| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425 | 
							- /* crc32.c -- compute the CRC-32 of a data stream
 
-  * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
 
-  * For conditions of distribution and use, see copyright notice in zlib.h
 
-  *
 
-  * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
 
-  * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
 
-  * tables for updating the shift register in one step with three exclusive-ors
 
-  * instead of four steps with four exclusive-ors.  This results in about a
 
-  * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
 
-  */
 
- /* @(#) $Id$ */
 
- /*
 
-   Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
 
-   protection on the static variables used to control the first-use generation
 
-   of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
 
-   first call get_crc_table() to initialize the tables before allowing more than
 
-   one thread to use crc32().
 
-   DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
 
-  */
 
- #ifdef MAKECRCH
 
- #  include <stdio.h>
 
- #  ifndef DYNAMIC_CRC_TABLE
 
- #    define DYNAMIC_CRC_TABLE
 
- #  endif /* !DYNAMIC_CRC_TABLE */
 
- #endif /* MAKECRCH */
 
- #include "zutil.h"      /* for STDC and FAR definitions */
 
- #define local static
 
- /* Definitions for doing the crc four data bytes at a time. */
 
- #if !defined(NOBYFOUR) && defined(Z_U4)
 
- #  define BYFOUR
 
- #endif
 
- #ifdef BYFOUR
 
-    local unsigned long crc32_little OF((unsigned long,
 
-                         const unsigned char FAR *, unsigned));
 
-    local unsigned long crc32_big OF((unsigned long,
 
-                         const unsigned char FAR *, unsigned));
 
- #  define TBLS 8
 
- #else
 
- #  define TBLS 1
 
- #endif /* BYFOUR */
 
- /* Local functions for crc concatenation */
 
- local unsigned long gf2_matrix_times OF((unsigned long *mat,
 
-                                          unsigned long vec));
 
- local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
 
- local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
 
- #ifdef DYNAMIC_CRC_TABLE
 
- local volatile int crc_table_empty = 1;
 
- local z_crc_t FAR crc_table[TBLS][256];
 
- local void make_crc_table OF((void));
 
- #ifdef MAKECRCH
 
-    local void write_table OF((FILE *, const z_crc_t FAR *));
 
- #endif /* MAKECRCH */
 
- /*
 
-   Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
 
-   x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
 
-   Polynomials over GF(2) are represented in binary, one bit per coefficient,
 
-   with the lowest powers in the most significant bit.  Then adding polynomials
 
-   is just exclusive-or, and multiplying a polynomial by x is a right shift by
 
-   one.  If we call the above polynomial p, and represent a byte as the
 
-   polynomial q, also with the lowest power in the most significant bit (so the
 
-   byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
 
-   where a mod b means the remainder after dividing a by b.
 
-   This calculation is done using the shift-register method of multiplying and
 
-   taking the remainder.  The register is initialized to zero, and for each
 
-   incoming bit, x^32 is added mod p to the register if the bit is a one (where
 
-   x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
 
-   x (which is shifting right by one and adding x^32 mod p if the bit shifted
 
-   out is a one).  We start with the highest power (least significant bit) of
 
-   q and repeat for all eight bits of q.
 
-   The first table is simply the CRC of all possible eight bit values.  This is
 
-   all the information needed to generate CRCs on data a byte at a time for all
 
-   combinations of CRC register values and incoming bytes.  The remaining tables
 
-   allow for word-at-a-time CRC calculation for both big-endian and little-
 
-   endian machines, where a word is four bytes.
 
- */
 
- local void make_crc_table()
 
- {
 
-     z_crc_t c;
 
-     int n, k;
 
-     z_crc_t poly;                       /* polynomial exclusive-or pattern */
 
-     /* terms of polynomial defining this crc (except x^32): */
 
-     static volatile int first = 1;      /* flag to limit concurrent making */
 
-     static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
 
-     /* See if another task is already doing this (not thread-safe, but better
 
-        than nothing -- significantly reduces duration of vulnerability in
 
-        case the advice about DYNAMIC_CRC_TABLE is ignored) */
 
-     if (first) {
 
-         first = 0;
 
-         /* make exclusive-or pattern from polynomial (0xedb88320UL) */
 
-         poly = 0;
 
-         for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
 
-             poly |= (z_crc_t)1 << (31 - p[n]);
 
-         /* generate a crc for every 8-bit value */
 
-         for (n = 0; n < 256; n++) {
 
-             c = (z_crc_t)n;
 
-             for (k = 0; k < 8; k++)
 
-                 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
 
-             crc_table[0][n] = c;
 
-         }
 
- #ifdef BYFOUR
 
-         /* generate crc for each value followed by one, two, and three zeros,
 
-            and then the byte reversal of those as well as the first table */
 
-         for (n = 0; n < 256; n++) {
 
-             c = crc_table[0][n];
 
-             crc_table[4][n] = ZSWAP32(c);
 
-             for (k = 1; k < 4; k++) {
 
-                 c = crc_table[0][c & 0xff] ^ (c >> 8);
 
-                 crc_table[k][n] = c;
 
-                 crc_table[k + 4][n] = ZSWAP32(c);
 
-             }
 
-         }
 
- #endif /* BYFOUR */
 
-         crc_table_empty = 0;
 
-     }
 
-     else {      /* not first */
 
-         /* wait for the other guy to finish (not efficient, but rare) */
 
-         while (crc_table_empty)
 
-             ;
 
-     }
 
- #ifdef MAKECRCH
 
-     /* write out CRC tables to crc32.h */
 
-     {
 
-         FILE *out;
 
-         out = fopen("crc32.h", "w");
 
-         if (out == NULL) return;
 
-         fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
 
-         fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
 
-         fprintf(out, "local const z_crc_t FAR ");
 
-         fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
 
-         write_table(out, crc_table[0]);
 
- #  ifdef BYFOUR
 
-         fprintf(out, "#ifdef BYFOUR\n");
 
-         for (k = 1; k < 8; k++) {
 
-             fprintf(out, "  },\n  {\n");
 
-             write_table(out, crc_table[k]);
 
-         }
 
-         fprintf(out, "#endif\n");
 
- #  endif /* BYFOUR */
 
-         fprintf(out, "  }\n};\n");
 
-         fclose(out);
 
-     }
 
- #endif /* MAKECRCH */
 
- }
 
- #ifdef MAKECRCH
 
- local void write_table(out, table)
 
-     FILE *out;
 
-     const z_crc_t FAR *table;
 
- {
 
-     int n;
 
-     for (n = 0; n < 256; n++)
 
-         fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ",
 
-                 (unsigned long)(table[n]),
 
-                 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
 
- }
 
- #endif /* MAKECRCH */
 
- #else /* !DYNAMIC_CRC_TABLE */
 
- /* ========================================================================
 
-  * Tables of CRC-32s of all single-byte values, made by make_crc_table().
 
-  */
 
- #include "crc32.h"
 
- #endif /* DYNAMIC_CRC_TABLE */
 
- /* =========================================================================
 
-  * This function can be used by asm versions of crc32()
 
-  */
 
- const z_crc_t FAR * ZEXPORT get_crc_table()
 
- {
 
- #ifdef DYNAMIC_CRC_TABLE
 
-     if (crc_table_empty)
 
-         make_crc_table();
 
- #endif /* DYNAMIC_CRC_TABLE */
 
-     return (const z_crc_t FAR *)crc_table;
 
- }
 
- /* ========================================================================= */
 
- #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
 
- #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
 
- /* ========================================================================= */
 
- unsigned long ZEXPORT crc32(crc, buf, len)
 
-     unsigned long crc;
 
-     const unsigned char FAR *buf;
 
-     uInt len;
 
- {
 
-     if (buf == Z_NULL) return 0UL;
 
- #ifdef DYNAMIC_CRC_TABLE
 
-     if (crc_table_empty)
 
-         make_crc_table();
 
- #endif /* DYNAMIC_CRC_TABLE */
 
- #ifdef BYFOUR
 
-     if (sizeof(void *) == sizeof(ptrdiff_t)) {
 
-         z_crc_t endian;
 
-         endian = 1;
 
-         if (*((unsigned char *)(&endian)))
 
-             return crc32_little(crc, buf, len);
 
-         else
 
-             return crc32_big(crc, buf, len);
 
-     }
 
- #endif /* BYFOUR */
 
-     crc = crc ^ 0xffffffffUL;
 
-     while (len >= 8) {
 
-         DO8;
 
-         len -= 8;
 
-     }
 
-     if (len) do {
 
-         DO1;
 
-     } while (--len);
 
-     return crc ^ 0xffffffffUL;
 
- }
 
- #ifdef BYFOUR
 
- /* ========================================================================= */
 
- #define DOLIT4 c ^= *buf4++; \
 
-         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
 
-             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
 
- #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
 
- /* ========================================================================= */
 
- local unsigned long crc32_little(crc, buf, len)
 
-     unsigned long crc;
 
-     const unsigned char FAR *buf;
 
-     unsigned len;
 
- {
 
-     register z_crc_t c;
 
-     register const z_crc_t FAR *buf4;
 
-     c = (z_crc_t)crc;
 
-     c = ~c;
 
-     while (len && ((ptrdiff_t)buf & 3)) {
 
-         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
 
-         len--;
 
-     }
 
-     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
 
-     while (len >= 32) {
 
-         DOLIT32;
 
-         len -= 32;
 
-     }
 
-     while (len >= 4) {
 
-         DOLIT4;
 
-         len -= 4;
 
-     }
 
-     buf = (const unsigned char FAR *)buf4;
 
-     if (len) do {
 
-         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
 
-     } while (--len);
 
-     c = ~c;
 
-     return (unsigned long)c;
 
- }
 
- /* ========================================================================= */
 
- #define DOBIG4 c ^= *++buf4; \
 
-         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
 
-             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
 
- #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
 
- /* ========================================================================= */
 
- local unsigned long crc32_big(crc, buf, len)
 
-     unsigned long crc;
 
-     const unsigned char FAR *buf;
 
-     unsigned len;
 
- {
 
-     register z_crc_t c;
 
-     register const z_crc_t FAR *buf4;
 
-     c = ZSWAP32((z_crc_t)crc);
 
-     c = ~c;
 
-     while (len && ((ptrdiff_t)buf & 3)) {
 
-         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
 
-         len--;
 
-     }
 
-     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
 
-     buf4--;
 
-     while (len >= 32) {
 
-         DOBIG32;
 
-         len -= 32;
 
-     }
 
-     while (len >= 4) {
 
-         DOBIG4;
 
-         len -= 4;
 
-     }
 
-     buf4++;
 
-     buf = (const unsigned char FAR *)buf4;
 
-     if (len) do {
 
-         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
 
-     } while (--len);
 
-     c = ~c;
 
-     return (unsigned long)(ZSWAP32(c));
 
- }
 
- #endif /* BYFOUR */
 
- #define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
 
- /* ========================================================================= */
 
- local unsigned long gf2_matrix_times(mat, vec)
 
-     unsigned long *mat;
 
-     unsigned long vec;
 
- {
 
-     unsigned long sum;
 
-     sum = 0;
 
-     while (vec) {
 
-         if (vec & 1)
 
-             sum ^= *mat;
 
-         vec >>= 1;
 
-         mat++;
 
-     }
 
-     return sum;
 
- }
 
- /* ========================================================================= */
 
- local void gf2_matrix_square(square, mat)
 
-     unsigned long *square;
 
-     unsigned long *mat;
 
- {
 
-     int n;
 
-     for (n = 0; n < GF2_DIM; n++)
 
-         square[n] = gf2_matrix_times(mat, mat[n]);
 
- }
 
- /* ========================================================================= */
 
- local uLong crc32_combine_(crc1, crc2, len2)
 
-     uLong crc1;
 
-     uLong crc2;
 
-     z_off64_t len2;
 
- {
 
-     int n;
 
-     unsigned long row;
 
-     unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
 
-     unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
 
-     /* degenerate case (also disallow negative lengths) */
 
-     if (len2 <= 0)
 
-         return crc1;
 
-     /* put operator for one zero bit in odd */
 
-     odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
 
-     row = 1;
 
-     for (n = 1; n < GF2_DIM; n++) {
 
-         odd[n] = row;
 
-         row <<= 1;
 
-     }
 
-     /* put operator for two zero bits in even */
 
-     gf2_matrix_square(even, odd);
 
-     /* put operator for four zero bits in odd */
 
-     gf2_matrix_square(odd, even);
 
-     /* apply len2 zeros to crc1 (first square will put the operator for one
 
-        zero byte, eight zero bits, in even) */
 
-     do {
 
-         /* apply zeros operator for this bit of len2 */
 
-         gf2_matrix_square(even, odd);
 
-         if (len2 & 1)
 
-             crc1 = gf2_matrix_times(even, crc1);
 
-         len2 >>= 1;
 
-         /* if no more bits set, then done */
 
-         if (len2 == 0)
 
-             break;
 
-         /* another iteration of the loop with odd and even swapped */
 
-         gf2_matrix_square(odd, even);
 
-         if (len2 & 1)
 
-             crc1 = gf2_matrix_times(odd, crc1);
 
-         len2 >>= 1;
 
-         /* if no more bits set, then done */
 
-     } while (len2 != 0);
 
-     /* return combined crc */
 
-     crc1 ^= crc2;
 
-     return crc1;
 
- }
 
- /* ========================================================================= */
 
- uLong ZEXPORT crc32_combine(crc1, crc2, len2)
 
-     uLong crc1;
 
-     uLong crc2;
 
-     z_off_t len2;
 
- {
 
-     return crc32_combine_(crc1, crc2, len2);
 
- }
 
- uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
 
-     uLong crc1;
 
-     uLong crc2;
 
-     z_off64_t len2;
 
- {
 
-     return crc32_combine_(crc1, crc2, len2);
 
- }
 
 
  |