scsi_accel_rp2040.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. /* Data flow in SCSI acceleration:
  2. *
  3. * 1. Application provides a buffer of bytes to send.
  4. * 2. Code in this module adds parity bit to the bytes and packs two bytes into 32 bit words.
  5. * 3. DMA controller copies the words to PIO peripheral FIFO.
  6. * 4. PIO peripheral handles low-level SCSI handshake and writes bytes and parity to GPIO.
  7. */
  8. #include "ZuluSCSI_platform.h"
  9. #include "ZuluSCSI_log.h"
  10. #include "scsi_accel_rp2040.h"
  11. #include "scsi_accel.pio.h"
  12. #include <hardware/pio.h>
  13. #include <hardware/dma.h>
  14. #include <hardware/irq.h>
  15. #include <hardware/structs/iobank0.h>
  16. #define SCSI_DMA_PIO pio0
  17. #define SCSI_DMA_SM 0
  18. #define SCSI_DMA_CH 0
  19. #define SCSI_DMA_SYNC_SM 1
  20. #define SCSI_DMA_SYNC_CH 1
  21. enum scsidma_buf_sel_t { SCSIBUF_NONE = 0, SCSIBUF_A = 1, SCSIBUF_B = 2 };
  22. #define DMA_BUF_SIZE 128
  23. static struct {
  24. uint8_t *app_buf; // Buffer provided by application
  25. uint32_t app_bytes; // Bytes available in application buffer
  26. uint32_t dma_bytes; // Bytes that have been converted to DMA buffer so far
  27. uint8_t *next_app_buf; // Next buffer from application after current one finishes
  28. uint32_t next_app_bytes; // Bytes in next buffer
  29. // Synchronous mode?
  30. int syncOffset;
  31. int syncPeriod;
  32. int syncOffsetDivider; // Autopush/autopull threshold for the write pacer state machine
  33. int syncOffsetPreload; // Number of items to preload in the RX fifo of scsi_sync_write
  34. // PIO configurations
  35. uint32_t pio_offset_async_write;
  36. uint32_t pio_offset_async_read;
  37. uint32_t pio_offset_sync_write_pacer;
  38. uint32_t pio_offset_sync_write;
  39. pio_sm_config pio_cfg_async_write;
  40. pio_sm_config pio_cfg_async_read;
  41. pio_sm_config pio_cfg_sync_write_pacer;
  42. pio_sm_config pio_cfg_sync_write;
  43. // DMA configurations
  44. dma_channel_config dma_write_config; // Data from RAM to first state machine
  45. dma_channel_config dma_write_pacer_config; // In synchronous mode only, transfer between state machines
  46. // We use two DMA buffers alternatively
  47. // The buffer contains the data bytes with parity added.
  48. scsidma_buf_sel_t dma_current_buf;
  49. uint32_t dma_countA;
  50. uint32_t dma_countB;
  51. uint32_t dma_bufA[DMA_BUF_SIZE];
  52. uint32_t dma_bufB[DMA_BUF_SIZE];
  53. } g_scsi_dma;
  54. enum scsidma_state_t { SCSIDMA_IDLE = 0,
  55. SCSIDMA_WRITE, SCSIDMA_WRITE_DONE,
  56. SCSIDMA_READ };
  57. static volatile scsidma_state_t g_scsi_dma_state;
  58. static bool g_channels_claimed = false;
  59. // Fill DMA buffer and return number of words ready to be transferred
  60. static uint32_t refill_dmabuf(uint32_t *buf)
  61. {
  62. if (g_scsi_dma.app_bytes == 0 && g_scsi_dma.next_app_bytes > 0)
  63. {
  64. g_scsi_dma.dma_bytes = 0;
  65. g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
  66. g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
  67. g_scsi_dma.next_app_buf = 0;
  68. g_scsi_dma.next_app_bytes = 0;
  69. }
  70. uint32_t count = (g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes) / 2;
  71. if (count > DMA_BUF_SIZE) count = DMA_BUF_SIZE;
  72. uint16_t *src = (uint16_t*)&g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
  73. uint16_t *end = src + count;
  74. uint32_t *dst = buf;
  75. while (src < end)
  76. {
  77. uint16_t input = *src++;
  78. *dst++ = (g_scsi_parity_lookup[input & 0xFF])
  79. | ((g_scsi_parity_lookup[input >> 8]) << 16);
  80. }
  81. g_scsi_dma.dma_bytes += count * 2;
  82. // Check if this buffer has been fully processed
  83. if (g_scsi_dma.dma_bytes >= g_scsi_dma.app_bytes)
  84. {
  85. assert(g_scsi_dma.dma_bytes == g_scsi_dma.app_bytes);
  86. g_scsi_dma.dma_bytes = 0;
  87. g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
  88. g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
  89. g_scsi_dma.next_app_buf = 0;
  90. g_scsi_dma.next_app_bytes = 0;
  91. }
  92. return count;
  93. }
  94. // Select GPIO from PIO peripheral or from software controlled SIO
  95. static void scsidma_config_gpio()
  96. {
  97. if (g_scsi_dma_state == SCSIDMA_IDLE)
  98. {
  99. iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
  100. iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
  101. iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
  102. iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
  103. iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
  104. iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
  105. iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
  106. iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
  107. iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
  108. iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_SIO;
  109. }
  110. else if (g_scsi_dma_state == SCSIDMA_WRITE)
  111. {
  112. // Make sure the initial state of all pins is high and output
  113. pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DMA_SM, 0x3FF);
  114. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DMA_SM, 0, 10, true);
  115. iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_PIO0;
  116. iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_PIO0;
  117. iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_PIO0;
  118. iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_PIO0;
  119. iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_PIO0;
  120. iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_PIO0;
  121. iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_PIO0;
  122. iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_PIO0;
  123. iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_PIO0;
  124. iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
  125. }
  126. else if (g_scsi_dma_state == SCSIDMA_READ)
  127. {
  128. // Data bus as input, REQ pin as output
  129. pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DMA_SM, 0x3FF);
  130. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DMA_SM, 0, 9, false);
  131. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DMA_SM, 9, 1, true);
  132. iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
  133. iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
  134. iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
  135. iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
  136. iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
  137. iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
  138. iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
  139. iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
  140. iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
  141. iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;
  142. }
  143. }
  144. static void start_dma_write()
  145. {
  146. // Prefill both DMA buffers
  147. g_scsi_dma.dma_countA = refill_dmabuf(g_scsi_dma.dma_bufA);
  148. g_scsi_dma.dma_countB = refill_dmabuf(g_scsi_dma.dma_bufB);
  149. if (g_scsi_dma.syncOffset == 0)
  150. {
  151. // Asynchronous mode
  152. // Start DMA from buffer A
  153. g_scsi_dma.dma_current_buf = SCSIBUF_A;
  154. dma_channel_configure(SCSI_DMA_CH,
  155. &g_scsi_dma.dma_write_config,
  156. &SCSI_DMA_PIO->txf[SCSI_DMA_SM],
  157. g_scsi_dma.dma_bufA,
  158. g_scsi_dma.dma_countA,
  159. true
  160. );
  161. // Enable state machine
  162. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DMA_SM, true);
  163. }
  164. else
  165. {
  166. // Synchronous mode
  167. // Start DMA transfer to move dummy bits to write pacer
  168. dma_channel_configure(SCSI_DMA_SYNC_CH,
  169. &g_scsi_dma.dma_write_pacer_config,
  170. &SCSI_DMA_PIO->txf[SCSI_DMA_SYNC_CH],
  171. &SCSI_DMA_PIO->rxf[SCSI_DMA_SM],
  172. 0xFFFFFFFF,
  173. true
  174. );
  175. // Start DMA transfer to move data from buffer A to data writer
  176. g_scsi_dma.dma_current_buf = SCSIBUF_A;
  177. dma_channel_configure(SCSI_DMA_CH,
  178. &g_scsi_dma.dma_write_config,
  179. &SCSI_DMA_PIO->txf[SCSI_DMA_SM],
  180. g_scsi_dma.dma_bufA,
  181. g_scsi_dma.dma_countA,
  182. true
  183. );
  184. // Enable state machines
  185. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DMA_SYNC_SM, true);
  186. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DMA_SM, true);
  187. }
  188. }
  189. static void scsi_dma_write_irq()
  190. {
  191. dma_hw->ints0 = 1 << SCSI_DMA_CH;
  192. if (g_scsi_dma.dma_current_buf == SCSIBUF_A)
  193. {
  194. // Transfer from buffer A finished
  195. g_scsi_dma.dma_countA = 0;
  196. g_scsi_dma.dma_current_buf = SCSIBUF_NONE;
  197. if (g_scsi_dma.dma_countB != 0)
  198. {
  199. // Start transferring buffer B immediately
  200. dma_channel_set_trans_count(SCSI_DMA_CH, g_scsi_dma.dma_countB, false);
  201. dma_channel_set_read_addr(SCSI_DMA_CH, g_scsi_dma.dma_bufB, true);
  202. g_scsi_dma.dma_current_buf = SCSIBUF_B;
  203. // Refill buffer A for next time
  204. g_scsi_dma.dma_countA = refill_dmabuf(g_scsi_dma.dma_bufA);
  205. }
  206. }
  207. else
  208. {
  209. // Transfer from buffer B finished
  210. g_scsi_dma.dma_countB = 0;
  211. g_scsi_dma.dma_current_buf = SCSIBUF_NONE;
  212. if (g_scsi_dma.dma_countA != 0)
  213. {
  214. // Start transferring buffer A immediately
  215. dma_channel_set_trans_count(SCSI_DMA_CH, g_scsi_dma.dma_countA, false);
  216. dma_channel_set_read_addr(SCSI_DMA_CH, g_scsi_dma.dma_bufA, true);
  217. g_scsi_dma.dma_current_buf = SCSIBUF_A;
  218. // Refill buffer B for next time
  219. g_scsi_dma.dma_countB = refill_dmabuf(g_scsi_dma.dma_bufB);
  220. }
  221. }
  222. if (g_scsi_dma.dma_current_buf == SCSIBUF_NONE)
  223. {
  224. // Both buffers are empty, check if we have more data
  225. g_scsi_dma.dma_countA = refill_dmabuf(g_scsi_dma.dma_bufA);
  226. if (g_scsi_dma.dma_countA == 0)
  227. {
  228. // End of data for DMA, but PIO may still have bytes in its buffer
  229. g_scsi_dma_state = SCSIDMA_WRITE_DONE;
  230. }
  231. else
  232. {
  233. // Start transfer from buffer A
  234. dma_channel_set_trans_count(SCSI_DMA_CH, g_scsi_dma.dma_countA, false);
  235. dma_channel_set_read_addr(SCSI_DMA_CH, g_scsi_dma.dma_bufA, true);
  236. g_scsi_dma.dma_current_buf = SCSIBUF_A;
  237. // Refill B for the next interrupt
  238. g_scsi_dma.dma_countB = refill_dmabuf(g_scsi_dma.dma_bufB);
  239. }
  240. }
  241. }
  242. void scsi_accel_rp2040_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag)
  243. {
  244. // Number of bytes should always be divisible by 2.
  245. assert((count & 1) == 0);
  246. __disable_irq();
  247. if (g_scsi_dma_state == SCSIDMA_WRITE)
  248. {
  249. if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
  250. {
  251. // Combine with currently running request
  252. g_scsi_dma.app_bytes += count;
  253. count = 0;
  254. }
  255. else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  256. {
  257. // Combine with queued request
  258. g_scsi_dma.next_app_bytes += count;
  259. count = 0;
  260. }
  261. else if (!g_scsi_dma.next_app_buf)
  262. {
  263. // Add as queued request
  264. g_scsi_dma.next_app_buf = (uint8_t*)data;
  265. g_scsi_dma.next_app_bytes = count;
  266. count = 0;
  267. }
  268. }
  269. __enable_irq();
  270. // Check if the request was combined
  271. if (count == 0) return;
  272. if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_WRITE_DONE)
  273. {
  274. // Wait for previous request to finish
  275. scsi_accel_rp2040_finishWrite(resetFlag);
  276. if (*resetFlag)
  277. {
  278. return;
  279. }
  280. }
  281. bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
  282. g_scsi_dma_state = SCSIDMA_WRITE;
  283. g_scsi_dma.app_buf = (uint8_t*)data;
  284. g_scsi_dma.app_bytes = count;
  285. g_scsi_dma.dma_bytes = 0;
  286. g_scsi_dma.next_app_buf = 0;
  287. g_scsi_dma.next_app_bytes = 0;
  288. g_scsi_dma.dma_current_buf = SCSIBUF_NONE;
  289. if (must_reconfig_gpio)
  290. {
  291. SCSI_ENABLE_DATA_OUT();
  292. if (g_scsi_dma.syncOffset == 0)
  293. {
  294. // Asynchronous write
  295. pio_sm_init(SCSI_DMA_PIO, SCSI_DMA_SM, g_scsi_dma.pio_offset_async_write, &g_scsi_dma.pio_cfg_async_write);
  296. scsidma_config_gpio();
  297. }
  298. else
  299. {
  300. // Synchronous write
  301. // First state machine writes data to SCSI bus and dummy bits to its RX fifo.
  302. // Second state machine empties the dummy bits every time ACK is received, to control the transmit pace.
  303. pio_sm_init(SCSI_DMA_PIO, SCSI_DMA_SM, g_scsi_dma.pio_offset_sync_write, &g_scsi_dma.pio_cfg_sync_write);
  304. pio_sm_init(SCSI_DMA_PIO, SCSI_DMA_SYNC_SM, g_scsi_dma.pio_offset_sync_write_pacer, &g_scsi_dma.pio_cfg_sync_write_pacer);
  305. scsidma_config_gpio();
  306. // Prefill RX fifo to set the syncOffset
  307. for (int i = 0; i < g_scsi_dma.syncOffsetPreload; i++)
  308. {
  309. pio_sm_exec(SCSI_DMA_PIO, SCSI_DMA_SM,
  310. pio_encode_push(false, false) | pio_encode_sideset(1, 1));
  311. }
  312. // Fill the pacer TX fifo
  313. // DMA should start transferring only after ACK pulses are received
  314. for (int i = 0; i < 4; i++)
  315. {
  316. pio_sm_put(SCSI_DMA_PIO, SCSI_DMA_SYNC_SM, 0);
  317. }
  318. // Fill the pacer OSR
  319. pio_sm_exec(SCSI_DMA_PIO, SCSI_DMA_SYNC_SM,
  320. pio_encode_mov(pio_osr, pio_null));
  321. }
  322. dma_channel_set_irq0_enabled(SCSI_DMA_CH, true);
  323. irq_set_exclusive_handler(DMA_IRQ_0, scsi_dma_write_irq);
  324. irq_set_enabled(DMA_IRQ_0, true);
  325. }
  326. start_dma_write();
  327. }
  328. bool scsi_accel_rp2040_isWriteFinished(const uint8_t* data)
  329. {
  330. // Check if everything has completed
  331. if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_WRITE_DONE)
  332. {
  333. return true;
  334. }
  335. if (!data)
  336. return false;
  337. // Check if this data item is still in queue.
  338. __disable_irq();
  339. bool finished = true;
  340. if (data >= g_scsi_dma.app_buf + g_scsi_dma.dma_bytes &&
  341. data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
  342. {
  343. finished = false; // In current transfer
  344. }
  345. else if (data >= g_scsi_dma.next_app_buf &&
  346. data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  347. {
  348. finished = false; // In queued transfer
  349. }
  350. __enable_irq();
  351. return finished;
  352. }
  353. void scsi_accel_rp2040_stopWrite(volatile int *resetFlag)
  354. {
  355. // Wait for TX fifo to be empty and ACK to go high
  356. // For synchronous writes wait for all ACKs to be received also
  357. uint32_t start = millis();
  358. while ((!pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_DMA_SM)
  359. || pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DMA_SM) > g_scsi_dma.syncOffsetPreload
  360. || SCSI_IN(ACK)) && !*resetFlag)
  361. {
  362. if ((uint32_t)(millis() - start) > 5000)
  363. {
  364. azlog("scsi_accel_rp2040_stopWrite() timeout, FIFO levels ",
  365. (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DMA_SM), " ",
  366. (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DMA_SM));
  367. *resetFlag = 1;
  368. break;
  369. }
  370. }
  371. dma_channel_abort(SCSI_DMA_CH);
  372. dma_channel_abort(SCSI_DMA_SYNC_CH);
  373. dma_channel_set_irq0_enabled(SCSI_DMA_CH, false);
  374. g_scsi_dma_state = SCSIDMA_IDLE;
  375. SCSI_RELEASE_DATA_REQ();
  376. scsidma_config_gpio();
  377. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DMA_SM, false);
  378. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DMA_SYNC_SM, false);
  379. }
  380. void scsi_accel_rp2040_finishWrite(volatile int *resetFlag)
  381. {
  382. uint32_t start = millis();
  383. while (g_scsi_dma_state != SCSIDMA_IDLE && !*resetFlag)
  384. {
  385. if ((uint32_t)(millis() - start) > 5000)
  386. {
  387. azlog("scsi_accel_rp2040_finishWrite() timeout,"
  388. " state: ", (int)g_scsi_dma_state, " ", (int)g_scsi_dma.dma_current_buf, " ", (int)g_scsi_dma.dma_countA, " ", (int)g_scsi_dma.dma_countB,
  389. " PIO PC: ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DMA_SM), " ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DMA_SYNC_SM),
  390. " PIO FIFO: ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DMA_SM), " ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DMA_SYNC_SM),
  391. " DMA counts: ", dma_hw->ch[SCSI_DMA_CH].al2_transfer_count, " ", dma_hw->ch[SCSI_DMA_SYNC_CH].al2_transfer_count);
  392. *resetFlag = 1;
  393. break;
  394. }
  395. if (g_scsi_dma_state == SCSIDMA_WRITE_DONE)
  396. {
  397. // DMA done, wait for PIO to finish also and reconfig GPIO.
  398. scsi_accel_rp2040_stopWrite(resetFlag);
  399. }
  400. }
  401. }
  402. void scsi_accel_rp2040_read(uint8_t *buf, uint32_t count, int *parityError, volatile int *resetFlag)
  403. {
  404. // The hardware would support DMA for reading from SCSI bus also, but currently
  405. // the rest of the software architecture does not. There is not much benefit
  406. // because there isn't much else to do before we get the data from the SCSI bus.
  407. //
  408. // Currently this method just reads from the PIO RX fifo directly in software loop.
  409. g_scsi_dma_state = SCSIDMA_READ;
  410. pio_sm_init(SCSI_DMA_PIO, SCSI_DMA_SM, g_scsi_dma.pio_offset_async_read, &g_scsi_dma.pio_cfg_async_read);
  411. scsidma_config_gpio();
  412. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DMA_SM, true);
  413. // Set the number of bytes to read, must be divisible by 2.
  414. assert((count & 1) == 0);
  415. pio_sm_put(SCSI_DMA_PIO, SCSI_DMA_SM, count - 1);
  416. // Read results from PIO RX FIFO
  417. uint8_t *dst = buf;
  418. uint8_t *end = buf + count;
  419. uint32_t paritycheck = 0;
  420. while (dst < end)
  421. {
  422. if (*resetFlag)
  423. {
  424. break;
  425. }
  426. uint32_t available = pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DMA_SM);
  427. while (available > 0)
  428. {
  429. available--;
  430. uint32_t word = pio_sm_get(SCSI_DMA_PIO, SCSI_DMA_SM);
  431. paritycheck ^= word;
  432. word = ~word;
  433. *dst++ = word & 0xFF;
  434. *dst++ = word >> 16;
  435. }
  436. }
  437. // Check parity errors in whole block
  438. // This doesn't detect if there is even number of parity errors in block.
  439. uint8_t byte0 = ~(paritycheck & 0xFF);
  440. uint8_t byte1 = ~(paritycheck >> 16);
  441. if (paritycheck != ((g_scsi_parity_lookup[byte1] << 16) | g_scsi_parity_lookup[byte0]))
  442. {
  443. azlog("Parity error in scsi_accel_rp2040_read(): ", paritycheck);
  444. *parityError = 1;
  445. }
  446. g_scsi_dma_state = SCSIDMA_IDLE;
  447. SCSI_RELEASE_DATA_REQ();
  448. scsidma_config_gpio();
  449. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DMA_SM, false);
  450. }
  451. void scsi_accel_rp2040_init()
  452. {
  453. g_scsi_dma_state = SCSIDMA_IDLE;
  454. scsidma_config_gpio();
  455. // Mark channels as being in use, unless it has been done already
  456. if (!g_channels_claimed)
  457. {
  458. pio_sm_claim(SCSI_DMA_PIO, SCSI_DMA_SM);
  459. dma_channel_claim(SCSI_DMA_CH);
  460. g_channels_claimed = true;
  461. }
  462. // Load PIO programs
  463. pio_clear_instruction_memory(SCSI_DMA_PIO);
  464. // Asynchronous SCSI write
  465. g_scsi_dma.pio_offset_async_write = pio_add_program(SCSI_DMA_PIO, &scsi_accel_async_write_program);
  466. g_scsi_dma.pio_cfg_async_write = scsi_accel_async_write_program_get_default_config(g_scsi_dma.pio_offset_async_write);
  467. sm_config_set_out_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_IO_DB0, 9);
  468. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_OUT_REQ);
  469. sm_config_set_fifo_join(&g_scsi_dma.pio_cfg_async_write, PIO_FIFO_JOIN_TX);
  470. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_write, true, false, 32);
  471. // Asynchronous / synchronous SCSI read
  472. g_scsi_dma.pio_offset_async_read = pio_add_program(SCSI_DMA_PIO, &scsi_accel_async_read_program);
  473. g_scsi_dma.pio_cfg_async_read = scsi_accel_async_read_program_get_default_config(g_scsi_dma.pio_offset_async_read);
  474. sm_config_set_in_pins(&g_scsi_dma.pio_cfg_async_read, SCSI_IO_DB0);
  475. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_read, SCSI_OUT_REQ);
  476. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_read, true, false, 32);
  477. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_async_read, true, true, 32);
  478. // Synchronous SCSI write pacer / ACK handler
  479. g_scsi_dma.pio_offset_sync_write_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_pacer_program);
  480. g_scsi_dma.pio_cfg_sync_write_pacer = scsi_sync_write_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_write_pacer);
  481. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, 1);
  482. // Synchronous SCSI data writer
  483. g_scsi_dma.pio_offset_sync_write = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_program);
  484. g_scsi_dma.pio_cfg_sync_write = scsi_sync_write_program_get_default_config(g_scsi_dma.pio_offset_sync_write);
  485. sm_config_set_out_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_IO_DB0, 9);
  486. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_OUT_REQ);
  487. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 32);
  488. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 1);
  489. // Create DMA channel configuration so it can be applied quickly later
  490. dma_channel_config cfg = dma_channel_get_default_config(SCSI_DMA_CH);
  491. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  492. channel_config_set_read_increment(&cfg, true);
  493. channel_config_set_write_increment(&cfg, false);
  494. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DMA_SM, true));
  495. g_scsi_dma.dma_write_config = cfg;
  496. // In synchronous mode a second DMA channel is used to transfer dummy bits
  497. // from first state machine to second one.
  498. cfg = dma_channel_get_default_config(SCSI_DMA_SYNC_CH);
  499. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  500. channel_config_set_read_increment(&cfg, false);
  501. channel_config_set_write_increment(&cfg, false);
  502. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DMA_SYNC_SM, true));
  503. g_scsi_dma.dma_write_pacer_config = cfg;
  504. }
  505. void scsi_accel_rp2040_setWriteMode(int syncOffset, int syncPeriod)
  506. {
  507. if (syncOffset != g_scsi_dma.syncOffset || syncPeriod != g_scsi_dma.syncPeriod)
  508. {
  509. g_scsi_dma.syncOffset = syncOffset;
  510. g_scsi_dma.syncPeriod = syncPeriod;
  511. if (syncOffset > 0)
  512. {
  513. // Set up offset amount to PIO state machine configs.
  514. // The RX fifo of scsi_sync_write has 4 slots.
  515. // We can preload it with 0-3 items and set the autopush threshold 1, 2, 4 ... 32
  516. // to act as a divider. This allows offsets 1 to 128 bytes.
  517. // SCSI2SD code currently only uses offsets up to 15.
  518. if (syncOffset <= 4)
  519. {
  520. g_scsi_dma.syncOffsetDivider = 1;
  521. g_scsi_dma.syncOffsetPreload = 5 - syncOffset;
  522. }
  523. else if (syncOffset <= 8)
  524. {
  525. g_scsi_dma.syncOffsetDivider = 2;
  526. g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 2;
  527. }
  528. else if (syncOffset <= 16)
  529. {
  530. g_scsi_dma.syncOffsetDivider = 4;
  531. g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 4;
  532. }
  533. else
  534. {
  535. g_scsi_dma.syncOffsetDivider = 4;
  536. g_scsi_dma.syncOffsetPreload = 0;
  537. }
  538. // To properly detect when all bytes have been ACKed,
  539. // we need at least one vacant slot in the FIFO.
  540. if (g_scsi_dma.syncOffsetPreload > 3)
  541. g_scsi_dma.syncOffsetPreload = 3;
  542. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, g_scsi_dma.syncOffsetDivider);
  543. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, g_scsi_dma.syncOffsetDivider);
  544. // Set up the timing parameters to PIO program
  545. // The scsi_sync_write PIO program consists of three instructions.
  546. // The delays are in clock cycles, each taking 8 ns.
  547. // delay0: Delay from data write to REQ assertion
  548. // delay1: Delay from REQ assert to REQ deassert
  549. // delay2: Delay from REQ deassert to data write
  550. int delay0, delay1, delay2;
  551. int totalDelay = syncPeriod * 4 / 8;
  552. if (syncPeriod <= 25)
  553. {
  554. // Fast SCSI timing: 30 ns assertion period, 25 ns skew delay
  555. // The hardware rise and fall time require some extra delay,
  556. // the values below are tuned based on oscilloscope measurements.
  557. delay0 = 3;
  558. delay1 = 5;
  559. delay2 = totalDelay - delay0 - delay1 - 3;
  560. if (delay2 < 0) delay2 = 0;
  561. if (delay2 > 15) delay2 = 15;
  562. }
  563. else
  564. {
  565. // Slow SCSI timing: 90 ns assertion period, 55 ns skew delay
  566. delay0 = 6;
  567. delay1 = 12;
  568. delay2 = totalDelay - delay0 - delay1 - 3;
  569. if (delay2 < 0) delay2 = 0;
  570. if (delay2 > 15) delay2 = 15;
  571. }
  572. // Patch the delay values into the instructions.
  573. // The code in scsi_accel.pio must have delay set to 0 for this to work correctly.
  574. uint16_t instr0 = scsi_sync_write_program_instructions[0] | pio_encode_delay(delay0);
  575. uint16_t instr1 = scsi_sync_write_program_instructions[1] | pio_encode_delay(delay1);
  576. uint16_t instr2 = scsi_sync_write_program_instructions[2] | pio_encode_delay(delay2);
  577. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 0] = instr0;
  578. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 1] = instr1;
  579. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 2] = instr2;
  580. }
  581. }
  582. }