| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 | // Accelerated SCSI subroutines for SCSI initiator/host side communication// Copyright (c) 2022 Rabbit Hole Computing™#include "scsi_accel_host.h"#include "BlueSCSI_platform.h"#include "BlueSCSI_log.h"#include "scsi_accel_host.pio.h"#include <hardware/pio.h>#include <hardware/dma.h>#include <hardware/irq.h>#include <hardware/structs/iobank0.h>#include <hardware/sync.h>#define SCSI_PIO pio0#define SCSI_SM 1static struct {    // PIO configurations    uint32_t pio_offset_async_read;    pio_sm_config pio_cfg_async_read;} g_scsi_host;enum scsidma_state_t { SCSIHOST_IDLE = 0,                       SCSIHOST_READ };static volatile scsidma_state_t g_scsi_host_state;static void scsi_accel_host_config_gpio(){    if (g_scsi_host_state == SCSIHOST_IDLE)    {        iobank0_hw->io[SCSI_IO_DB0].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB1].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB2].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB3].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB4].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB5].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB6].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB7].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DBP].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IN_REQ].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_OUT_ACK].ctrl = GPIO_FUNC_SIO;    }    else if (g_scsi_host_state == SCSIHOST_READ)    {        // Data bus and REQ as input, ACK pin as output        // 100000010000000000111111111        // ACK    REQ        PDB        //        pio_sm_set_pins(SCSI_PIO, SCSI_SM, 0x40801FF);        pio_sm_set_consecutive_pindirs(SCSI_PIO, SCSI_SM, 0, 9, false);  // DBP Input        pio_sm_set_consecutive_pindirs(SCSI_PIO, SCSI_SM, SCSI_IN_REQ, 1, false);  // REQ Input        pio_sm_set_consecutive_pindirs(SCSI_PIO, SCSI_SM, SCSI_OUT_ACK, 1, true);  // ACK Output        iobank0_hw->io[SCSI_IO_DB0].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB1].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB2].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB3].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB4].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB5].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB6].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB7].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DBP].ctrl  = GPIO_FUNC_SIO;        //iobank0_hw->io[SCSI_IN_REQ].ctrl = GPIO_FUNC_PIO0;        iobank0_hw->io[SCSI_OUT_ACK].ctrl = GPIO_FUNC_PIO0;    }}uint32_t scsi_accel_host_read(uint8_t *buf, uint32_t count, int *parityError, volatile int *resetFlag){    // Currently this method just reads from the PIO RX fifo directly in software loop.    // The SD card access is parallelized using DMA, so there is limited benefit from using DMA here.    g_scsi_host_state = SCSIHOST_READ;    int cd_start = SCSI_IN(CD);    int msg_start = SCSI_IN(MSG);    pio_sm_init(SCSI_PIO, SCSI_SM, g_scsi_host.pio_offset_async_read, &g_scsi_host.pio_cfg_async_read);    scsi_accel_host_config_gpio();    pio_sm_set_enabled(SCSI_PIO, SCSI_SM, true);    // Set the number of bytes to read, must be divisible by 2.    assert((count & 1) == 0);    pio_sm_put(SCSI_PIO, SCSI_SM, count - 1);    // Read results from PIO RX FIFO    uint8_t *dst = buf;    uint8_t *end = buf + count;    uint32_t paritycheck = 0;    while (dst < end)    {        uint32_t available = pio_sm_get_rx_fifo_level(SCSI_PIO, SCSI_SM);        if (available == 0)        {            if (*resetFlag || !SCSI_IN(IO) || SCSI_IN(CD) != cd_start || SCSI_IN(MSG) != msg_start)            {                // Target switched out of DATA_IN mode                count = dst - buf;                break;            }        }        while (available > 0)        {            available--;            uint32_t word = pio_sm_get(SCSI_PIO, SCSI_SM);            paritycheck ^= word;            word = ~word;            *dst++ = word & 0xFF;            *dst++ = word >> 16;        }    }    // Check parity errors in whole block    // This doesn't detect if there is even number of parity errors in block.    uint8_t byte0 = ~(paritycheck & 0xFF);    uint8_t byte1 = ~(paritycheck >> 16);    if (paritycheck != ((g_scsi_parity_lookup[byte1] << 16) | g_scsi_parity_lookup[byte0]))    {        log("Parity error in scsi_accel_host_read(): ", paritycheck);        *parityError = 1;    }    g_scsi_host_state = SCSIHOST_IDLE;    SCSI_RELEASE_DATA_REQ();    scsi_accel_host_config_gpio();    pio_sm_set_enabled(SCSI_PIO, SCSI_SM, false);    return count;}void scsi_accel_host_init(){    g_scsi_host_state = SCSIHOST_IDLE;    scsi_accel_host_config_gpio();    // Asynchronous / synchronous SCSI read    g_scsi_host.pio_offset_async_read = pio_add_program(SCSI_PIO, &scsi_host_async_read_program);    g_scsi_host.pio_cfg_async_read = scsi_host_async_read_program_get_default_config(g_scsi_host.pio_offset_async_read);    sm_config_set_in_pins(&g_scsi_host.pio_cfg_async_read, SCSI_IO_DB0);    sm_config_set_sideset_pins(&g_scsi_host.pio_cfg_async_read, SCSI_OUT_ACK);    sm_config_set_out_shift(&g_scsi_host.pio_cfg_async_read, true, false, 32);    sm_config_set_in_shift(&g_scsi_host.pio_cfg_async_read, true, true, 32);}
 |