BlueSCSI_initiator.cpp 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155
  1. /**
  2. * This file is originally part of ZuluSCSI adopted for BlueSCSI
  3. *
  4. * BlueSCSI - Copyright (c) 2024 Eric Helgeson, Androda
  5. * ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™
  6. *
  7. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
  8. *
  9. * https://www.gnu.org/licenses/gpl-3.0.html
  10. * ----
  11. * This program is free software: you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation, either version 3 of the License, or
  14. * (at your option) any later version. 
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19. * GNU General Public License for more details. 
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  23. **/
  24. /*
  25. * Main program for initiator mode.
  26. */
  27. #include "BlueSCSI_config.h"
  28. #include "BlueSCSI_log.h"
  29. #include "BlueSCSI_log_trace.h"
  30. #include "BlueSCSI_initiator.h"
  31. #include "BlueSCSI_msc_initiator.h"
  32. #include "BlueSCSI_msc.h"
  33. #include <BlueSCSI_platform.h>
  34. #include <minIni.h>
  35. #include "SdFat.h"
  36. #include <scsi2sd.h>
  37. extern "C" {
  38. #include <scsi.h>
  39. }
  40. #ifndef PLATFORM_HAS_INITIATOR_MODE
  41. void scsiInitiatorInit()
  42. {
  43. }
  44. void scsiInitiatorMainLoop()
  45. {
  46. }
  47. int scsiInitiatorRunCommand(const uint8_t *command, size_t cmdlen,
  48. uint8_t *bufIn, size_t bufInLen,
  49. const uint8_t *bufOut, size_t bufOutLen)
  50. {
  51. return -1;
  52. }
  53. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  54. {
  55. return false;
  56. }
  57. #else
  58. // From BlueSCSI.cpp
  59. extern bool g_sdcard_present;
  60. /*************************************
  61. * High level initiator mode logic *
  62. *************************************/
  63. static struct {
  64. // Bitmap of all drives that have been imaged
  65. uint32_t drives_imaged;
  66. // Configuration from .ini
  67. uint8_t initiator_id;
  68. uint8_t max_retry_count;
  69. bool use_read10; // Always use read10 commands
  70. // Is imaging a drive in progress, or are we scanning?
  71. bool imaging;
  72. // Information about currently selected drive
  73. int target_id;
  74. uint32_t sectorsize;
  75. uint32_t sectorcount;
  76. uint32_t sectorcount_all;
  77. uint32_t sectors_done;
  78. uint32_t max_sector_per_transfer;
  79. uint32_t bad_sector_count;
  80. uint8_t ansi_version;
  81. uint8_t device_type;
  82. // Retry information for sector reads.
  83. // If a large read fails, retry is done sector-by-sector.
  84. int retrycount;
  85. uint32_t failposition;
  86. bool eject_when_done;
  87. bool removable;
  88. uint32_t removable_count[8];
  89. FsFile target_file;
  90. } g_initiator_state;
  91. extern SdFs SD;
  92. // Initialization of initiator mode
  93. void scsiInitiatorInit()
  94. {
  95. scsiHostPhyReset();
  96. g_initiator_state.initiator_id = ini_getl("SCSI", "InitiatorID", 7, CONFIGFILE);
  97. if (g_initiator_state.initiator_id > 7)
  98. {
  99. logmsg("InitiatorID set to illegal value in, ", CONFIGFILE, ", defaulting to 7");
  100. g_initiator_state.initiator_id = 7;
  101. }
  102. else
  103. {
  104. logmsg("InitiatorID set to ID ", static_cast<int>(g_initiator_state.initiator_id));
  105. }
  106. g_initiator_state.max_retry_count = ini_getl("SCSI", "InitiatorMaxRetry", 5, CONFIGFILE);
  107. g_initiator_state.use_read10 = ini_getbool("SCSI", "InitiatorUseRead10", false, CONFIGFILE);
  108. // treat initiator id as already imaged drive so it gets skipped
  109. g_initiator_state.drives_imaged = 1 << g_initiator_state.initiator_id;
  110. g_initiator_state.imaging = false;
  111. g_initiator_state.target_id = -1;
  112. g_initiator_state.sectorsize = 0;
  113. g_initiator_state.sectorcount = 0;
  114. g_initiator_state.sectors_done = 0;
  115. g_initiator_state.retrycount = 0;
  116. g_initiator_state.failposition = 0;
  117. g_initiator_state.max_sector_per_transfer = 512;
  118. g_initiator_state.ansi_version = 0;
  119. g_initiator_state.bad_sector_count = 0;
  120. g_initiator_state.device_type = SCSI_DEVICE_TYPE_DIRECT_ACCESS;
  121. g_initiator_state.removable = false;
  122. g_initiator_state.eject_when_done = false;
  123. memset(g_initiator_state.removable_count, 0, sizeof(g_initiator_state.removable_count));
  124. }
  125. int scsiInitiatorGetOwnID()
  126. {
  127. return g_initiator_state.initiator_id;
  128. }
  129. // Update progress bar LED during transfers
  130. static void scsiInitiatorUpdateLed()
  131. {
  132. // Update status indicator, the led blinks every 5 seconds and is on the longer the more data has been transferred
  133. const int period = 256;
  134. int phase = (millis() % period);
  135. int duty = (int64_t)g_initiator_state.sectors_done * period / g_initiator_state.sectorcount;
  136. // Minimum and maximum time to verify that the blink is visible
  137. if (duty < 50) duty = 50;
  138. if (duty > period - 50) duty = period - 50;
  139. if (phase <= duty)
  140. {
  141. LED_ON();
  142. }
  143. else
  144. {
  145. LED_OFF();
  146. }
  147. }
  148. void delay_with_poll(uint32_t ms)
  149. {
  150. uint32_t start = millis();
  151. while ((uint32_t)(millis() - start) < ms)
  152. {
  153. platform_poll();
  154. delay(1);
  155. }
  156. }
  157. static int scsiTypeToIniType(int scsi_type, bool removable)
  158. {
  159. int ini_type = -1;
  160. switch (scsi_type)
  161. {
  162. case SCSI_DEVICE_TYPE_DIRECT_ACCESS:
  163. ini_type = removable ? S2S_CFG_REMOVABLE : S2S_CFG_FIXED;
  164. break;
  165. case 1:
  166. ini_type = -1; // S2S_CFG_SEQUENTIAL
  167. break;
  168. case SCSI_DEVICE_TYPE_CD:
  169. ini_type = S2S_CFG_OPTICAL;
  170. break;
  171. case SCSI_DEVICE_TYPE_MO:
  172. ini_type = S2S_CFG_MO;
  173. break;
  174. default:
  175. ini_type = -1;
  176. break;
  177. }
  178. return ini_type;
  179. }
  180. // High level logic of the initiator mode
  181. void scsiInitiatorMainLoop()
  182. {
  183. if (g_scsiHostPhyReset)
  184. {
  185. logmsg("Executing BUS RESET after aborted command");
  186. scsiHostPhyReset();
  187. }
  188. #ifdef PLATFORM_MASS_STORAGE
  189. if (g_msc_initiator)
  190. {
  191. poll_msc_initiator();
  192. platform_run_msc();
  193. return;
  194. }
  195. else
  196. {
  197. if (!g_sdcard_present || ini_getbool("SCSI", "InitiatorMSC", false, CONFIGFILE))
  198. {
  199. // This delay allows the USB serial console to connect immediately to the host
  200. // It also decreases the delay in callback processing of MSC commands
  201. int32_t msc_init_delay = ini_getl("SCSI", "InitiatorMSCInitDelay", MSC_INIT_DELAY, CONFIGFILE);
  202. if (msc_init_delay != MSC_INIT_DELAY)
  203. logmsg("Initiator init delay set in ", CONFIGFILE ," to ", (int)msc_init_delay, " milliseconds");
  204. delay(msc_init_delay);
  205. logmsg("Entering USB MSC initiator mode");
  206. platform_enter_msc();
  207. setup_msc_initiator();
  208. return;
  209. }
  210. }
  211. #endif
  212. if (!g_sdcard_present)
  213. {
  214. // Wait for SD card
  215. return;
  216. }
  217. if (!g_initiator_state.imaging)
  218. {
  219. // Scan for SCSI drives one at a time
  220. g_initiator_state.target_id = (g_initiator_state.target_id + 1) % 8;
  221. g_initiator_state.sectorsize = 0;
  222. g_initiator_state.sectorcount = 0;
  223. g_initiator_state.sectors_done = 0;
  224. g_initiator_state.retrycount = 0;
  225. g_initiator_state.failposition = 0;
  226. g_initiator_state.max_sector_per_transfer = 512;
  227. g_initiator_state.ansi_version = 0;
  228. g_initiator_state.bad_sector_count = 0;
  229. g_initiator_state.device_type = SCSI_DEVICE_TYPE_DIRECT_ACCESS;
  230. g_initiator_state.removable = false;
  231. g_initiator_state.eject_when_done = false;
  232. g_initiator_state.use_read10 = false;
  233. if (!(g_initiator_state.drives_imaged & (1 << g_initiator_state.target_id)))
  234. {
  235. delay_with_poll(1000);
  236. uint8_t inquiry_data[36] = {0};
  237. LED_ON();
  238. bool startstopok =
  239. scsiTestUnitReady(g_initiator_state.target_id) &&
  240. scsiStartStopUnit(g_initiator_state.target_id, true);
  241. bool readcapok = startstopok &&
  242. scsiInitiatorReadCapacity(g_initiator_state.target_id,
  243. &g_initiator_state.sectorcount,
  244. &g_initiator_state.sectorsize);
  245. bool inquiryok = startstopok &&
  246. scsiInquiry(g_initiator_state.target_id, inquiry_data);
  247. LED_OFF();
  248. uint64_t total_bytes = 0;
  249. if (readcapok)
  250. {
  251. logmsg("SCSI ID ", g_initiator_state.target_id,
  252. " capacity ", (int)g_initiator_state.sectorcount,
  253. " sectors x ", (int)g_initiator_state.sectorsize, " bytes");
  254. g_initiator_state.sectorcount_all = g_initiator_state.sectorcount;
  255. total_bytes = (uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize;
  256. logmsg("Drive total size is ", (int)(total_bytes / (1024 * 1024)), " MiB");
  257. if (total_bytes >= 0xFFFFFFFF && SD.fatType() != FAT_TYPE_EXFAT)
  258. {
  259. // Note: the FAT32 limit is 4 GiB - 1 byte
  260. logmsg("Target SCSI ID ", g_initiator_state.target_id, " image size is equal or larger than 4 GiB.");
  261. logmsg("This is larger than the max filesize supported by SD card's filesystem");
  262. logmsg("Please reformat the SD card with exFAT format to image this target");
  263. g_initiator_state.drives_imaged |= 1 << g_initiator_state.target_id;
  264. return;
  265. }
  266. }
  267. else if (startstopok)
  268. {
  269. logmsg("SCSI ID ", g_initiator_state.target_id, " responds but ReadCapacity command failed");
  270. logmsg("Possibly SCSI-1 drive? Attempting to read up to 1 GB.");
  271. g_initiator_state.sectorsize = 512;
  272. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 2097152;
  273. g_initiator_state.max_sector_per_transfer = 128;
  274. }
  275. else
  276. {
  277. #ifndef BLUESCSI_NETWORK
  278. dbgmsg("Failed to connect to SCSI ID ", g_initiator_state.target_id);
  279. #endif
  280. g_initiator_state.sectorsize = 0;
  281. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  282. }
  283. char filename_base[12];
  284. strncpy(filename_base, "HD00_imaged", sizeof(filename_base));
  285. const char *filename_extension = ".hda";
  286. if (inquiryok)
  287. {
  288. char vendor[9], product[17], revision[5];
  289. g_initiator_state.device_type=inquiry_data[0] & 0x1f;
  290. g_initiator_state.ansi_version = inquiry_data[2] & 0x7;
  291. g_initiator_state.removable = !!(inquiry_data[1] & 0x80);
  292. g_initiator_state.eject_when_done = g_initiator_state.removable;
  293. memcpy(vendor, &inquiry_data[8], 8);
  294. vendor[8]=0;
  295. memcpy(product, &inquiry_data[16], 16);
  296. product[16]=0;
  297. memcpy(revision, &inquiry_data[32], 4);
  298. revision[4]=0;
  299. g_initiator_state.use_read10 = scsiInitiatorTestSupportsRead10(g_initiator_state.target_id, g_initiator_state.sectorsize);
  300. if(!g_initiator_state.use_read10)
  301. {
  302. // READ6 command can transfer up to 256 sectors
  303. g_initiator_state.max_sector_per_transfer = 256;
  304. }
  305. int ini_type = scsiTypeToIniType(g_initiator_state.device_type, g_initiator_state.removable);
  306. logmsg("SCSI Version ", (int) g_initiator_state.ansi_version);
  307. logmsg("[SCSI", g_initiator_state.target_id,"]");
  308. logmsg(" Vendor = \"", vendor,"\"");
  309. logmsg(" Product = \"", product,"\"");
  310. logmsg(" Version = \"", revision,"\"");
  311. if (ini_type == -1)
  312. logmsg("Type = Not Supported, trying direct access");
  313. else
  314. logmsg(" Type = ", ini_type);
  315. if (g_initiator_state.device_type == SCSI_DEVICE_TYPE_CD)
  316. {
  317. strncpy(filename_base, "CD00_imaged", sizeof(filename_base));
  318. filename_extension = ".iso";
  319. }
  320. else if (g_initiator_state.device_type == SCSI_DEVICE_TYPE_MO)
  321. {
  322. strncpy(filename_base, "MO00_imaged", sizeof(filename_base));
  323. filename_extension = ".img";
  324. }
  325. else if (g_initiator_state.device_type != SCSI_DEVICE_TYPE_DIRECT_ACCESS)
  326. {
  327. logmsg("Unhandled scsi device type: ", g_initiator_state.device_type, ". Handling it as Direct Access Device.");
  328. g_initiator_state.device_type = SCSI_DEVICE_TYPE_DIRECT_ACCESS;
  329. }
  330. if (g_initiator_state.device_type == SCSI_DEVICE_TYPE_DIRECT_ACCESS && g_initiator_state.removable)
  331. {
  332. strncpy(filename_base, "RM00_imaged", sizeof(filename_base));
  333. filename_extension = ".img";
  334. }
  335. }
  336. if (g_initiator_state.eject_when_done && g_initiator_state.removable_count[g_initiator_state.target_id] == 0)
  337. {
  338. g_initiator_state.removable_count[g_initiator_state.target_id] = 1;
  339. }
  340. if (g_initiator_state.sectorcount > 0)
  341. {
  342. char filename[32] = {0};
  343. filename_base[2] += g_initiator_state.target_id;
  344. if (g_initiator_state.eject_when_done)
  345. {
  346. auto removable_count = g_initiator_state.removable_count[g_initiator_state.target_id];
  347. snprintf(filename, sizeof(filename), "%s(%lu)%s",filename_base, removable_count, filename_extension);
  348. }
  349. else
  350. {
  351. snprintf(filename, sizeof(filename), "%s%s", filename_base, filename_extension);
  352. }
  353. static int handling = -1;
  354. if (handling == -1)
  355. {
  356. handling = ini_getl("SCSI", "InitiatorImageHandling", 0, CONFIGFILE);
  357. }
  358. // Stop if a file already exists
  359. if (handling == 0)
  360. {
  361. if (SD.exists(filename))
  362. {
  363. logmsg("File, ", filename, ", already exists, InitiatorImageHandling set to stop if file exists.");
  364. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  365. return;
  366. }
  367. }
  368. // Create a new copy to the file 002-999
  369. else if (handling == 1)
  370. {
  371. for (uint32_t i = 1; i <= 1000; i++)
  372. {
  373. if (i == 1)
  374. {
  375. if (SD.exists(filename))
  376. continue;
  377. break;
  378. }
  379. else if(i >= 1000)
  380. {
  381. logmsg("Max images created from SCSI ID ", g_initiator_state.target_id, ", skipping image creation");
  382. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  383. return;
  384. }
  385. char filename_copy[6] = {0};
  386. if (g_initiator_state.eject_when_done)
  387. {
  388. auto removable_count = g_initiator_state.removable_count[g_initiator_state.target_id];
  389. snprintf(filename, sizeof(filename), "%s(%lu)-%03lu%s", filename_base, removable_count, i, filename_extension);
  390. }
  391. else
  392. {
  393. snprintf(filename, sizeof(filename), "%s-%03lu%s", filename_base, i, filename_extension);
  394. }
  395. snprintf(filename_copy, sizeof(filename_copy), "-%03lu", i);
  396. if (SD.exists(filename))
  397. continue;
  398. break;
  399. }
  400. }
  401. // overwrite file if it exists
  402. else if (handling == 2)
  403. {
  404. if (SD.exists(filename))
  405. {
  406. logmsg("File, ",filename, " already exists, InitiatorImageHandling set to overwrite file");
  407. SD.remove(filename);
  408. }
  409. }
  410. // InitiatorImageHandling invalid setting
  411. else
  412. {
  413. static bool invalid_logged_once = false;
  414. if (!invalid_logged_once)
  415. {
  416. logmsg("InitiatorImageHandling is set to, ", handling, ", which is invalid");
  417. invalid_logged_once = true;
  418. }
  419. return;
  420. }
  421. uint64_t sd_card_free_bytes = (uint64_t)SD.vol()->freeClusterCount() * SD.vol()->bytesPerCluster();
  422. if (sd_card_free_bytes < total_bytes)
  423. {
  424. logmsg("SD Card only has ", (int)(sd_card_free_bytes / (1024 * 1024)),
  425. " MiB - not enough free space to image SCSI ID ", g_initiator_state.target_id);
  426. g_initiator_state.drives_imaged |= 1 << g_initiator_state.target_id;
  427. return;
  428. }
  429. g_initiator_state.target_file = SD.open(filename, O_WRONLY | O_CREAT | O_TRUNC);
  430. if (!g_initiator_state.target_file.isOpen())
  431. {
  432. logmsg("Failed to open file for writing: ", filename);
  433. return;
  434. }
  435. if (SD.fatType() == FAT_TYPE_EXFAT)
  436. {
  437. // Only preallocate on exFAT, on FAT32 preallocating can result in false garbage data in the
  438. // file if write is interrupted.
  439. logmsg("Preallocating image file");
  440. g_initiator_state.target_file.preAllocate((uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize);
  441. }
  442. logmsg("Starting to copy drive data to ", filename);
  443. g_initiator_state.imaging = true;
  444. }
  445. }
  446. }
  447. else
  448. {
  449. // Copy sectors from SCSI drive to file
  450. if (g_initiator_state.sectors_done >= g_initiator_state.sectorcount)
  451. {
  452. scsiStartStopUnit(g_initiator_state.target_id, false);
  453. logmsg("Finished imaging drive with id ", g_initiator_state.target_id);
  454. LED_OFF();
  455. if (g_initiator_state.sectorcount != g_initiator_state.sectorcount_all)
  456. {
  457. logmsg("NOTE: Image size was limited to first 4 GiB due to SD card filesystem limit");
  458. logmsg("Please reformat the SD card with exFAT format to image this drive fully");
  459. }
  460. if(g_initiator_state.bad_sector_count != 0)
  461. {
  462. logmsg("NOTE: There were ", (int) g_initiator_state.bad_sector_count, " bad sectors that could not be read off this drive.");
  463. }
  464. if (!g_initiator_state.eject_when_done)
  465. {
  466. logmsg("Marking SCSI ID, ", g_initiator_state.target_id, ", as imaged, wont ask it again.");
  467. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  468. }
  469. g_initiator_state.imaging = false;
  470. g_initiator_state.target_file.close();
  471. return;
  472. }
  473. scsiInitiatorUpdateLed();
  474. // How many sectors to read in one batch?
  475. int numtoread = g_initiator_state.sectorcount - g_initiator_state.sectors_done;
  476. if (numtoread > g_initiator_state.max_sector_per_transfer)
  477. numtoread = g_initiator_state.max_sector_per_transfer;
  478. // Retry sector-by-sector after failure
  479. if (g_initiator_state.sectors_done < g_initiator_state.failposition)
  480. numtoread = 1;
  481. uint32_t time_start = millis();
  482. bool status = scsiInitiatorReadDataToFile(g_initiator_state.target_id,
  483. g_initiator_state.sectors_done, numtoread, g_initiator_state.sectorsize,
  484. g_initiator_state.target_file);
  485. if (!status)
  486. {
  487. logmsg("Failed to transfer ", numtoread, " sectors starting at ", (int)g_initiator_state.sectors_done);
  488. if (g_initiator_state.retrycount < g_initiator_state.max_retry_count)
  489. {
  490. logmsg("Retrying.. ", g_initiator_state.retrycount + 1, "/", (int) g_initiator_state.max_retry_count);
  491. delay_with_poll(200);
  492. // This reset causes some drives to hang and seems to have no effect if left off.
  493. // scsiHostPhyReset();
  494. delay_with_poll(200);
  495. g_initiator_state.retrycount++;
  496. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  497. if (g_initiator_state.retrycount > 1 && numtoread > 1)
  498. {
  499. logmsg("Multiple failures, retrying sector-by-sector");
  500. g_initiator_state.failposition = g_initiator_state.sectors_done + numtoread;
  501. }
  502. }
  503. else
  504. {
  505. logmsg("Retry limit exceeded, skipping one sector");
  506. g_initiator_state.retrycount = 0;
  507. g_initiator_state.sectors_done++;
  508. g_initiator_state.bad_sector_count++;
  509. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  510. }
  511. }
  512. else
  513. {
  514. g_initiator_state.retrycount = 0;
  515. g_initiator_state.sectors_done += numtoread;
  516. g_initiator_state.target_file.flush();
  517. int speed_kbps = numtoread * g_initiator_state.sectorsize / (millis() - time_start);
  518. logmsg("SCSI read succeeded, sectors done: ",
  519. (int)g_initiator_state.sectors_done, " / ", (int)g_initiator_state.sectorcount,
  520. " speed ", speed_kbps, " kB/s - ",
  521. (int)(100 * (int64_t)g_initiator_state.sectors_done / g_initiator_state.sectorcount), "%");
  522. }
  523. }
  524. }
  525. /*************************************
  526. * Low level command implementations *
  527. *************************************/
  528. int scsiInitiatorRunCommand(int target_id,
  529. const uint8_t *command, size_t cmdLen,
  530. uint8_t *bufIn, size_t bufInLen,
  531. const uint8_t *bufOut, size_t bufOutLen,
  532. bool returnDataPhase, uint32_t timeout)
  533. {
  534. if (!scsiHostPhySelect(target_id, g_initiator_state.initiator_id))
  535. {
  536. #ifndef BLUESCSI_NETWORK
  537. dbgmsg("------ Target ", target_id, " did not respond");
  538. #endif
  539. scsiHostPhyRelease();
  540. return -1;
  541. }
  542. SCSI_PHASE phase;
  543. int status = -1;
  544. uint32_t start = millis();
  545. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  546. {
  547. // If explicit timeout is specified, prevent watchdog from triggering too early.
  548. if ((uint32_t)(millis() - start) < timeout)
  549. {
  550. platform_reset_watchdog();
  551. }
  552. platform_poll();
  553. if (phase == MESSAGE_IN)
  554. {
  555. uint8_t msg = 0;
  556. scsiHostRead(&msg, 1);
  557. if (msg == MSG_COMMAND_COMPLETE)
  558. {
  559. break;
  560. }
  561. }
  562. else if (phase == MESSAGE_OUT)
  563. {
  564. uint8_t identify_msg = 0x80;
  565. scsiHostWrite(&identify_msg, 1);
  566. }
  567. else if (phase == COMMAND)
  568. {
  569. scsiHostWrite(command, cmdLen);
  570. }
  571. else if (phase == DATA_IN)
  572. {
  573. if (returnDataPhase) return 0;
  574. if (bufInLen == 0)
  575. {
  576. logmsg("DATA_IN phase but no data to receive!");
  577. status = -3;
  578. break;
  579. }
  580. uint32_t readCount = scsiHostRead(bufIn, bufInLen);
  581. if (readCount != bufInLen)
  582. {
  583. logmsg("scsiHostRead failed, tried to read ", (int)bufInLen, " bytes, got ", (int)readCount);
  584. status = -2;
  585. break;
  586. }
  587. }
  588. else if (phase == DATA_OUT)
  589. {
  590. if (returnDataPhase) return 0;
  591. if (bufOutLen == 0)
  592. {
  593. logmsg("DATA_OUT phase but no data to send!");
  594. status = -3;
  595. break;
  596. }
  597. uint32_t writeCount = scsiHostWrite(bufOut, bufOutLen);
  598. if (writeCount != bufOutLen)
  599. {
  600. logmsg("scsiHostWrite failed, was writing ", bytearray(bufOut, bufOutLen), " return value ", (int)writeCount);
  601. status = -2;
  602. break;
  603. }
  604. }
  605. else if (phase == STATUS)
  606. {
  607. uint8_t tmp = -1;
  608. scsiHostRead(&tmp, 1);
  609. status = tmp;
  610. #ifndef BLUESCSI_NETWORK
  611. dbgmsg("------ STATUS: ", tmp);
  612. #endif
  613. }
  614. }
  615. scsiHostWaitBusFree();
  616. return status;
  617. }
  618. bool scsiInitiatorTestSupportsRead10(int target_id, uint32_t sectorsize)
  619. {
  620. if (ini_haskey("SCSI", "InitiatorUseRead10", CONFIGFILE))
  621. {
  622. return ini_getbool("SCSI", "InitiatorUseRead10", false, CONFIGFILE);
  623. }
  624. uint8_t command[10] = {0x28, 0x00, 0, 0, 0, 0, 0, 0, 1, 0}; // READ10, LBA 0, 1 sector
  625. int status = scsiInitiatorRunCommand(target_id, command, sizeof(command),
  626. scsiDev.data, sectorsize, NULL, 0);
  627. if (status == 0)
  628. {
  629. dbgmsg("Target supports READ10 command");
  630. return true;
  631. }
  632. else
  633. {
  634. dbgmsg("Target does not support READ10 command");
  635. return false;
  636. }
  637. }
  638. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  639. {
  640. uint8_t command[10] = {0x25, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  641. uint8_t response[8] = {0};
  642. int status = scsiInitiatorRunCommand(target_id,
  643. command, sizeof(command),
  644. response, sizeof(response),
  645. NULL, 0);
  646. if (status == 0)
  647. {
  648. *sectorcount = ((uint32_t)response[0] << 24)
  649. | ((uint32_t)response[1] << 16)
  650. | ((uint32_t)response[2] << 8)
  651. | ((uint32_t)response[3] << 0);
  652. *sectorcount += 1; // SCSI reports last sector address
  653. *sectorsize = ((uint32_t)response[4] << 24)
  654. | ((uint32_t)response[5] << 16)
  655. | ((uint32_t)response[6] << 8)
  656. | ((uint32_t)response[7] << 0);
  657. return true;
  658. }
  659. else if (status == 2)
  660. {
  661. uint8_t sense_key;
  662. scsiRequestSense(target_id, &sense_key);
  663. scsiLogInitiatorCommandFailure("READ CAPACITY", target_id, status, sense_key);
  664. return false;
  665. }
  666. else
  667. {
  668. *sectorcount = *sectorsize = 0;
  669. return false;
  670. }
  671. }
  672. // Execute REQUEST SENSE command to get more information about error status
  673. bool scsiRequestSense(int target_id, uint8_t *sense_key, uint8_t *sense_asc, uint8_t *sense_ascq)
  674. {
  675. uint8_t command[6] = {0x03, 0, 0, 0, 18, 0};
  676. uint8_t response[18] = {0};
  677. int status = scsiInitiatorRunCommand(target_id,
  678. command, sizeof(command),
  679. response, sizeof(response),
  680. NULL, 0);
  681. logmsg("RequestSense response: ", bytearray(response, 18),
  682. " sense_key ", (int)(response[2] & 0xF),
  683. " asc ", response[12], " ascq ", response[13]);
  684. if (sense_key) *sense_key = response[2] & 0xF;
  685. if (sense_asc) *sense_asc = response[12];
  686. if (sense_ascq) *sense_ascq = response[13];
  687. return status == 0;
  688. }
  689. // Execute UNIT START STOP command to load/unload media
  690. bool scsiStartStopUnit(int target_id, bool start)
  691. {
  692. uint8_t command[6] = {0x1B, 0x1, 0, 0, 0, 0};
  693. uint8_t response[4] = {0};
  694. if (start)
  695. {
  696. command[4] |= 1; // Start
  697. command[1] = 0; // Immediate
  698. }
  699. else // stop
  700. {
  701. if(g_initiator_state.eject_when_done)
  702. {
  703. logmsg("Ejecting media on SCSI ID: ", target_id);
  704. g_initiator_state.removable_count[g_initiator_state.target_id]++;
  705. command[4] = 0b00000010; // eject(6), stop(7).
  706. }
  707. }
  708. uint32_t timeout = 60000; // Some drives can take long to initialize
  709. int status = scsiInitiatorRunCommand(target_id,
  710. command, sizeof(command),
  711. response, sizeof(response),
  712. NULL, 0, false, timeout);
  713. if (status == 2)
  714. {
  715. uint8_t sense_key;
  716. scsiRequestSense(target_id, &sense_key);
  717. scsiLogInitiatorCommandFailure("START STOP UNIT", target_id, status, sense_key);
  718. if (sense_key == NOT_READY)
  719. {
  720. dbgmsg("--- Device reports NOT_READY, running STOP to attempt restart");
  721. // Some devices will only leave NOT_READY state after they have been
  722. // commanded to stop state first.
  723. delay(1000);
  724. uint8_t cmd_stop[6] = {0x1B, 0x1, 0, 0, 0, 0};
  725. scsiInitiatorRunCommand(target_id,
  726. cmd_stop, sizeof(cmd_stop),
  727. response, sizeof(response),
  728. NULL, 0);
  729. }
  730. }
  731. return status == 0;
  732. }
  733. // Execute INQUIRY command
  734. bool scsiInquiry(int target_id, uint8_t inquiry_data[36])
  735. {
  736. uint8_t command[6] = {0x12, 0, 0, 0, 36, 0};
  737. int status = scsiInitiatorRunCommand(target_id,
  738. command, sizeof(command),
  739. inquiry_data, 36,
  740. NULL, 0);
  741. return status == 0;
  742. }
  743. // Execute TEST UNIT READY command and handle unit attention state
  744. bool scsiTestUnitReady(int target_id)
  745. {
  746. for (int retries = 0; retries < 2; retries++)
  747. {
  748. uint8_t command[6] = {0x00, 0, 0, 0, 0, 0};
  749. int status = scsiInitiatorRunCommand(target_id,
  750. command, sizeof(command),
  751. NULL, 0,
  752. NULL, 0);
  753. if (status == 0)
  754. {
  755. return true;
  756. }
  757. else if (status == -1)
  758. {
  759. // No response to select
  760. return false;
  761. }
  762. else if (status == 2)
  763. {
  764. uint8_t sense_key;
  765. scsiRequestSense(target_id, &sense_key);
  766. if (sense_key == UNIT_ATTENTION)
  767. {
  768. uint8_t inquiry[36];
  769. dbgmsg("Target ", target_id, " reports UNIT_ATTENTION, running INQUIRY");
  770. scsiInquiry(target_id, inquiry);
  771. }
  772. else if (sense_key == NOT_READY)
  773. {
  774. dbgmsg("Target ", target_id, " reports NOT_READY, running STARTSTOPUNIT");
  775. scsiStartStopUnit(target_id, true);
  776. }
  777. }
  778. else
  779. {
  780. dbgmsg("Target ", target_id, " TEST UNIT READY response: ", status);
  781. }
  782. }
  783. return false;
  784. }
  785. // This uses callbacks to run SD and SCSI transfers in parallel
  786. static struct {
  787. uint32_t bytes_sd; // Number of bytes that have been transferred on SD card side
  788. uint32_t bytes_sd_scheduled; // Number of bytes scheduled for transfer on SD card side
  789. uint32_t bytes_scsi; // Number of bytes that have been scheduled for transfer on SCSI side
  790. uint32_t bytes_scsi_done; // Number of bytes that have been transferred on SCSI side
  791. uint32_t bytes_per_sector;
  792. bool all_ok;
  793. } g_initiator_transfer;
  794. static void initiatorReadSDCallback(uint32_t bytes_complete)
  795. {
  796. if (g_initiator_transfer.bytes_scsi_done < g_initiator_transfer.bytes_scsi)
  797. {
  798. // How many bytes remaining in the transfer?
  799. uint32_t remain = g_initiator_transfer.bytes_scsi - g_initiator_transfer.bytes_scsi_done;
  800. uint32_t len = remain;
  801. // Limit maximum amount of data transferred at one go, to give enough callbacks to SD driver.
  802. // Select the limit based on total bytes in the transfer.
  803. // Transfer size is reduced towards the end of transfer to reduce the dead time between
  804. // end of SCSI transfer and the SD write completing.
  805. uint32_t limit = g_initiator_transfer.bytes_scsi / 8;
  806. uint32_t bytesPerSector = g_initiator_transfer.bytes_per_sector;
  807. if (limit < PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE;
  808. if (limit > PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE;
  809. if (limit > len) limit = PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE;
  810. if (limit < bytesPerSector) limit = bytesPerSector;
  811. if (len > limit)
  812. {
  813. len = limit;
  814. }
  815. // Split read so that it doesn't wrap around buffer edge
  816. uint32_t bufsize = sizeof(scsiDev.data);
  817. uint32_t start = (g_initiator_transfer.bytes_scsi_done % bufsize);
  818. if (start + len > bufsize)
  819. len = bufsize - start;
  820. // Don't overwrite data that has not yet been written to SD card
  821. uint32_t sd_ready_cnt = g_initiator_transfer.bytes_sd + bytes_complete;
  822. if (g_initiator_transfer.bytes_scsi_done + len > sd_ready_cnt + bufsize)
  823. len = sd_ready_cnt + bufsize - g_initiator_transfer.bytes_scsi_done;
  824. if (sd_ready_cnt == g_initiator_transfer.bytes_sd_scheduled &&
  825. g_initiator_transfer.bytes_sd_scheduled + bytesPerSector <= g_initiator_transfer.bytes_scsi_done)
  826. {
  827. // Current SD transfer is complete, it is better we return now and offer a chance for the next
  828. // transfer to begin.
  829. return;
  830. }
  831. // Keep transfers a multiple of sector size.
  832. if (remain >= bytesPerSector && len % bytesPerSector != 0)
  833. {
  834. len -= len % bytesPerSector;
  835. }
  836. if (len == 0)
  837. return;
  838. // dbgmsg("SCSI read ", (int)start, " + ", (int)len, ", sd ready cnt ", (int)sd_ready_cnt, " ", (int)bytes_complete, ", scsi done ", (int)g_initiator_transfer.bytes_scsi_done);
  839. if (scsiHostRead(&scsiDev.data[start], len) != len)
  840. {
  841. logmsg("Read failed at byte ", (int)g_initiator_transfer.bytes_scsi_done);
  842. g_initiator_transfer.all_ok = false;
  843. }
  844. g_initiator_transfer.bytes_scsi_done += len;
  845. }
  846. }
  847. static void scsiInitiatorWriteDataToSd(FsFile &file, bool use_callback)
  848. {
  849. // Figure out longest continuous block in buffer
  850. uint32_t bufsize = sizeof(scsiDev.data);
  851. uint32_t start = g_initiator_transfer.bytes_sd % bufsize;
  852. uint32_t len = g_initiator_transfer.bytes_scsi_done - g_initiator_transfer.bytes_sd;
  853. if (start + len > bufsize) len = bufsize - start;
  854. // Try to do writes in multiple of 512 bytes
  855. // This allows better performance for SD card access.
  856. if (len >= 512) len &= ~511;
  857. // Start writing to SD card and simultaneously reading more from SCSI bus
  858. uint8_t *buf = &scsiDev.data[start];
  859. // dbgmsg("SD write ", (int)start, " + ", (int)len);
  860. if (use_callback)
  861. {
  862. platform_set_sd_callback(&initiatorReadSDCallback, buf);
  863. }
  864. g_initiator_transfer.bytes_sd_scheduled = g_initiator_transfer.bytes_sd + len;
  865. if (file.write(buf, len) != len)
  866. {
  867. logmsg("scsiInitiatorReadDataToFile: SD card write failed");
  868. g_initiator_transfer.all_ok = false;
  869. }
  870. platform_set_sd_callback(NULL, NULL);
  871. g_initiator_transfer.bytes_sd += len;
  872. }
  873. bool scsiInitiatorReadDataToFile(int target_id, uint32_t start_sector, uint32_t sectorcount, uint32_t sectorsize,
  874. FsFile &file)
  875. {
  876. int status = -1;
  877. // Read6 command supports 21 bit LBA - max of 0x1FFFFF
  878. // ref: https://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068j.pdf pg 134
  879. bool fits_read6 = (start_sector < 0x1FFFFF && sectorcount <= 256);
  880. if (!g_initiator_state.use_read10 && fits_read6)
  881. {
  882. // Use READ6 command for compatibility with old SCSI1 drives
  883. // Note that even with SCSI1 drives we have no choice but to use READ10 if the drive
  884. // size is larger than 1 GB, as the sector number wouldn't fit in the command.
  885. uint8_t command[6] = {0x08,
  886. (uint8_t)(start_sector >> 16),
  887. (uint8_t)(start_sector >> 8),
  888. (uint8_t)start_sector,
  889. (uint8_t)sectorcount,
  890. 0x00
  891. };
  892. // Start executing command, return in data phase
  893. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  894. }
  895. else
  896. {
  897. // Use READ10 command for larger number of blocks
  898. uint8_t command[10] = {0x28, 0x00,
  899. (uint8_t)(start_sector >> 24), (uint8_t)(start_sector >> 16),
  900. (uint8_t)(start_sector >> 8), (uint8_t)start_sector,
  901. 0x00,
  902. (uint8_t)(sectorcount >> 8), (uint8_t)(sectorcount),
  903. 0x00
  904. };
  905. // Start executing command, return in data phase
  906. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  907. }
  908. if (status != 0)
  909. {
  910. uint8_t sense_key;
  911. scsiRequestSense(target_id, &sense_key);
  912. scsiLogInitiatorCommandFailure("scsiInitiatorReadDataToFile command phase", target_id, status, sense_key);
  913. scsiHostPhyRelease();
  914. return false;
  915. }
  916. SCSI_PHASE phase;
  917. g_initiator_transfer.bytes_scsi = sectorcount * sectorsize;
  918. g_initiator_transfer.bytes_per_sector = sectorsize;
  919. g_initiator_transfer.bytes_sd = 0;
  920. g_initiator_transfer.bytes_sd_scheduled = 0;
  921. g_initiator_transfer.bytes_scsi_done = 0;
  922. g_initiator_transfer.all_ok = true;
  923. while (true)
  924. {
  925. platform_poll();
  926. phase = (SCSI_PHASE)scsiHostPhyGetPhase();
  927. if (phase != DATA_IN && phase != BUS_BUSY)
  928. {
  929. break;
  930. }
  931. // Read next block from SCSI bus if buffer empty
  932. if (g_initiator_transfer.bytes_sd == g_initiator_transfer.bytes_scsi_done)
  933. {
  934. initiatorReadSDCallback(0);
  935. }
  936. else
  937. {
  938. // Write data to SD card and simultaneously read more from SCSI
  939. scsiInitiatorUpdateLed();
  940. scsiInitiatorWriteDataToSd(file, true);
  941. }
  942. }
  943. // Write any remaining buffered data
  944. while (g_initiator_transfer.bytes_sd < g_initiator_transfer.bytes_scsi_done)
  945. {
  946. platform_poll();
  947. scsiInitiatorWriteDataToSd(file, false);
  948. }
  949. if (g_initiator_transfer.bytes_sd != g_initiator_transfer.bytes_scsi)
  950. {
  951. logmsg("SCSI read from sector ", (int)start_sector, " was incomplete: expected ",
  952. (int)g_initiator_transfer.bytes_scsi, " got ", (int)g_initiator_transfer.bytes_sd, " bytes");
  953. g_initiator_transfer.all_ok = false;
  954. }
  955. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  956. {
  957. platform_poll();
  958. if (phase == MESSAGE_IN)
  959. {
  960. uint8_t msg = 0;
  961. scsiHostRead(&msg, 1);
  962. if (msg == MSG_COMMAND_COMPLETE)
  963. {
  964. break;
  965. }
  966. }
  967. else if (phase == MESSAGE_OUT)
  968. {
  969. uint8_t identify_msg = 0x80;
  970. scsiHostWrite(&identify_msg, 1);
  971. }
  972. else if (phase == STATUS)
  973. {
  974. uint8_t tmp = 0;
  975. scsiHostRead(&tmp, 1);
  976. status = tmp;
  977. dbgmsg("------ STATUS: ", tmp);
  978. }
  979. }
  980. scsiHostWaitBusFree();
  981. if (!g_initiator_transfer.all_ok)
  982. {
  983. dbgmsg("scsiInitiatorReadDataToFile: Incomplete transfer");
  984. return false;
  985. }
  986. else if (status == 2)
  987. {
  988. uint8_t sense_key;
  989. scsiRequestSense(target_id, &sense_key);
  990. if (sense_key == RECOVERED_ERROR)
  991. {
  992. dbgmsg("scsiInitiatorReadDataToFile: RECOVERED_ERROR at ", (int)start_sector);
  993. return true;
  994. }
  995. else if (sense_key == UNIT_ATTENTION)
  996. {
  997. dbgmsg("scsiInitiatorReadDataToFile: UNIT_ATTENTION");
  998. return true;
  999. }
  1000. else
  1001. {
  1002. scsiLogInitiatorCommandFailure("scsiInitiatorReadDataToFile data phase", target_id, status, sense_key);
  1003. return false;
  1004. }
  1005. }
  1006. else
  1007. {
  1008. return status == 0;
  1009. }
  1010. }
  1011. #endif