 
- }
 
- /*
 
-  * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
 
-  * if we are away from the center of the sphere.
 
-  */
 
- static float
 
- tb_project_to_sphere(float r, float x, float y)
 
- {
 
-     float d, t, z;
 
-     d = (float) sqrt(x*x + y*y);
 
-     if (d < r * 0.70710678118654752440) {    /* Inside sphere */
 
-         z = (float) sqrt(r*r - d*d);
 
-     } else {           /* On hyperbola */
 
-         t = r / 1.41421356237309504880f;
 
-         z = t*t / d;
 
-     }
 
-     return z;
 
- }
 
- /*
 
-  * Given two rotations, e1 and e2, expressed as quaternion rotations,
 
-  * figure out the equivalent single rotation and stuff it into dest.
 
-  *
 
-  * This routine also normalizes the result every RENORMCOUNT times it is
 
-  * called, to keep error from creeping in.
 
-  *
 
-  * NOTE: This routine is written so that q1 or q2 may be the same
 
-  * as dest (or each other).
 
-  */
 
- #define RENORMCOUNT 97
 
- void
 
- add_quats(float q1[4], float q2[4], float dest[4])
 
- {
 
-     static int count=0;
 
-     float t1[4], t2[4], t3[4];
 
-     float tf[4];
 
-     vcopy(q1,t1);
 
-     vscale(t1,q2[3]);
 
-     vcopy(q2,t2);
 
-     vscale(t2,q1[3]);
 
-     vcross(q2,q1,t3);
 
-     vadd(t1,t2,tf);
 
-     vadd(t3,tf,tf);
 
-     tf[3] = q1[3] * q2[3] - vdot(q1,q2);
 
-     dest[0] = tf[0];
 
-     dest[1] = tf[1];
 
-     dest[2] = tf[2];
 
-     dest[3] = tf[3];
 
-     if (++count > RENORMCOUNT) {
 
-         count = 0;
 
-         normalize_quat(dest);
 
-     }
 
- }
 
- /*
 
-  * Quaternions always obey:  a^2 + b^2 + c^2 + d^2 = 1.0
 
-  * If they don't add up to 1.0, dividing by their magnitued will
 
-  * renormalize them.
 
-  *
 
-  * Note: See the following for more information on quaternions:
 
-  *
 
-  * - Shoemake, K., Animating rotation with quaternion curves, Computer
 
-  *   Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
 
-  * - Pletinckx, D., Quaternion calculus as a basic tool in computer
 
-  *   graphics, The Visual Computer 5, 2-13, 1989.
 
-  */
 
- static void
 
- normalize_quat(float q[4])
 
- {
 
-     int i;
 
-     float mag;
 
-     mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
 
-     for (i = 0; i < 4; i++) q[i] /= mag;
 
- }
 
- /*
 
-  * Build a rotation matrix, given a quaternion rotation.
 
-  *
 
-  */
 
- void
 
- build_rotmatrix(float m[4][4], float q[4])
 
- {
 
-     m[0][0] = 1.0f - 2.0f * (q[1] * q[1] + q[2] * q[2]);
 
-     m[0][1] = 2.0f * (q[0] * q[1] - q[2] * q[3]);
 
-     m[0][2] = 2.0f * (q[2] * q[0] + q[1] * q[3]);
 
-     m[0][3] = 0.0f;
 
-     m[1][0] = 2.0f * (q[0] * q[1] + q[2] * q[3]);
 
-     m[1][1]= 1.0f - 2.0f * (q[2] * q[2] + q[0] * q[0]);
 
-     m[1][2] = 2.0f * (q[1] * q[2] - q[0] * q[3]);
 
-     m[1][3] = 0.0f;
 
-     m[2][0] = 2.0f * (q[2] * q[0] - q[1] * q[3]);
 
-     m[2][1] = 2.0f * (q[1] * q[2] + q[0] * q[3]);
 
-     m[2][2] = 1.0f - 2.0f * (q[1] * q[1] + q[0] * q[0]);
 
-     m[2][3] = 0.0f;
 
-     m[3][0] = 0.0f;
 
-     m[3][1] = 0.0f;
 
-     m[3][2] = 0.0f;
 
-     m[3][3] = 1.0f;
 
- }
 
 
  |