BlueSCSI_platform.cpp 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™
  3. *
  4. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version.
  5. *
  6. * https://www.gnu.org/licenses/gpl-3.0.html
  7. * ----
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  20. **/
  21. #include "BlueSCSI_platform.h"
  22. #include "BlueSCSI_log.h"
  23. #include <SdFat.h>
  24. #include <sdio.h>
  25. #include <scsi.h>
  26. #include <assert.h>
  27. #include <hardware/gpio.h>
  28. #include <hardware/pio.h>
  29. #include <hardware/uart.h>
  30. #include <hardware/pll.h>
  31. #include <hardware/clocks.h>
  32. #include <hardware/spi.h>
  33. #include <hardware/adc.h>
  34. #include <hardware/flash.h>
  35. #include <hardware/structs/xip_ctrl.h>
  36. #include <hardware/structs/usb.h>
  37. #include <hardware/sync.h>
  38. #include "scsi_accel_target.h"
  39. #include "custom_timings.h"
  40. #include <BlueSCSI_settings.h>
  41. #ifdef SD_USE_RP2350_SDIO
  42. #include <sdio_rp2350.h>
  43. #else
  44. #include <sdio.h>
  45. #endif
  46. #ifndef PIO_FRAMEWORK_ARDUINO_NO_USB
  47. # include <SerialUSB.h>
  48. # include <class/cdc/cdc_device.h>
  49. #endif
  50. #include <pico/multicore.h>
  51. #ifdef BLUESCSI_NETWORK
  52. extern "C" {
  53. # include <pico/cyw43_arch.h>
  54. }
  55. # ifdef BLUESCSI_RM2
  56. # include <pico/cyw43_driver.h>
  57. # endif
  58. #endif // BLUESCSI_NETWORK
  59. #ifdef PLATFORM_MASS_STORAGE
  60. #include "BlueSCSI_platform_msc.h"
  61. #endif
  62. #ifdef ENABLE_AUDIO_OUTPUT_SPDIF
  63. # include "audio_spdif.h"
  64. #elif defined(ENABLE_AUDIO_OUTPUT_I2S)
  65. # include "audio_i2s.h"
  66. #endif // ENABLE_AUDIO_OUTPUT_SPDIF
  67. extern bool g_rawdrive_active;
  68. extern "C" {
  69. #include "timings_RP2MCU.h"
  70. const char *g_platform_name = PLATFORM_NAME;
  71. static bool g_scsi_initiator = false;
  72. static uint32_t g_flash_chip_size = 0;
  73. static bool g_uart_initialized = false;
  74. static bool g_led_blinking = false;
  75. static void usb_log_poll();
  76. /***************/
  77. /* GPIO init */
  78. /***************/
  79. // Helper function to configure whole GPIO in one line
  80. static void gpio_conf(uint gpio, gpio_function_t fn, bool pullup, bool pulldown, bool output, bool initial_state, bool fast_slew)
  81. {
  82. gpio_put(gpio, initial_state);
  83. gpio_set_dir(gpio, output);
  84. gpio_set_pulls(gpio, pullup, pulldown);
  85. gpio_set_function(gpio, fn);
  86. if (fast_slew)
  87. {
  88. pads_bank0_hw->io[gpio] |= PADS_BANK0_GPIO0_SLEWFAST_BITS;
  89. }
  90. }
  91. static void reclock() {
  92. // ensure UART is fully drained before we mess up its clock
  93. if (uart_is_enabled(uart0))
  94. uart_tx_wait_blocking(uart0);
  95. // switch clk_sys and clk_peri to pll_usb
  96. // see code in 2.15.6.1 of the datasheet for useful comments
  97. clock_configure(clk_sys,
  98. CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
  99. CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
  100. 48 * MHZ,
  101. 48 * MHZ);
  102. clock_configure(clk_peri,
  103. 0,
  104. CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
  105. 48 * MHZ,
  106. 48 * MHZ);
  107. // reset PLL
  108. pll_init(pll_sys,
  109. g_bluescsi_timings->pll.refdiv,
  110. g_bluescsi_timings->pll.vco_freq,
  111. g_bluescsi_timings->pll.post_div1,
  112. g_bluescsi_timings->pll.post_div2);
  113. // switch clocks back to pll_sys
  114. clock_configure(clk_sys,
  115. CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
  116. CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
  117. g_bluescsi_timings->clk_hz,
  118. g_bluescsi_timings->clk_hz);
  119. clock_configure(clk_peri,
  120. 0,
  121. CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
  122. g_bluescsi_timings->clk_hz,
  123. g_bluescsi_timings->clk_hz);
  124. // reset UART for the new clock speed
  125. if (uart_is_enabled(uart0))
  126. uart_init(uart0, 1000000);
  127. }
  128. uint32_t platform_sys_clock_in_hz()
  129. {
  130. return clock_get_hz(clk_sys);
  131. }
  132. bool platform_reclock(bluescsi_speed_grade_t speed_grade)
  133. {
  134. CustomTimings ct;
  135. bool do_reclock = false;
  136. if (speed_grade != SPEED_GRADE_DEFAULT)
  137. {
  138. if (speed_grade == SPEED_GRADE_CUSTOM)
  139. {
  140. if (ct.use_custom_timings())
  141. {
  142. logmsg("Using custom timings found in \"", CUSTOM_TIMINGS_FILE, "\" for reclocking");
  143. ct.set_timings_from_file();
  144. do_reclock = true;
  145. }
  146. else
  147. {
  148. logmsg("Custom timings file, \"", CUSTOM_TIMINGS_FILE, "\" not found or disabled");
  149. }
  150. }
  151. else if (set_timings(speed_grade))
  152. do_reclock = true;
  153. if (do_reclock)
  154. {
  155. #ifdef ENABLE_AUDIO_OUTPUT
  156. if (g_bluescsi_timings->audio.audio_clocked)
  157. logmsg("Reclocking with these settings are compatible with CD audio playback");
  158. else
  159. logmsg("Reclocking with these settings may cause audio playback to be too fast or slow ");
  160. #endif
  161. logmsg("Initial Clock set to ", (int) platform_sys_clock_in_hz(), "Hz");
  162. logmsg("Reclocking the MCU to ",(int) g_bluescsi_timings->clk_hz, "Hz");
  163. #ifndef SD_USE_RP2350_SDIO
  164. logmsg("Setting the SDIO clock to ", (int)((g_bluescsi_timings->clk_hz / g_bluescsi_timings->sdio.clk_div_pio + (5 * MHZ / 10)) / MHZ) , "MHz");
  165. #endif
  166. usb_log_poll();
  167. reclock();
  168. logmsg("After reclocking, system reports clock set to ", (int) platform_sys_clock_in_hz(), "Hz");
  169. }
  170. }
  171. else
  172. dbgmsg("Speed grade is set to default, reclocking skipped");
  173. return do_reclock;
  174. }
  175. bool platform_rebooted_into_mass_storage()
  176. {
  177. volatile uint32_t* scratch0 = (uint32_t *)(WATCHDOG_BASE + WATCHDOG_SCRATCH0_OFFSET);
  178. if (*scratch0 == REBOOT_INTO_MASS_STORAGE_MAGIC_NUM)
  179. {
  180. *scratch0 = 0;
  181. return true;
  182. }
  183. return false;
  184. }
  185. #ifdef HAS_DIP_SWITCHES
  186. enum pin_setup_state_t {SETUP_FALSE, SETUP_TRUE, SETUP_UNDETERMINED};
  187. static pin_setup_state_t read_setup_ack_pin()
  188. {
  189. /* Revision 2022d of the RP2040 hardware has problems reading initiator DIP switch setting.
  190. * The 74LVT245 hold current is keeping the GPIO_ACK state too strongly.
  191. * Detect this condition by toggling the pin up and down and seeing if it sticks.
  192. *
  193. * Revision 2023b and 2023c of the Pico boards have issues reading TERM and DEBUG DIP switch
  194. * settings. GPIO_ACK is externally pulled down to ground for later revisions.
  195. * If the state is detected as undetermined then the board is the 2023b or 2023c revision.
  196. */
  197. // Strong output high, then pulldown
  198. // pin function pup pdown out state fast
  199. gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, false, false, true, true, false);
  200. gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, false, true, false, true, false);
  201. delay(1);
  202. bool ack_state1 = gpio_get(SCSI_IN_ACK);
  203. // Strong output low, then pullup
  204. // pin function pup pdown out state fast
  205. gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, false, false, true, false, false);
  206. gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, true, false, false, false, false);
  207. delay(1);
  208. bool ack_state2 = gpio_get(SCSI_IN_ACK);
  209. if (ack_state1 == ack_state2)
  210. {
  211. // Ok, was able to read the state directly
  212. return !ack_state1 ? SETUP_TRUE : SETUP_FALSE;
  213. }
  214. // Enable OUT_BSY for a short time.
  215. // If in target mode, this will force GPIO_ACK high.
  216. gpio_put(SCSI_OUT_BSY, 0);
  217. delay_100ns();
  218. gpio_put(SCSI_OUT_BSY, 1);
  219. return SETUP_UNDETERMINED;
  220. }
  221. #endif
  222. void platform_init()
  223. {
  224. // Make sure second core is stopped
  225. multicore_reset_core1();
  226. pio_clear_instruction_memory(pio0);
  227. pio_clear_instruction_memory(pio1);
  228. /* First configure the pins that affect external buffer directions.
  229. * RP2040 defaults to pulldowns, while these pins have external pull-ups.
  230. */
  231. // pin function pup pdown out state fast
  232. gpio_conf(SCSI_DATA_DIR, GPIO_FUNC_SIO, false,false, true, true, true);
  233. gpio_conf(SCSI_OUT_RST, GPIO_FUNC_SIO, false,false, true, true, true);
  234. gpio_conf(SCSI_OUT_BSY, GPIO_FUNC_SIO, false,false, true, true, true);
  235. gpio_conf(SCSI_OUT_SEL, GPIO_FUNC_SIO, false,false, true, true, true);
  236. /* Check dip switch settings */
  237. #ifdef HAS_DIP_SWITCHES
  238. gpio_conf(DIP_INITIATOR, GPIO_FUNC_SIO, false, false, false, false, false);
  239. gpio_conf(DIP_DBGLOG, GPIO_FUNC_SIO, false, false, false, false, false);
  240. gpio_conf(DIP_TERM, GPIO_FUNC_SIO, false, false, false, false, false);
  241. delay(10); // 10 ms delay to let pull-ups do their work
  242. bool working_dip = true;
  243. bool dbglog = false;
  244. bool termination = false;
  245. # if defined(BLUESCSI_PICO) || defined(BLUESCSI_PICO_2)
  246. // Initiator dip setting works on all rev 2023b, 2023c, and newer rev Pico boards
  247. g_scsi_initiator = !gpio_get(DIP_INITIATOR);
  248. working_dip = SETUP_UNDETERMINED != read_setup_ack_pin();
  249. if (working_dip)
  250. {
  251. dbglog = !gpio_get(DIP_DBGLOG);
  252. termination = !gpio_get(DIP_TERM);
  253. }
  254. # elif defined(BLUESCSI_V2_0)
  255. pin_setup_state_t dip_state = read_setup_ack_pin();
  256. if (dip_state == SETUP_UNDETERMINED)
  257. {
  258. // This path is used for the few early RP2040 boards assembled with
  259. // Diodes Incorporated 74LVT245B, which has higher bus hold
  260. // current.
  261. working_dip = false;
  262. g_scsi_initiator = !gpio_get(DIP_INITIATOR); // Read fallback value
  263. }
  264. else
  265. {
  266. g_scsi_initiator = (SETUP_TRUE == dip_state);
  267. termination = !gpio_get(DIP_TERM);
  268. }
  269. // dbglog DIP switch works in any case, as it does not have bus hold.
  270. dbglog = !gpio_get(DIP_DBGLOG);
  271. g_log_debug = dbglog;
  272. # else
  273. g_scsi_initiator = !gpio_get(DIP_INITIATOR);
  274. termination = !gpio_get(DIP_TERM);
  275. dbglog = !gpio_get(DIP_DBGLOG);
  276. g_log_debug = dbglog;
  277. # endif
  278. #else
  279. delay(10);
  280. #endif // HAS_DIP_SWITCHES
  281. #ifndef DISABLE_SWO
  282. /* Initialize logging to SWO pin (UART0) */
  283. gpio_conf(SWO_PIN, GPIO_FUNC_UART,false,false, true, false, true);
  284. uart_init(uart0, 1000000);
  285. g_uart_initialized = true;
  286. #endif // DISABLE_SWO
  287. logmsg("Platform: ", g_platform_name);
  288. logmsg("FW Version: ", g_log_firmwareversion);
  289. #ifdef HAS_DIP_SWITCHES
  290. if (working_dip)
  291. {
  292. logmsg("DIP switch settings: debug log ", (int)dbglog, ", termination ", (int)termination);
  293. g_log_debug = dbglog;
  294. if (termination)
  295. {
  296. logmsg("SCSI termination is enabled");
  297. }
  298. else
  299. {
  300. logmsg("NOTE: SCSI termination is disabled");
  301. }
  302. }
  303. else
  304. {
  305. logmsg("SCSI termination is determined by the DIP switch labeled \"TERM\"");
  306. #if defined(BLUESCSI_PICO) || defined(BLUESCSI_PICO_2)
  307. logmsg("Debug logging can only be enabled via INI file \"DEBUG=1\" under [SCSI] in bluescsi.ini");
  308. logmsg("-- DEBUG DIP switch setting is ignored on BlueSCSI Pico FS Rev. 2023b and 2023c boards");
  309. g_log_debug = false;
  310. #endif
  311. }
  312. #else
  313. g_log_debug = false;
  314. //logmsg ("SCSI termination is handled by a hardware jumper");
  315. #endif // HAS_DIP_SWITCHES
  316. logmsg("===========================================================");
  317. logmsg(" Powered by Raspberry Pi");
  318. logmsg(" Raspberry Pi is a trademark of Raspberry Pi Ltd");
  319. logmsg("===========================================================");
  320. // Get flash chip size
  321. uint8_t cmd_read_jedec_id[4] = {0x9f, 0, 0, 0};
  322. uint8_t response_jedec[4] = {0};
  323. uint32_t saved_irq = save_and_disable_interrupts();
  324. flash_do_cmd(cmd_read_jedec_id, response_jedec, 4);
  325. restore_interrupts(saved_irq);
  326. g_flash_chip_size = (1 << response_jedec[3]);
  327. logmsg("Flash chip size: ", (int)(g_flash_chip_size / 1024), " kB");
  328. // SD card pins
  329. // Card is used in SDIO mode for main program, and in SPI mode for crash handler & bootloader.
  330. // pin function pup pdown out state fast
  331. gpio_conf(SD_SPI_SCK, GPIO_FUNC_SPI, true, false, true, true, true);
  332. gpio_conf(SD_SPI_MOSI, GPIO_FUNC_SPI, true, false, true, true, true);
  333. gpio_conf(SD_SPI_MISO, GPIO_FUNC_SPI, true, false, false, true, true);
  334. gpio_conf(SD_SPI_CS, GPIO_FUNC_SIO, true, false, true, true, true);
  335. gpio_conf(SDIO_D1, GPIO_FUNC_SIO, true, false, false, true, true);
  336. gpio_conf(SDIO_D2, GPIO_FUNC_SIO, true, false, false, true, true);
  337. // LED pin
  338. gpio_conf(LED_PIN, GPIO_FUNC_SIO, false,false, true, false, false);
  339. #ifndef ENABLE_AUDIO_OUTPUT_SPDIF
  340. #ifdef GPIO_I2C_SDA
  341. // I2C pins
  342. // pin function pup pdown out state fast
  343. gpio_conf(GPIO_I2C_SCL, GPIO_FUNC_I2C, true,false, false, true, true);
  344. gpio_conf(GPIO_I2C_SDA, GPIO_FUNC_I2C, true,false, false, true, true);
  345. #endif // GPIO_I2C_SDA
  346. #else
  347. // pin function pup pdown out state fast
  348. gpio_conf(GPIO_EXP_AUDIO, GPIO_FUNC_SPI, true,false, false, true, true);
  349. gpio_conf(GPIO_EXP_SPARE, GPIO_FUNC_SIO, true,false, false, true, false);
  350. // configuration of corresponding SPI unit occurs in audio_setup()
  351. #endif // ENABLE_AUDIO_OUTPUT_SPDIF
  352. #ifdef GPIO_USB_POWER
  353. gpio_conf(GPIO_USB_POWER, GPIO_FUNC_SIO, false, false, false, false, false);
  354. #endif
  355. }
  356. // late_init() only runs in main application, SCSI not needed in bootloader
  357. void platform_late_init()
  358. {
  359. #if defined(HAS_DIP_SWITCHES) && defined(PLATFORM_HAS_INITIATOR_MODE)
  360. if (g_scsi_initiator == true)
  361. {
  362. logmsg("*************************************************************************");
  363. logmsg(" SCSI initiator mode enabled, expecting SCSI disks on the bus ");
  364. logmsg("*************************************************************************");
  365. }
  366. else
  367. {
  368. logmsg("SCSI target/disk mode selected by DIP switch, acting as a SCSI disk");
  369. }
  370. #else
  371. g_scsi_initiator = false;
  372. logmsg("SCSI target/disk mode, acting as a SCSI disk");
  373. #endif // defined(HAS_DIP_SWITCHES) && defined(PLATFORM_HAS_INITIATOR_MODE)
  374. /* Initialize SCSI pins to required modes.
  375. * SCSI pins should be inactive / input at this point.
  376. */
  377. // SCSI data bus direction is switched by DATA_DIR signal.
  378. // Pullups make sure that no glitches occur when switching direction.
  379. // pin function pup pdown out state fast
  380. gpio_conf(SCSI_IO_DB0, GPIO_FUNC_SIO, true, false, false, true, true);
  381. gpio_conf(SCSI_IO_DB1, GPIO_FUNC_SIO, true, false, false, true, true);
  382. gpio_conf(SCSI_IO_DB2, GPIO_FUNC_SIO, true, false, false, true, true);
  383. gpio_conf(SCSI_IO_DB3, GPIO_FUNC_SIO, true, false, false, true, true);
  384. gpio_conf(SCSI_IO_DB4, GPIO_FUNC_SIO, true, false, false, true, true);
  385. gpio_conf(SCSI_IO_DB5, GPIO_FUNC_SIO, true, false, false, true, true);
  386. gpio_conf(SCSI_IO_DB6, GPIO_FUNC_SIO, true, false, false, true, true);
  387. gpio_conf(SCSI_IO_DB7, GPIO_FUNC_SIO, true, false, false, true, true);
  388. gpio_conf(SCSI_IO_DBP, GPIO_FUNC_SIO, true, false, false, true, true);
  389. if (!g_scsi_initiator)
  390. {
  391. // Act as SCSI device / target
  392. // SCSI control outputs
  393. // pin function pup pdown out state fast
  394. gpio_conf(SCSI_OUT_IO, GPIO_FUNC_SIO, false,false, true, true, true);
  395. gpio_conf(SCSI_OUT_MSG, GPIO_FUNC_SIO, false,false, true, true, true);
  396. // REQ pin is switched between PIO and SIO, pull-up makes sure no glitches
  397. gpio_conf(SCSI_OUT_REQ, GPIO_FUNC_SIO, true ,false, true, true, true);
  398. // Shared pins are changed to input / output depending on communication phase
  399. gpio_conf(SCSI_IN_SEL, GPIO_FUNC_SIO, true, false, false, true, true);
  400. if (SCSI_OUT_CD != SCSI_IN_SEL)
  401. {
  402. gpio_conf(SCSI_OUT_CD, GPIO_FUNC_SIO, false,false, true, true, true);
  403. }
  404. gpio_conf(SCSI_IN_BSY, GPIO_FUNC_SIO, true, false, false, true, true);
  405. if (SCSI_OUT_MSG != SCSI_IN_BSY)
  406. {
  407. gpio_conf(SCSI_OUT_MSG, GPIO_FUNC_SIO, false,false, true, true, true);
  408. }
  409. // SCSI control inputs
  410. // pin function pup pdown out state fast
  411. gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, true, false, false, true, false);
  412. gpio_conf(SCSI_IN_ATN, GPIO_FUNC_SIO, true, false, false, true, false);
  413. gpio_conf(SCSI_IN_RST, GPIO_FUNC_SIO, true, false, false, true, false);
  414. #ifdef BLUESCSI_RM2
  415. uint rm2_pins[CYW43_PIN_INDEX_WL_COUNT] = {0};
  416. rm2_pins[CYW43_PIN_INDEX_WL_REG_ON] = GPIO_RM2_ON;
  417. rm2_pins[CYW43_PIN_INDEX_WL_DATA_OUT] = GPIO_RM2_DATA;
  418. rm2_pins[CYW43_PIN_INDEX_WL_DATA_IN] = GPIO_RM2_DATA;
  419. rm2_pins[CYW43_PIN_INDEX_WL_HOST_WAKE] = GPIO_RM2_DATA;
  420. rm2_pins[CYW43_PIN_INDEX_WL_CLOCK] = GPIO_RM2_CLK;
  421. rm2_pins[CYW43_PIN_INDEX_WL_CS] = GPIO_RM2_CS;
  422. assert(PICO_OK == cyw43_set_pins_wl(rm2_pins));
  423. if (platform_reclock(SPEED_GRADE_WIFI_RM2))
  424. {
  425. // The iface check turns on the LED on the RM2 early in the init process
  426. // Should tell the user that the RM2 is working
  427. if(platform_network_iface_check())
  428. {
  429. logmsg("RM2 found");
  430. }
  431. else
  432. {
  433. # ifdef BLUESCSI_BLASTER
  434. logmsg("RM2 not found, upclocking");
  435. platform_reclock(SPEED_GRADE_AUDIO_I2S);
  436. # else
  437. logmsg("RM2 not found");
  438. # endif
  439. }
  440. }
  441. else
  442. {
  443. logmsg("WiFi RM2 timings not found");
  444. }
  445. #elif defined(ENABLE_AUDIO_OUTPUT_I2S)
  446. logmsg("I2S audio to expansion header enabled");
  447. if (!platform_reclock(SPEED_GRADE_AUDIO_I2S))
  448. {
  449. logmsg("Audio output timings not found");
  450. }
  451. #elif defined(ENABLE_AUDIO_OUTPUT_SPDIF)
  452. logmsg("S/PDIF audio to expansion header enabled");
  453. if (platform_reclock(SPEED_GRADE_AUDIO_SPDIF))
  454. {
  455. logmsg("Reclocked for Audio Ouput at ", (int) platform_sys_clock_in_hz(), "Hz");
  456. }
  457. else
  458. {
  459. logmsg("Audio Output timings not found");
  460. }
  461. #endif // ENABLE_AUDIO_OUTPUT_SPDIF
  462. // This should turn on the LED for Pico 1/2 W devices early in the init process
  463. // It should help indicate to the user that interface is working and the board is ready for DaynaPORT
  464. #if defined(BLUESCSI_NETWORK) && ! defined(BLUESCSI_RM2)
  465. platform_network_iface_check();
  466. #endif
  467. #ifdef ENABLE_AUDIO_OUTPUT
  468. // one-time control setup for DMA channels and second core
  469. audio_setup();
  470. #endif // ENABLE_AUDIO_OUTPUT_SPDIF
  471. }
  472. else
  473. {
  474. #ifndef PLATFORM_HAS_INITIATOR_MODE
  475. assert(false);
  476. #else
  477. // Act as SCSI initiator
  478. // pin function pup pdown out state fast
  479. gpio_conf(SCSI_IN_IO, GPIO_FUNC_SIO, true ,false, false, true, false);
  480. gpio_conf(SCSI_IN_MSG, GPIO_FUNC_SIO, true ,false, false, true, false);
  481. gpio_conf(SCSI_IN_CD, GPIO_FUNC_SIO, true ,false, false, true, false);
  482. gpio_conf(SCSI_IN_REQ, GPIO_FUNC_SIO, true ,false, false, true, false);
  483. gpio_conf(SCSI_IN_BSY, GPIO_FUNC_SIO, true, false, false, true, false);
  484. gpio_conf(SCSI_IN_RST, GPIO_FUNC_SIO, true, false, false, true, false);
  485. // Reinitialize OUT_RST to output mode. On RP Pico variant the pin is shared with IN_RST.
  486. gpio_conf(SCSI_OUT_RST, GPIO_FUNC_SIO, false, false, true, true, true);
  487. gpio_conf(SCSI_OUT_SEL, GPIO_FUNC_SIO, false,false, true, true, true);
  488. gpio_conf(SCSI_OUT_ACK, GPIO_FUNC_SIO, false,false, true, true, true);
  489. gpio_conf(SCSI_OUT_ATN, GPIO_FUNC_SIO, false,false, true, true, true);
  490. #endif // PLATFORM_HAS_INITIATOR_MODE
  491. }
  492. #ifndef PIO_FRAMEWORK_ARDUINO_NO_USB
  493. Serial.begin();
  494. #endif
  495. scsi_accel_rp2040_init();
  496. }
  497. void platform_post_sd_card_init() {}
  498. bool platform_is_initiator_mode_enabled()
  499. {
  500. return g_scsi_initiator;
  501. }
  502. void platform_write_led(bool state)
  503. {
  504. if (g_led_blinking) return;
  505. if (g_scsi_settings.getSystem()->invertStatusLed)
  506. state = !state;
  507. gpio_put(LED_PIN, state);
  508. }
  509. void platform_set_blink_status(bool status)
  510. {
  511. g_led_blinking = status;
  512. }
  513. void platform_write_led_override(bool state)
  514. {
  515. if (g_scsi_settings.getSystem()->invertStatusLed)
  516. state = !state;
  517. gpio_put(LED_PIN, state);
  518. }
  519. void platform_disable_led(void)
  520. {
  521. // pin function pup pdown out state fast
  522. gpio_conf(LED_PIN, GPIO_FUNC_SIO, false,false, false, false, false);
  523. logmsg("Disabling status LED");
  524. }
  525. uint8_t platform_no_sd_card_on_init_error_code()
  526. {
  527. return SDIO_ERR_RESPONSE_TIMEOUT;
  528. }
  529. /*****************************************/
  530. /* Crash handlers */
  531. /*****************************************/
  532. extern SdFs SD;
  533. extern uint32_t __StackTop;
  534. void platform_emergency_log_save()
  535. {
  536. if (g_rawdrive_active)
  537. return;
  538. platform_set_sd_callback(NULL, NULL);
  539. SD.begin(SD_CONFIG_CRASH);
  540. FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  541. if (!crashfile.isOpen())
  542. {
  543. // Try to reinitialize
  544. int max_retry = 10;
  545. while (max_retry-- > 0 && !SD.begin(SD_CONFIG_CRASH));
  546. crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  547. }
  548. uint32_t startpos = 0;
  549. crashfile.write(log_get_buffer(&startpos));
  550. crashfile.write(log_get_buffer(&startpos));
  551. crashfile.flush();
  552. crashfile.close();
  553. }
  554. static void usb_log_poll();
  555. static void usb_input_poll();
  556. __attribute__((noinline))
  557. void show_hardfault(uint32_t *sp)
  558. {
  559. uint32_t pc = sp[6];
  560. uint32_t lr = sp[5];
  561. logmsg("--------------");
  562. logmsg("CRASH!");
  563. logmsg("Platform: ", g_platform_name);
  564. logmsg("FW Version: ", g_log_firmwareversion);
  565. logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  566. logmsg("scsiDev.phase: ", (int)scsiDev.phase);
  567. logmsg("SP: ", (uint32_t)sp);
  568. logmsg("PC: ", pc);
  569. logmsg("LR: ", lr);
  570. logmsg("R0: ", sp[0]);
  571. logmsg("R1: ", sp[1]);
  572. logmsg("R2: ", sp[2]);
  573. logmsg("R3: ", sp[3]);
  574. uint32_t *p = (uint32_t*)((uint32_t)sp & ~3);
  575. for (int i = 0; i < 8; i++)
  576. {
  577. if (p == &__StackTop) break; // End of stack
  578. logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  579. p += 4;
  580. }
  581. platform_emergency_log_save();
  582. while (1)
  583. {
  584. usb_log_poll();
  585. // Flash the crash address on the LED
  586. // Short pulse means 0, long pulse means 1
  587. int base_delay = 500;
  588. for (int i = 31; i >= 0; i--)
  589. {
  590. LED_OFF();
  591. for (int j = 0; j < base_delay; j++) busy_wait_ms(1);
  592. int delay = (pc & (1 << i)) ? (3 * base_delay) : base_delay;
  593. LED_ON();
  594. for (int j = 0; j < delay; j++) busy_wait_ms(1);
  595. LED_OFF();
  596. }
  597. for (int j = 0; j < base_delay * 10; j++) busy_wait_ms(1);
  598. }
  599. }
  600. __attribute__((naked, interrupt))
  601. void isr_hardfault(void)
  602. {
  603. // Copies stack pointer into first argument
  604. asm("mrs r0, msp\n"
  605. "bl show_hardfault": : : "r0");
  606. }
  607. /*****************************************/
  608. /* Debug logging and watchdog */
  609. /*****************************************/
  610. static bool usb_serial_connected()
  611. {
  612. #ifdef PIO_FRAMEWORK_ARDUINO_NO_USB
  613. return false;
  614. #endif
  615. static bool connected;
  616. static uint32_t last_check_time;
  617. #ifdef PLATFORM_MASS_STORAGE
  618. if (platform_msc_lock_get()) return connected; // Avoid re-entrant USB events
  619. #endif
  620. if (last_check_time == 0 || (uint32_t)(millis() - last_check_time) > 50)
  621. {
  622. connected = bool(Serial);
  623. last_check_time = millis();
  624. }
  625. return connected;
  626. }
  627. // Send log data to USB UART if USB is connected.
  628. // Data is retrieved from the shared log ring buffer and
  629. // this function sends as much as fits in USB CDC buffer.
  630. //
  631. // This is normally called by platform_reset_watchdog() in
  632. // the normal polling loop. If code hangs, the watchdog_callback()
  633. // also starts calling this after 2 seconds.
  634. // This ensures that log messages get passed even if code hangs,
  635. // but does not unnecessarily delay normal execution.
  636. static void usb_log_poll()
  637. {
  638. #ifndef PIO_FRAMEWORK_ARDUINO_NO_USB
  639. static uint32_t logpos = 0;
  640. if (!usb_serial_connected()) return;
  641. #ifdef PLATFORM_MASS_STORAGE
  642. if (platform_msc_lock_get()) return; // Avoid re-entrant USB events
  643. #endif
  644. if (Serial.availableForWrite())
  645. {
  646. // Retrieve pointer to log start and determine number of bytes available.
  647. uint32_t available = 0;
  648. const char *data = log_get_buffer(&logpos, &available);
  649. // Limit to CDC packet size
  650. uint32_t len = available;
  651. if (len == 0) return;
  652. if (len > CFG_TUD_CDC_EP_BUFSIZE) len = CFG_TUD_CDC_EP_BUFSIZE;
  653. // Update log position by the actual number of bytes sent
  654. // If USB CDC buffer is full, this may be 0
  655. uint32_t actual = 0;
  656. actual = Serial.write(data, len);
  657. logpos -= available - actual;
  658. }
  659. #endif // PIO_FRAMEWORK_ARDUINO_NO_USB
  660. }
  661. // Grab input from USB Serial terminal
  662. static void usb_input_poll()
  663. {
  664. #ifndef PIO_FRAMEWORK_ARDUINO_NO_USB
  665. if (!usb_serial_connected()) return;
  666. #ifdef PLATFORM_MASS_STORAGE
  667. if (platform_msc_lock_get()) return; // Avoid re-entrant USB events
  668. #endif
  669. // Capture reboot key sequence
  670. static bool mass_storage_reboot_keyed = false;
  671. static bool basic_reboot_keyed = false;
  672. volatile uint32_t* scratch0 = (uint32_t *)(WATCHDOG_BASE + WATCHDOG_SCRATCH0_OFFSET);
  673. int32_t available = Serial.available();
  674. if(available > 0)
  675. {
  676. int32_t read = Serial.read();
  677. switch((char) read)
  678. {
  679. case 'R':
  680. case 'r':
  681. basic_reboot_keyed = true;
  682. mass_storage_reboot_keyed = false;
  683. logmsg("Basic reboot requested, press 'y' to engage or any key to clear");
  684. break;
  685. case 'M':
  686. case 'm':
  687. mass_storage_reboot_keyed = true;
  688. basic_reboot_keyed = false;
  689. logmsg("Boot into mass storage requested, press 'y' to engage or any key to clear");
  690. *scratch0 = REBOOT_INTO_MASS_STORAGE_MAGIC_NUM;
  691. break;
  692. case 'Y':
  693. case 'y':
  694. if (basic_reboot_keyed || mass_storage_reboot_keyed)
  695. {
  696. logmsg("Rebooting", mass_storage_reboot_keyed ? " into mass storage": "");
  697. watchdog_reboot(0, 0, 2000);
  698. }
  699. break;
  700. case '\n':
  701. break;
  702. default:
  703. if (basic_reboot_keyed || mass_storage_reboot_keyed)
  704. logmsg("Cleared reboot setting");
  705. mass_storage_reboot_keyed = false;
  706. basic_reboot_keyed = false;
  707. }
  708. }
  709. #endif // PIO_FRAMEWORK_ARDUINO_NO_USB
  710. }
  711. // Use ADC to implement supply voltage monitoring for the +3.0V rail.
  712. // This works by sampling the temperature sensor channel, which has
  713. // a voltage of 0.7 V, allowing to calculate the VDD voltage.
  714. static void adc_poll()
  715. {
  716. #if PLATFORM_VDD_WARNING_LIMIT_mV > 0
  717. static bool initialized = false;
  718. static bool adc_initial_logged = false;
  719. static int lowest_vdd_seen = PLATFORM_VDD_WARNING_LIMIT_mV;
  720. if (!initialized)
  721. {
  722. adc_init();
  723. adc_set_temp_sensor_enabled(true);
  724. adc_set_clkdiv(65535); // Lowest samplerate, about 2 kHz
  725. #ifdef BLUESCSI_BLASTER
  726. adc_select_input(8);
  727. #else
  728. adc_select_input(4);
  729. #endif
  730. adc_fifo_setup(true, false, 0, false, false);
  731. adc_run(true);
  732. initialized = true;
  733. }
  734. #ifdef ENABLE_AUDIO_OUTPUT_SPDIF
  735. /*
  736. * If ADC sample reads are done, either via direct reading, FIFO, or DMA,
  737. * at the same time a SPI DMA write begins, it appears that the first
  738. * 16-bit word of the DMA data is lost. This causes the bitstream to glitch
  739. * and audio to 'pop' noticably. For now, just disable ADC reads when audio
  740. * is playing.
  741. */
  742. if (audio_is_active()) return;
  743. #endif // ENABLE_AUDIO_OUTPUT_SPDIF
  744. int adc_value_max = 0;
  745. while (!adc_fifo_is_empty())
  746. {
  747. int adc_value = adc_fifo_get();
  748. if (adc_value > adc_value_max) adc_value_max = adc_value;
  749. }
  750. // adc_value = 700mV * 4096 / Vdd
  751. // => Vdd = 700mV * 4096 / adc_value
  752. // To avoid wasting time on division, compare against
  753. // limit directly.
  754. const int limit = (700 * 4096) / PLATFORM_VDD_WARNING_LIMIT_mV;
  755. if (adc_value_max > limit)
  756. {
  757. // Warn once, and then again if we detect even a lower drop.
  758. int vdd_mV = (700 * 4096) / adc_value_max;
  759. if (vdd_mV < lowest_vdd_seen)
  760. {
  761. logmsg("WARNING: Detected supply voltage drop to ", vdd_mV, "mV. Verify power supply is adequate.");
  762. lowest_vdd_seen = vdd_mV - 50; // Small hysteresis to avoid excessive warnings
  763. }
  764. }
  765. else if (!adc_initial_logged && adc_value_max != 0)
  766. {
  767. adc_initial_logged = true;
  768. int vdd_mV = (700 * 4096) / adc_value_max;
  769. logmsg("INFO: Pico Voltage: ", (vdd_mV / 1000.0), "V.");
  770. }
  771. #endif // PLATFORM_VDD_WARNING_LIMIT_mV > 0
  772. }
  773. // This function is called for every log message.
  774. void platform_log(const char *s)
  775. {
  776. if (g_uart_initialized)
  777. {
  778. uart_puts(uart0, s);
  779. }
  780. }
  781. static int g_watchdog_timeout;
  782. static bool g_watchdog_initialized;
  783. static void watchdog_callback(unsigned alarm_num)
  784. {
  785. g_watchdog_timeout -= 1000;
  786. if (g_watchdog_timeout < WATCHDOG_CRASH_TIMEOUT - 1000)
  787. {
  788. // Been stuck for at least a second, start dumping USB log
  789. usb_log_poll();
  790. }
  791. if (g_watchdog_timeout <= WATCHDOG_CRASH_TIMEOUT - WATCHDOG_BUS_RESET_TIMEOUT)
  792. {
  793. if (!scsiDev.resetFlag || !g_scsiHostPhyReset)
  794. {
  795. logmsg("--------------");
  796. logmsg("WATCHDOG TIMEOUT, attempting bus reset");
  797. logmsg("Platform: ", g_platform_name);
  798. logmsg("FW Version: ", g_log_firmwareversion);
  799. logmsg("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in);
  800. logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  801. logmsg("scsiDev.phase: ", (int)scsiDev.phase);
  802. scsi_accel_log_state();
  803. uint32_t msp;
  804. asm volatile ("MRS %0, msp" : "=r" (msp) );
  805. uint32_t *p = (uint32_t*)msp;
  806. for (int i = 0; i < 8; i++)
  807. {
  808. if (p == &__StackTop) break; // End of stack
  809. logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  810. p += 4;
  811. }
  812. scsiDev.resetFlag = 1;
  813. g_scsiHostPhyReset = true;
  814. }
  815. if (g_watchdog_timeout <= 0)
  816. {
  817. logmsg("--------------");
  818. logmsg("WATCHDOG TIMEOUT, already attempted bus reset, rebooting");
  819. logmsg("Platform: ", g_platform_name);
  820. logmsg("FW Version: ", g_log_firmwareversion);
  821. logmsg("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in);
  822. logmsg("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  823. logmsg("scsiDev.phase: ", (int)scsiDev.phase);
  824. uint32_t msp;
  825. asm volatile ("MRS %0, msp" : "=r" (msp) );
  826. uint32_t *p = (uint32_t*)msp;
  827. for (int i = 0; i < 8; i++)
  828. {
  829. if (p == &__StackTop) break; // End of stack
  830. logmsg("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  831. p += 4;
  832. }
  833. usb_log_poll();
  834. platform_emergency_log_save();
  835. platform_boot_to_main_firmware();
  836. }
  837. }
  838. hardware_alarm_set_target(alarm_num, delayed_by_ms(get_absolute_time(), 1000));
  839. }
  840. // This function can be used to periodically reset watchdog timer for crash handling.
  841. // It can also be left empty if the platform does not use a watchdog timer.
  842. void platform_reset_watchdog()
  843. {
  844. g_watchdog_timeout = WATCHDOG_CRASH_TIMEOUT;
  845. if (!g_watchdog_initialized)
  846. {
  847. int alarm_num = -1;
  848. for (int i = 0; i < NUM_GENERIC_TIMERS; i++)
  849. {
  850. if (!hardware_alarm_is_claimed(i))
  851. {
  852. alarm_num = i;
  853. break;
  854. }
  855. }
  856. if (alarm_num == -1)
  857. {
  858. logmsg("No free watchdog hardware alarms to claim");
  859. return;
  860. }
  861. hardware_alarm_claim(alarm_num);
  862. hardware_alarm_set_callback(alarm_num, &watchdog_callback);
  863. hardware_alarm_set_target(alarm_num, delayed_by_ms(get_absolute_time(), 1000));
  864. g_watchdog_initialized = true;
  865. }
  866. // USB log is polled here also to make sure any log messages in fault states
  867. // get passed to USB.
  868. usb_log_poll();
  869. }
  870. // Poll function that is called every few milliseconds.
  871. // Can be left empty or used for platform-specific processing.
  872. void platform_poll()
  873. {
  874. usb_input_poll();
  875. usb_log_poll();
  876. adc_poll();
  877. #if defined(ENABLE_AUDIO_OUTPUT_SPDIF) || defined(ENABLE_AUDIO_OUTPUT_I2S)
  878. audio_poll();
  879. #endif // ENABLE_AUDIO_OUTPUT_SPDIF
  880. }
  881. void platform_reset_mcu()
  882. {
  883. watchdog_reboot(0, 0, 2000);
  884. }
  885. uint8_t platform_get_buttons()
  886. {
  887. uint8_t buttons = 0;
  888. #if defined(ENABLE_AUDIO_OUTPUT_SPDIF)
  889. // pulled to VCC via resistor, sinking when pressed
  890. if (!gpio_get(GPIO_EXP_SPARE)) buttons |= 1;
  891. #elif defined(GPIO_I2C_SDA)
  892. // SDA = button 1, SCL = button 2
  893. if (!gpio_get(GPIO_I2C_SDA)) buttons |= 1;
  894. if (!gpio_get(GPIO_I2C_SCL)) buttons |= 2;
  895. #endif // defined(ENABLE_AUDIO_OUTPUT_SPDIF)
  896. // Simple debouncing logic: handle button releases after 100 ms delay.
  897. static uint32_t debounce;
  898. static uint8_t buttons_debounced = 0;
  899. if (buttons != 0)
  900. {
  901. buttons_debounced = buttons;
  902. debounce = millis();
  903. }
  904. else if ((uint32_t)(millis() - debounce) > 100)
  905. {
  906. buttons_debounced = 0;
  907. }
  908. return buttons_debounced;
  909. }
  910. bool platform_has_phy_eject_button()
  911. {
  912. return false;
  913. }
  914. /************************************/
  915. /* ROM drive in extra flash space */
  916. /************************************/
  917. #ifdef PLATFORM_HAS_ROM_DRIVE
  918. # ifndef ROMDRIVE_OFFSET
  919. // Reserve up to 352 kB for firmware by default.
  920. #define ROMDRIVE_OFFSET (352 * 1024)
  921. # endif
  922. uint32_t platform_get_romdrive_maxsize()
  923. {
  924. if (g_flash_chip_size >= ROMDRIVE_OFFSET)
  925. {
  926. return g_flash_chip_size - ROMDRIVE_OFFSET;
  927. }
  928. else
  929. {
  930. // Failed to read flash chip size, default to 2 MB
  931. return 2048 * 1024 - ROMDRIVE_OFFSET;
  932. }
  933. }
  934. bool platform_read_romdrive(uint8_t *dest, uint32_t start, uint32_t count)
  935. {
  936. xip_ctrl_hw->stream_ctr = 0;
  937. while (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))
  938. {
  939. (void) xip_ctrl_hw->stream_fifo;
  940. }
  941. xip_ctrl_hw->stream_addr = start + ROMDRIVE_OFFSET;
  942. xip_ctrl_hw->stream_ctr = count / 4;
  943. // Transfer happens in multiples of 4 bytes
  944. assert(start < platform_get_romdrive_maxsize());
  945. assert((count & 3) == 0);
  946. assert((((uint32_t)dest) & 3) == 0);
  947. uint32_t *dest32 = (uint32_t*)dest;
  948. uint32_t words_remain = count / 4;
  949. while (words_remain > 0)
  950. {
  951. if (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))
  952. {
  953. *dest32++ = xip_ctrl_hw->stream_fifo;
  954. words_remain--;
  955. }
  956. }
  957. return true;
  958. }
  959. bool platform_write_romdrive(const uint8_t *data, uint32_t start, uint32_t count)
  960. {
  961. assert(start < platform_get_romdrive_maxsize());
  962. assert((count % PLATFORM_ROMDRIVE_PAGE_SIZE) == 0);
  963. uint32_t saved_irq = save_and_disable_interrupts();
  964. flash_range_erase(start + ROMDRIVE_OFFSET, count);
  965. flash_range_program(start + ROMDRIVE_OFFSET, data, count);
  966. restore_interrupts(saved_irq);
  967. return true;
  968. }
  969. #endif // PLATFORM_HAS_ROM_DRIVE
  970. /**********************************************/
  971. /* Mapping from data bytes to GPIO BOP values */
  972. /**********************************************/
  973. /* A lookup table is the fastest way to calculate parity and convert the IO pin mapping for data bus.
  974. * For RP2040 we expect that the bits are consecutive and in order.
  975. * The PIO-based parity scheme also requires that the lookup table is aligned to 512-byte increment.
  976. * The parity table is placed into SRAM4 area to reduce bus contention.
  977. */
  978. #define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1)
  979. #ifdef BLUESCSI_BLASTER
  980. # define X(n) (\
  981. ((n & 0x01) ? 0 : (1 << 0)) | \
  982. ((n & 0x02) ? 0 : (1 << 1)) | \
  983. ((n & 0x04) ? 0 : (1 << 2)) | \
  984. ((n & 0x08) ? 0 : (1 << 3)) | \
  985. ((n & 0x10) ? 0 : (1 << 4)) | \
  986. ((n & 0x20) ? 0 : (1 << 5)) | \
  987. ((n & 0x40) ? 0 : (1 << 6)) | \
  988. ((n & 0x80) ? 0 : (1 << 7)) | \
  989. (PARITY(n) ? 0 : (1 << 8)) \
  990. )
  991. #else
  992. # define X(n) (\
  993. ((n & 0x01) ? 0 : (1 << SCSI_IO_DB0)) | \
  994. ((n & 0x02) ? 0 : (1 << SCSI_IO_DB1)) | \
  995. ((n & 0x04) ? 0 : (1 << SCSI_IO_DB2)) | \
  996. ((n & 0x08) ? 0 : (1 << SCSI_IO_DB3)) | \
  997. ((n & 0x10) ? 0 : (1 << SCSI_IO_DB4)) | \
  998. ((n & 0x20) ? 0 : (1 << SCSI_IO_DB5)) | \
  999. ((n & 0x40) ? 0 : (1 << SCSI_IO_DB6)) | \
  1000. ((n & 0x80) ? 0 : (1 << SCSI_IO_DB7)) | \
  1001. (PARITY(n) ? 0 : (1 << SCSI_IO_DBP)) \
  1002. )
  1003. #endif
  1004. const uint16_t g_scsi_parity_lookup[256] __attribute__((aligned(512), section(".scratch_x.parity"))) =
  1005. {
  1006. X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f),
  1007. X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f),
  1008. X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f),
  1009. X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f),
  1010. X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f),
  1011. X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f),
  1012. X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f),
  1013. X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f),
  1014. X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f),
  1015. X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f),
  1016. X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf),
  1017. X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf),
  1018. X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf),
  1019. X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf),
  1020. X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef),
  1021. X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff)
  1022. };
  1023. #undef X
  1024. /* Similarly, another lookup table is used to verify parity of received data.
  1025. * This table is indexed by the 8 data bits + 1 parity bit from SCSI bus (active low)
  1026. * Each word contains the data byte (inverted to active-high) and a bit indicating whether parity is valid.
  1027. */
  1028. #define X(n) (\
  1029. ((n & 0xFF) ^ 0xFF) | \
  1030. (((PARITY(n & 0xFF) ^ (n >> 8)) & 1) << 8) \
  1031. )
  1032. const uint16_t g_scsi_parity_check_lookup[512] __attribute__((aligned(1024), section(".scratch_x.parity"))) =
  1033. {
  1034. X(0x000), X(0x001), X(0x002), X(0x003), X(0x004), X(0x005), X(0x006), X(0x007), X(0x008), X(0x009), X(0x00a), X(0x00b), X(0x00c), X(0x00d), X(0x00e), X(0x00f),
  1035. X(0x010), X(0x011), X(0x012), X(0x013), X(0x014), X(0x015), X(0x016), X(0x017), X(0x018), X(0x019), X(0x01a), X(0x01b), X(0x01c), X(0x01d), X(0x01e), X(0x01f),
  1036. X(0x020), X(0x021), X(0x022), X(0x023), X(0x024), X(0x025), X(0x026), X(0x027), X(0x028), X(0x029), X(0x02a), X(0x02b), X(0x02c), X(0x02d), X(0x02e), X(0x02f),
  1037. X(0x030), X(0x031), X(0x032), X(0x033), X(0x034), X(0x035), X(0x036), X(0x037), X(0x038), X(0x039), X(0x03a), X(0x03b), X(0x03c), X(0x03d), X(0x03e), X(0x03f),
  1038. X(0x040), X(0x041), X(0x042), X(0x043), X(0x044), X(0x045), X(0x046), X(0x047), X(0x048), X(0x049), X(0x04a), X(0x04b), X(0x04c), X(0x04d), X(0x04e), X(0x04f),
  1039. X(0x050), X(0x051), X(0x052), X(0x053), X(0x054), X(0x055), X(0x056), X(0x057), X(0x058), X(0x059), X(0x05a), X(0x05b), X(0x05c), X(0x05d), X(0x05e), X(0x05f),
  1040. X(0x060), X(0x061), X(0x062), X(0x063), X(0x064), X(0x065), X(0x066), X(0x067), X(0x068), X(0x069), X(0x06a), X(0x06b), X(0x06c), X(0x06d), X(0x06e), X(0x06f),
  1041. X(0x070), X(0x071), X(0x072), X(0x073), X(0x074), X(0x075), X(0x076), X(0x077), X(0x078), X(0x079), X(0x07a), X(0x07b), X(0x07c), X(0x07d), X(0x07e), X(0x07f),
  1042. X(0x080), X(0x081), X(0x082), X(0x083), X(0x084), X(0x085), X(0x086), X(0x087), X(0x088), X(0x089), X(0x08a), X(0x08b), X(0x08c), X(0x08d), X(0x08e), X(0x08f),
  1043. X(0x090), X(0x091), X(0x092), X(0x093), X(0x094), X(0x095), X(0x096), X(0x097), X(0x098), X(0x099), X(0x09a), X(0x09b), X(0x09c), X(0x09d), X(0x09e), X(0x09f),
  1044. X(0x0a0), X(0x0a1), X(0x0a2), X(0x0a3), X(0x0a4), X(0x0a5), X(0x0a6), X(0x0a7), X(0x0a8), X(0x0a9), X(0x0aa), X(0x0ab), X(0x0ac), X(0x0ad), X(0x0ae), X(0x0af),
  1045. X(0x0b0), X(0x0b1), X(0x0b2), X(0x0b3), X(0x0b4), X(0x0b5), X(0x0b6), X(0x0b7), X(0x0b8), X(0x0b9), X(0x0ba), X(0x0bb), X(0x0bc), X(0x0bd), X(0x0be), X(0x0bf),
  1046. X(0x0c0), X(0x0c1), X(0x0c2), X(0x0c3), X(0x0c4), X(0x0c5), X(0x0c6), X(0x0c7), X(0x0c8), X(0x0c9), X(0x0ca), X(0x0cb), X(0x0cc), X(0x0cd), X(0x0ce), X(0x0cf),
  1047. X(0x0d0), X(0x0d1), X(0x0d2), X(0x0d3), X(0x0d4), X(0x0d5), X(0x0d6), X(0x0d7), X(0x0d8), X(0x0d9), X(0x0da), X(0x0db), X(0x0dc), X(0x0dd), X(0x0de), X(0x0df),
  1048. X(0x0e0), X(0x0e1), X(0x0e2), X(0x0e3), X(0x0e4), X(0x0e5), X(0x0e6), X(0x0e7), X(0x0e8), X(0x0e9), X(0x0ea), X(0x0eb), X(0x0ec), X(0x0ed), X(0x0ee), X(0x0ef),
  1049. X(0x0f0), X(0x0f1), X(0x0f2), X(0x0f3), X(0x0f4), X(0x0f5), X(0x0f6), X(0x0f7), X(0x0f8), X(0x0f9), X(0x0fa), X(0x0fb), X(0x0fc), X(0x0fd), X(0x0fe), X(0x0ff),
  1050. X(0x100), X(0x101), X(0x102), X(0x103), X(0x104), X(0x105), X(0x106), X(0x107), X(0x108), X(0x109), X(0x10a), X(0x10b), X(0x10c), X(0x10d), X(0x10e), X(0x10f),
  1051. X(0x110), X(0x111), X(0x112), X(0x113), X(0x114), X(0x115), X(0x116), X(0x117), X(0x118), X(0x119), X(0x11a), X(0x11b), X(0x11c), X(0x11d), X(0x11e), X(0x11f),
  1052. X(0x120), X(0x121), X(0x122), X(0x123), X(0x124), X(0x125), X(0x126), X(0x127), X(0x128), X(0x129), X(0x12a), X(0x12b), X(0x12c), X(0x12d), X(0x12e), X(0x12f),
  1053. X(0x130), X(0x131), X(0x132), X(0x133), X(0x134), X(0x135), X(0x136), X(0x137), X(0x138), X(0x139), X(0x13a), X(0x13b), X(0x13c), X(0x13d), X(0x13e), X(0x13f),
  1054. X(0x140), X(0x141), X(0x142), X(0x143), X(0x144), X(0x145), X(0x146), X(0x147), X(0x148), X(0x149), X(0x14a), X(0x14b), X(0x14c), X(0x14d), X(0x14e), X(0x14f),
  1055. X(0x150), X(0x151), X(0x152), X(0x153), X(0x154), X(0x155), X(0x156), X(0x157), X(0x158), X(0x159), X(0x15a), X(0x15b), X(0x15c), X(0x15d), X(0x15e), X(0x15f),
  1056. X(0x160), X(0x161), X(0x162), X(0x163), X(0x164), X(0x165), X(0x166), X(0x167), X(0x168), X(0x169), X(0x16a), X(0x16b), X(0x16c), X(0x16d), X(0x16e), X(0x16f),
  1057. X(0x170), X(0x171), X(0x172), X(0x173), X(0x174), X(0x175), X(0x176), X(0x177), X(0x178), X(0x179), X(0x17a), X(0x17b), X(0x17c), X(0x17d), X(0x17e), X(0x17f),
  1058. X(0x180), X(0x181), X(0x182), X(0x183), X(0x184), X(0x185), X(0x186), X(0x187), X(0x188), X(0x189), X(0x18a), X(0x18b), X(0x18c), X(0x18d), X(0x18e), X(0x18f),
  1059. X(0x190), X(0x191), X(0x192), X(0x193), X(0x194), X(0x195), X(0x196), X(0x197), X(0x198), X(0x199), X(0x19a), X(0x19b), X(0x19c), X(0x19d), X(0x19e), X(0x19f),
  1060. X(0x1a0), X(0x1a1), X(0x1a2), X(0x1a3), X(0x1a4), X(0x1a5), X(0x1a6), X(0x1a7), X(0x1a8), X(0x1a9), X(0x1aa), X(0x1ab), X(0x1ac), X(0x1ad), X(0x1ae), X(0x1af),
  1061. X(0x1b0), X(0x1b1), X(0x1b2), X(0x1b3), X(0x1b4), X(0x1b5), X(0x1b6), X(0x1b7), X(0x1b8), X(0x1b9), X(0x1ba), X(0x1bb), X(0x1bc), X(0x1bd), X(0x1be), X(0x1bf),
  1062. X(0x1c0), X(0x1c1), X(0x1c2), X(0x1c3), X(0x1c4), X(0x1c5), X(0x1c6), X(0x1c7), X(0x1c8), X(0x1c9), X(0x1ca), X(0x1cb), X(0x1cc), X(0x1cd), X(0x1ce), X(0x1cf),
  1063. X(0x1d0), X(0x1d1), X(0x1d2), X(0x1d3), X(0x1d4), X(0x1d5), X(0x1d6), X(0x1d7), X(0x1d8), X(0x1d9), X(0x1da), X(0x1db), X(0x1dc), X(0x1dd), X(0x1de), X(0x1df),
  1064. X(0x1e0), X(0x1e1), X(0x1e2), X(0x1e3), X(0x1e4), X(0x1e5), X(0x1e6), X(0x1e7), X(0x1e8), X(0x1e9), X(0x1ea), X(0x1eb), X(0x1ec), X(0x1ed), X(0x1ee), X(0x1ef),
  1065. X(0x1f0), X(0x1f1), X(0x1f2), X(0x1f3), X(0x1f4), X(0x1f5), X(0x1f6), X(0x1f7), X(0x1f8), X(0x1f9), X(0x1fa), X(0x1fb), X(0x1fc), X(0x1fd), X(0x1fe), X(0x1ff),
  1066. };
  1067. #undef X
  1068. } /* extern "C" */
  1069. #ifdef SD_USE_SDIO
  1070. // These functions are not used for SDIO mode but are needed to avoid build error.
  1071. void sdCsInit(SdCsPin_t pin) {}
  1072. void sdCsWrite(SdCsPin_t pin, bool level) {}
  1073. // SDIO configuration for main program
  1074. SdioConfig g_sd_sdio_config(DMA_SDIO);
  1075. #ifdef SD_USE_RP2350_SDIO
  1076. void platform_set_sd_callback(sd_callback_t func, const uint8_t *buffer)
  1077. {
  1078. rp2350_sdio_sdfat_set_callback(func, buffer);
  1079. }
  1080. #endif
  1081. #endif