BlueSCSI_platform.cpp 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. #include "BlueSCSI_platform.h"
  2. #include "BlueSCSI_log.h"
  3. #include "BlueSCSI_config.h"
  4. #include <SdFat.h>
  5. #include <scsi.h>
  6. #include <assert.h>
  7. #include <hardware/gpio.h>
  8. #include <hardware/uart.h>
  9. #include <hardware/pll.h>
  10. #include <hardware/clocks.h>
  11. #include <hardware/spi.h>
  12. #include <hardware/adc.h>
  13. #include <hardware/flash.h>
  14. #include <hardware/structs/xip_ctrl.h>
  15. #ifdef MBED
  16. #include <hardware/structs/usb.h>
  17. #include <platform/mbed_error.h>
  18. #include <multicore.h>
  19. #include <USB/PluggableUSBSerial.h>
  20. #include "audio.h"
  21. #include "scsi_accel_rp2040.h"
  22. extern "C" {
  23. #include <pico/cyw43_arch.h>
  24. const char *g_platform_name = PLATFORM_NAME;
  25. static bool g_scsi_initiator = false;
  26. static uint32_t g_flash_chip_size = 0;
  27. static bool g_uart_initialized = false;
  28. void mbed_error_hook(const mbed_error_ctx * error_context);
  29. /***************/
  30. /* GPIO init */
  31. /***************/
  32. // Helper function to configure whole GPIO in one line
  33. static void gpio_conf(uint gpio, enum gpio_function fn, bool pullup, bool pulldown, bool output, bool initial_state, bool fast_slew)
  34. {
  35. gpio_put(gpio, initial_state);
  36. gpio_set_dir(gpio, output);
  37. gpio_set_pulls(gpio, pullup, pulldown);
  38. gpio_set_function(gpio, fn);
  39. if (fast_slew)
  40. {
  41. padsbank0_hw->io[gpio] |= PADS_BANK0_GPIO0_SLEWFAST_BITS;
  42. }
  43. }
  44. #ifdef ENABLE_AUDIO_OUTPUT
  45. // Increases clk_sys and clk_peri to 135.428571MHz at runtime to support
  46. // division to audio output rates. Invoke before anything is using clk_peri
  47. // except for the logging UART, which is handled below.
  48. static void reclock_for_audio() {
  49. // ensure UART is fully drained before we mess up its clock
  50. uart_tx_wait_blocking(uart0);
  51. // switch clk_sys and clk_peri to pll_usb
  52. // see code in 2.15.6.1 of the datasheet for useful comments
  53. clock_configure(clk_sys,
  54. CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
  55. CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
  56. 48 * MHZ,
  57. 48 * MHZ);
  58. clock_configure(clk_peri,
  59. 0,
  60. CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
  61. 48 * MHZ,
  62. 48 * MHZ);
  63. // reset PLL for 135.428571MHz
  64. pll_init(pll_sys, 1, 948000000, 7, 1);
  65. // switch clocks back to pll_sys
  66. clock_configure(clk_sys,
  67. CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
  68. CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
  69. 135428571,
  70. 135428571);
  71. clock_configure(clk_peri,
  72. 0,
  73. CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
  74. 135428571,
  75. 135428571);
  76. // reset UART for the new clock speed
  77. uart_init(uart0, 1000000);
  78. }
  79. #endif
  80. void platform_init()
  81. {
  82. // Make sure second core is stopped
  83. multicore_reset_core1();
  84. /* First configure the pins that affect external buffer directions.
  85. * RP2040 defaults to pulldowns, while these pins have external pull-ups.
  86. */
  87. // pin function pup pdown out state fast
  88. gpio_conf(SCSI_DATA_DIR, GPIO_FUNC_SIO, false,false, true, false, true);
  89. //gpio_conf(SCSI_OUT_RST, GPIO_FUNC_SIO, false,false, true, true, true);
  90. gpio_conf(SCSI_OUT_BSY, GPIO_FUNC_SIO, false,false, true, true, false);
  91. //gpio_set_drive_strength(SCSI_OUT_BSY, GPIO_DRIVE_STRENGTH_8MA);
  92. gpio_conf(SCSI_OUT_SEL, GPIO_FUNC_SIO, false,false, true, true, false);
  93. /* Check dip switch settings */
  94. // Option switches: S1 is iATN, S2 is iACK
  95. gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, false, false, false, false, false);
  96. gpio_conf(SCSI_IN_ATN, GPIO_FUNC_SIO, false, false, false, false, false);
  97. delay(10); /// Settle time
  98. bool optionS1 = !gpio_get(SCSI_IN_ATN);
  99. bool optionS2 = !gpio_get(SCSI_IN_ACK);
  100. /* Initialize logging to SWO pin (UART0) */
  101. gpio_conf(SWO_PIN, GPIO_FUNC_UART,false,false, true, false, true);
  102. uart_init(uart0, 115200);
  103. g_uart_initialized = true;
  104. mbed_set_error_hook(mbed_error_hook);
  105. //log("DIP switch settings: debug log ", (int)dbglog, ", termination ", (int)termination);
  106. log("Platform: ", g_platform_name);
  107. log("FW Version: ", g_log_firmwareversion);
  108. g_log_debug = false; // Debug logging can be handled with a debug firmware, very easy to reflash
  109. // if (termination) // Termination is handled by hardware jumper
  110. // {
  111. // log("SCSI termination is enabled");
  112. // }
  113. // else
  114. // {
  115. // log("NOTE: SCSI termination is disabled");
  116. // }
  117. #ifdef ENABLE_AUDIO_OUTPUT
  118. log("SP/DIF audio to expansion header enabled");
  119. log("-- Overclocking to 135.428571MHz");
  120. reclock_for_audio();
  121. #endif
  122. // Get flash chip size
  123. uint8_t cmd_read_jedec_id[4] = {0x9f, 0, 0, 0};
  124. uint8_t response_jedec[4] = {0};
  125. __disable_irq();
  126. flash_do_cmd(cmd_read_jedec_id, response_jedec, 4);
  127. __enable_irq();
  128. g_flash_chip_size = (1 << response_jedec[3]);
  129. log("Flash chip size: ", (int)(g_flash_chip_size / 1024), " kB");
  130. // SD card pins
  131. // Card is used in SDIO mode for main program, and in SPI mode for crash handler & bootloader.
  132. // pin function pup pdown out state fast
  133. gpio_conf(SD_SPI_SCK, GPIO_FUNC_SPI, true, false, true, true, true);
  134. gpio_conf(SD_SPI_MOSI, GPIO_FUNC_SPI, true, false, true, true, true);
  135. gpio_conf(SD_SPI_MISO, GPIO_FUNC_SPI, true, false, false, true, true);
  136. gpio_conf(SD_SPI_CS, GPIO_FUNC_SIO, true, false, true, true, true);
  137. gpio_conf(SDIO_D1, GPIO_FUNC_SIO, true, false, false, true, true);
  138. gpio_conf(SDIO_D2, GPIO_FUNC_SIO, true, false, false, true, true);
  139. // LED pin
  140. //gpio_conf(LED_PIN, GPIO_FUNC_SIO, false,false, true, false, false);
  141. #ifndef ENABLE_AUDIO_OUTPUT
  142. #ifdef GPIO_I2C_SDA
  143. // I2C pins
  144. // pin function pup pdown out state fast
  145. //gpio_conf(GPIO_I2C_SCL, GPIO_FUNC_I2C, true,false, false, true, true);
  146. //gpio_conf(GPIO_I2C_SDA, GPIO_FUNC_I2C, true,false, false, true, true);
  147. #endif
  148. #else
  149. // pin function pup pdown out state fast
  150. //gpio_conf(GPIO_EXP_AUDIO, GPIO_FUNC_SPI, true,false, false, true, true);
  151. //gpio_conf(GPIO_EXP_SPARE, GPIO_FUNC_SIO, true,false, false, true, false);
  152. // configuration of corresponding SPI unit occurs in audio_setup()
  153. #endif
  154. }
  155. static bool read_initiator_dip_switch()
  156. {
  157. /* Revision 2022d hardware has problems reading initiator DIP switch setting.
  158. * The 74LVT245 hold current is keeping the GPIO_ACK state too strongly.
  159. * Detect this condition by toggling the pin up and down and seeing if it sticks.
  160. */
  161. // Strong output high, then pulldown
  162. // pin function pup pdown out state fast
  163. //gpio_conf(DIP_INITIATOR, GPIO_FUNC_SIO, false, false, true, true, false);
  164. //gpio_conf(DIP_INITIATOR, GPIO_FUNC_SIO, false, true, false, true, false);
  165. //delay(1);
  166. //bool initiator_state1 = gpio_get(DIP_INITIATOR);
  167. // Strong output low, then pullup
  168. // pin function pup pdown out state fast
  169. //gpio_conf(DIP_INITIATOR, GPIO_FUNC_SIO, false, false, true, false, false);
  170. //gpio_conf(DIP_INITIATOR, GPIO_FUNC_SIO, true, false, false, false, false);
  171. //delay(1);
  172. //bool initiator_state2 = gpio_get(DIP_INITIATOR);
  173. //if (initiator_state1 == initiator_state2)
  174. //{
  175. // Ok, was able to read the state directly
  176. //return !initiator_state1;
  177. //}
  178. // Enable OUT_BSY for a short time.
  179. // If in target mode, this will force GPIO_ACK high.
  180. gpio_put(SCSI_OUT_BSY, 0);
  181. delay_100ns();
  182. gpio_put(SCSI_OUT_BSY, 1);
  183. //return !gpio_get(DIP_INITIATOR);
  184. return false;
  185. }
  186. // late_init() only runs in main application, SCSI not needed in bootloader
  187. void platform_late_init()
  188. {
  189. if (read_initiator_dip_switch())
  190. {
  191. g_scsi_initiator = true;
  192. log("SCSI initiator mode selected by DIP switch, expecting SCSI disks on the bus");
  193. }
  194. else
  195. {
  196. g_scsi_initiator = false;
  197. // log("SCSI target/disk mode selected by DIP switch, acting as a SCSI disk");
  198. }
  199. /* Initialize SCSI pins to required modes.
  200. * SCSI pins should be inactive / input at this point.
  201. */
  202. // SCSI data bus direction is switched by DATA_DIR signal.
  203. // Pullups make sure that no glitches occur when switching direction.
  204. // pin function pup pdown out state fast
  205. gpio_conf(SCSI_IO_DB0, GPIO_FUNC_SIO, true, false, false, true, true);
  206. gpio_conf(SCSI_IO_DB1, GPIO_FUNC_SIO, true, false, false, true, true);
  207. gpio_conf(SCSI_IO_DB2, GPIO_FUNC_SIO, true, false, false, true, true);
  208. gpio_conf(SCSI_IO_DB3, GPIO_FUNC_SIO, true, false, false, true, true);
  209. gpio_conf(SCSI_IO_DB4, GPIO_FUNC_SIO, true, false, false, true, true);
  210. gpio_conf(SCSI_IO_DB5, GPIO_FUNC_SIO, true, false, false, true, true);
  211. gpio_conf(SCSI_IO_DB6, GPIO_FUNC_SIO, true, false, false, true, true);
  212. gpio_conf(SCSI_IO_DB7, GPIO_FUNC_SIO, true, false, false, true, true);
  213. gpio_conf(SCSI_IO_DBP, GPIO_FUNC_SIO, true, false, false, true, true);
  214. if (!g_scsi_initiator)
  215. {
  216. // Act as SCSI device / target
  217. // SCSI control outputs
  218. // pin function pup pdown out state fast
  219. gpio_conf(SCSI_OUT_IO, GPIO_FUNC_SIO, false,false, true, true, true);
  220. gpio_conf(SCSI_OUT_MSG, GPIO_FUNC_SIO, false,false, true, true, true);
  221. // REQ pin is switched between PIO and SIO, pull-up makes sure no glitches
  222. gpio_conf(SCSI_OUT_REQ, GPIO_FUNC_SIO, true ,false, true, true, true);
  223. // Shared pins are changed to input / output depending on communication phase
  224. gpio_conf(SCSI_IN_SEL, GPIO_FUNC_SIO, true, false, false, true, true);
  225. if (SCSI_OUT_CD != SCSI_IN_SEL)
  226. {
  227. gpio_conf(SCSI_OUT_CD, GPIO_FUNC_SIO, false,false, true, true, true);
  228. }
  229. gpio_conf(SCSI_IN_BSY, GPIO_FUNC_SIO, true, false, false, true, true);
  230. if (SCSI_OUT_MSG != SCSI_IN_BSY)
  231. {
  232. gpio_conf(SCSI_OUT_MSG, GPIO_FUNC_SIO, false,false, true, true, true);
  233. }
  234. // SCSI control inputs
  235. // pin function pup pdown out state fast
  236. gpio_conf(SCSI_IN_ACK, GPIO_FUNC_SIO, false, false, false, true, false);
  237. gpio_conf(SCSI_IN_ATN, GPIO_FUNC_SIO, false, false, false, true, false);
  238. gpio_conf(SCSI_IN_RST, GPIO_FUNC_SIO, true, false, false, true, false);
  239. #ifdef ENABLE_AUDIO_OUTPUT
  240. // one-time control setup for DMA channels and second core
  241. audio_setup();
  242. #endif
  243. }
  244. else
  245. {
  246. // Act as SCSI initiator
  247. // pin function pup pdown out state fast
  248. gpio_conf(SCSI_IN_IO, GPIO_FUNC_SIO, true ,false, false, true, false);
  249. gpio_conf(SCSI_IN_MSG, GPIO_FUNC_SIO, true ,false, false, true, false);
  250. gpio_conf(SCSI_IN_CD, GPIO_FUNC_SIO, true ,false, false, true, false);
  251. gpio_conf(SCSI_IN_REQ, GPIO_FUNC_SIO, true ,false, false, true, false);
  252. gpio_conf(SCSI_IN_BSY, GPIO_FUNC_SIO, true, false, false, true, false);
  253. gpio_conf(SCSI_IN_RST, GPIO_FUNC_SIO, true, false, false, true, false);
  254. gpio_conf(SCSI_OUT_SEL, GPIO_FUNC_SIO, false,false, true, true, true);
  255. gpio_conf(SCSI_OUT_ACK, GPIO_FUNC_SIO, false,false, true, true, true);
  256. gpio_conf(SCSI_OUT_ATN, GPIO_FUNC_SIO, false,false, true, true, true);
  257. }
  258. }
  259. bool platform_is_initiator_mode_enabled()
  260. {
  261. return g_scsi_initiator;
  262. }
  263. void platform_disable_led(void)
  264. {
  265. // pin function pup pdown out state fast
  266. //gpio_conf(LED_PIN, GPIO_FUNC_SIO, false,false, false, false, false);
  267. log("Disabling status LED");
  268. }
  269. /*****************************************/
  270. /* Crash handlers */
  271. /*****************************************/
  272. extern SdFs SD;
  273. extern uint32_t __StackTop;
  274. void platform_emergency_log_save()
  275. {
  276. platform_set_sd_callback(NULL, NULL);
  277. SD.begin(SD_CONFIG_CRASH);
  278. FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  279. if (!crashfile.isOpen())
  280. {
  281. // Try to reinitialize
  282. int max_retry = 10;
  283. while (max_retry-- > 0 && !SD.begin(SD_CONFIG_CRASH));
  284. crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  285. }
  286. uint32_t startpos = 0;
  287. crashfile.write(log_get_buffer(&startpos));
  288. crashfile.write(log_get_buffer(&startpos));
  289. crashfile.flush();
  290. crashfile.close();
  291. }
  292. void mbed_error_hook(const mbed_error_ctx * error_context)
  293. {
  294. log("--------------");
  295. log("CRASH!");
  296. log("Platform: ", g_platform_name);
  297. log("FW Version: ", g_log_firmwareversion);
  298. log("error_status: ", (uint32_t)error_context->error_status);
  299. log("error_address: ", error_context->error_address);
  300. log("error_value: ", error_context->error_value);
  301. log("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  302. log("scsiDev.phase: ", (int)scsiDev.phase);
  303. scsi_accel_log_state();
  304. uint32_t *p = (uint32_t*)((uint32_t)error_context->thread_current_sp & ~3);
  305. for (int i = 0; i < 8; i++)
  306. {
  307. if (p == &__StackTop) break; // End of stack
  308. log("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  309. p += 4;
  310. }
  311. platform_emergency_log_save();
  312. while (1)
  313. {
  314. // Flash the crash address on the LED
  315. // Short pulse means 0, long pulse means 1
  316. int base_delay = 1000;
  317. for (int i = 31; i >= 0; i--)
  318. {
  319. LED_OFF();
  320. for (int j = 0; j < base_delay; j++) delay_ns(100000);
  321. int delay = (error_context->error_address & (1 << i)) ? (3 * base_delay) : base_delay;
  322. LED_ON();
  323. for (int j = 0; j < delay; j++) delay_ns(100000);
  324. LED_OFF();
  325. }
  326. for (int j = 0; j < base_delay * 10; j++) delay_ns(100000);
  327. }
  328. }
  329. /*****************************************/
  330. /* Debug logging and watchdog */
  331. /*****************************************/
  332. // Send log data to USB UART if USB is connected.
  333. // Data is retrieved from the shared log ring buffer and
  334. // this function sends as much as fits in USB CDC buffer.
  335. //
  336. // This is normally called by platform_reset_watchdog() in
  337. // the normal polling loop. If code hangs, the watchdog_callback()
  338. // also starts calling this after 2 seconds.
  339. // This ensures that log messages get passed even if code hangs,
  340. // but does not unnecessarily delay normal execution.
  341. static void usb_log_poll()
  342. {
  343. static uint32_t logpos = 0;
  344. if (_SerialUSB.ready())
  345. {
  346. // Retrieve pointer to log start and determine number of bytes available.
  347. uint32_t available = 0;
  348. const char *data = log_get_buffer(&logpos, &available);
  349. // Limit to CDC packet size
  350. uint32_t len = available;
  351. if (len == 0) return;
  352. if (len > CDC_MAX_PACKET_SIZE) len = CDC_MAX_PACKET_SIZE;
  353. // Update log position by the actual number of bytes sent
  354. // If USB CDC buffer is full, this may be 0
  355. uint32_t actual = 0;
  356. _SerialUSB.send_nb((uint8_t*)data, len, &actual);
  357. logpos -= available - actual;
  358. }
  359. }
  360. // Use ADC to implement supply voltage monitoring for the +3.0V rail.
  361. // This works by sampling the temperature sensor channel, which has
  362. // a voltage of 0.7 V, allowing to calculate the VDD voltage.
  363. static bool adc_initial_log = true;
  364. static void adc_poll()
  365. {
  366. #if PLATFORM_VDD_WARNING_LIMIT_mV > 0
  367. static bool initialized = false;
  368. static int lowest_vdd_seen = PLATFORM_VDD_WARNING_LIMIT_mV;
  369. if (!initialized)
  370. {
  371. adc_init();
  372. adc_set_temp_sensor_enabled(true);
  373. adc_set_clkdiv(65535); // Lowest samplerate, about 2 kHz
  374. adc_select_input(4);
  375. adc_fifo_setup(true, false, 0, false, false);
  376. adc_run(true);
  377. initialized = true;
  378. }
  379. #ifdef ENABLE_AUDIO_OUTPUT
  380. /*
  381. * If ADC sample reads are done, either via direct reading, FIFO, or DMA,
  382. * at the same time a SPI DMA write begins, it appears that the first
  383. * 16-bit word of the DMA data is lost. This causes the bitstream to glitch
  384. * and audio to 'pop' noticably. For now, just disable ADC reads when audio
  385. * is playing.
  386. */
  387. if (audio_is_active()) return;
  388. #endif
  389. int adc_value_max = 0;
  390. while (!adc_fifo_is_empty())
  391. {
  392. int adc_value = adc_fifo_get();
  393. if (adc_value > adc_value_max) adc_value_max = adc_value;
  394. }
  395. // adc_value = 700mV * 4096 / Vdd
  396. // => Vdd = 700mV * 4096 / adc_value
  397. // To avoid wasting time on division, compare against
  398. // limit directly.
  399. const int limit = (700 * 4096) / PLATFORM_VDD_WARNING_LIMIT_mV;
  400. if (adc_value_max > limit)
  401. {
  402. // Warn once, and then again if we detect even a lower drop.
  403. int vdd_mV = (700 * 4096) / adc_value_max;
  404. if (vdd_mV < lowest_vdd_seen)
  405. {
  406. log("WARNING: Detected voltage drop to ", (vdd_mV / 1000.0), "V - See: https://www.github.com/BlueSCSI/BlueSCSI-v2/wiki/Low-Voltage");
  407. lowest_vdd_seen = vdd_mV - 50; // Small hysteresis to avoid excessive warnings
  408. }
  409. }
  410. else if (adc_initial_log && adc_value_max != 0)
  411. {
  412. adc_initial_log = false;
  413. int vdd_mV = (700 * 4096) / adc_value_max;
  414. log("INFO: Pico Voltage: ", (vdd_mV / 1000.0), "V.");
  415. }
  416. #endif
  417. }
  418. // This function is called for every log message.
  419. void platform_log(const char *s)
  420. {
  421. if (g_uart_initialized)
  422. {
  423. uart_puts(uart0, s);
  424. }
  425. }
  426. static int g_watchdog_timeout;
  427. static bool g_watchdog_initialized;
  428. static void watchdog_callback(unsigned alarm_num)
  429. {
  430. g_watchdog_timeout -= 1000;
  431. if (g_watchdog_timeout < WATCHDOG_CRASH_TIMEOUT - 1000)
  432. {
  433. // Been stuck for at least a second, start dumping USB log
  434. usb_log_poll();
  435. }
  436. if (g_watchdog_timeout <= WATCHDOG_CRASH_TIMEOUT - WATCHDOG_BUS_RESET_TIMEOUT)
  437. {
  438. if (!scsiDev.resetFlag || !g_scsiHostPhyReset)
  439. {
  440. log("--------------");
  441. log("WATCHDOG TIMEOUT, attempting bus reset");
  442. log("Platform: ", g_platform_name);
  443. log("FW Version: ", g_log_firmwareversion);
  444. log("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in);
  445. log("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  446. log("scsiDev.phase: ", (int)scsiDev.phase);
  447. scsi_accel_log_state();
  448. uint32_t *p = (uint32_t*)__get_PSP();
  449. for (int i = 0; i < 8; i++)
  450. {
  451. if (p == &__StackTop) break; // End of stack
  452. log("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  453. p += 4;
  454. }
  455. scsiDev.resetFlag = 1;
  456. g_scsiHostPhyReset = true;
  457. }
  458. if (g_watchdog_timeout <= 0)
  459. {
  460. log("--------------");
  461. log("WATCHDOG TIMEOUT!");
  462. log("Platform: ", g_platform_name);
  463. log("FW Version: ", g_log_firmwareversion);
  464. log("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in);
  465. log("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));
  466. log("scsiDev.phase: ", (int)scsiDev.phase);
  467. uint32_t *p = (uint32_t*)__get_PSP();
  468. for (int i = 0; i < 8; i++)
  469. {
  470. if (p == &__StackTop) break; // End of stack
  471. log("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  472. p += 4;
  473. }
  474. usb_log_poll();
  475. platform_emergency_log_save();
  476. platform_boot_to_main_firmware();
  477. }
  478. }
  479. hardware_alarm_set_target(3, delayed_by_ms(get_absolute_time(), 1000));
  480. }
  481. // This function can be used to periodically reset watchdog timer for crash handling.
  482. // It can also be left empty if the platform does not use a watchdog timer.
  483. void platform_reset_watchdog()
  484. {
  485. g_watchdog_timeout = WATCHDOG_CRASH_TIMEOUT;
  486. if (!g_watchdog_initialized)
  487. {
  488. hardware_alarm_claim(3);
  489. hardware_alarm_set_callback(3, &watchdog_callback);
  490. hardware_alarm_set_target(3, delayed_by_ms(get_absolute_time(), 1000));
  491. g_watchdog_initialized = true;
  492. }
  493. // USB log is polled here also to make sure any log messages in fault states
  494. // get passed to USB.
  495. usb_log_poll();
  496. }
  497. // Poll function that is called every few milliseconds.
  498. // Can be left empty or used for platform-specific processing.
  499. void platform_poll()
  500. {
  501. usb_log_poll();
  502. adc_poll();
  503. #ifdef ENABLE_AUDIO_OUTPUT
  504. audio_poll();
  505. #endif
  506. }
  507. uint8_t platform_get_buttons()
  508. {
  509. uint8_t buttons = 0;
  510. #if defined(ENABLE_AUDIO_OUTPUT)
  511. // pulled to VCC via resistor, sinking when pressed
  512. if (!gpio_get(GPIO_EXP_SPARE)) buttons |= 1;
  513. #elif defined(GPIO_I2C_SDA)
  514. // SDA = button 1, SCL = button 2
  515. if (!gpio_get(GPIO_I2C_SDA)) buttons |= 1;
  516. if (!gpio_get(GPIO_I2C_SCL)) buttons |= 2;
  517. #endif
  518. // Simple debouncing logic: handle button releases after 100 ms delay.
  519. static uint32_t debounce;
  520. static uint8_t buttons_debounced = 0;
  521. if (buttons != 0)
  522. {
  523. buttons_debounced = buttons;
  524. debounce = millis();
  525. }
  526. else if ((uint32_t)(millis() - debounce) > 100)
  527. {
  528. buttons_debounced = 0;
  529. }
  530. return buttons_debounced;
  531. }
  532. /*****************************************/
  533. /* Flash reprogramming from bootloader */
  534. /*****************************************/
  535. #ifdef PLATFORM_BOOTLOADER_SIZE
  536. extern uint32_t __real_vectors_start;
  537. extern uint32_t __StackTop;
  538. static volatile void *g_bootloader_exit_req;
  539. __attribute__((section(".time_critical.platform_rewrite_flash_page")))
  540. bool platform_rewrite_flash_page(uint32_t offset, uint8_t buffer[PLATFORM_FLASH_PAGE_SIZE])
  541. {
  542. if (offset == PLATFORM_BOOTLOADER_SIZE)
  543. {
  544. if (buffer[3] != 0x20 || buffer[7] != 0x10)
  545. {
  546. log("Invalid firmware file, starts with: ", bytearray(buffer, 16));
  547. return false;
  548. }
  549. }
  550. if (NVIC_GetEnableIRQ(USBCTRL_IRQn))
  551. {
  552. log("Disabling USB during firmware flashing");
  553. NVIC_DisableIRQ(USBCTRL_IRQn);
  554. usb_hw->main_ctrl = 0;
  555. }
  556. debuglog("Writing flash at offset ", offset, " data ", bytearray(buffer, 4));
  557. assert(offset % PLATFORM_FLASH_PAGE_SIZE == 0);
  558. assert(offset >= PLATFORM_BOOTLOADER_SIZE);
  559. // Avoid any mbed timer interrupts triggering during the flashing.
  560. __disable_irq();
  561. // For some reason any code executed after flashing crashes
  562. // unless we disable the XIP cache.
  563. // Not sure why this happens, as flash_range_program() is flushing
  564. // the cache correctly.
  565. // The cache is now enabled from bootloader start until it starts
  566. // flashing, and again after reset to main firmware.
  567. xip_ctrl_hw->ctrl = 0;
  568. flash_range_erase(offset, PLATFORM_FLASH_PAGE_SIZE);
  569. flash_range_program(offset, buffer, PLATFORM_FLASH_PAGE_SIZE);
  570. uint32_t *buf32 = (uint32_t*)buffer;
  571. uint32_t num_words = PLATFORM_FLASH_PAGE_SIZE / 4;
  572. for (int i = 0; i < num_words; i++)
  573. {
  574. uint32_t expected = buf32[i];
  575. uint32_t actual = *(volatile uint32_t*)(XIP_NOCACHE_BASE + offset + i * 4);
  576. if (actual != expected)
  577. {
  578. log("Flash verify failed at offset ", offset + i * 4, " got ", actual, " expected ", expected);
  579. __enable_irq();
  580. return false;
  581. }
  582. }
  583. __enable_irq();
  584. return true;
  585. }
  586. void platform_boot_to_main_firmware()
  587. {
  588. // To ensure that the system state is reset properly, we perform
  589. // a SYSRESETREQ and jump straight from the reset vector to main application.
  590. g_bootloader_exit_req = &g_bootloader_exit_req;
  591. SCB->AIRCR = 0x05FA0004;
  592. while(1);
  593. }
  594. void btldr_reset_handler()
  595. {
  596. uint32_t* application_base = &__real_vectors_start;
  597. if (g_bootloader_exit_req == &g_bootloader_exit_req)
  598. {
  599. // Boot to main application
  600. application_base = (uint32_t*)(XIP_BASE + PLATFORM_BOOTLOADER_SIZE);
  601. }
  602. SCB->VTOR = (uint32_t)application_base;
  603. __asm__(
  604. "msr msp, %0\n\t"
  605. "bx %1" : : "r" (application_base[0]),
  606. "r" (application_base[1]) : "memory");
  607. }
  608. // Replace the reset handler when building the bootloader
  609. // The rp2040_btldr.ld places real vector table at an offset.
  610. __attribute__((section(".btldr_vectors")))
  611. const void * btldr_vectors[2] = {&__StackTop, (void*)&btldr_reset_handler};
  612. #endif
  613. /************************************/
  614. /* ROM drive in extra flash space */
  615. /************************************/
  616. #ifdef PLATFORM_HAS_ROM_DRIVE
  617. // Reserve up to 352 kB for firmware.
  618. #define ROMDRIVE_OFFSET (352 * 1024)
  619. uint32_t platform_get_romdrive_maxsize()
  620. {
  621. if (g_flash_chip_size >= ROMDRIVE_OFFSET)
  622. {
  623. return g_flash_chip_size - ROMDRIVE_OFFSET;
  624. }
  625. else
  626. {
  627. // Failed to read flash chip size, default to 2 MB
  628. return 2048 * 1024 - ROMDRIVE_OFFSET;
  629. }
  630. }
  631. bool platform_read_romdrive(uint8_t *dest, uint32_t start, uint32_t count)
  632. {
  633. xip_ctrl_hw->stream_ctr = 0;
  634. while (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))
  635. {
  636. (void) xip_ctrl_hw->stream_fifo;
  637. }
  638. xip_ctrl_hw->stream_addr = start + ROMDRIVE_OFFSET;
  639. xip_ctrl_hw->stream_ctr = count / 4;
  640. // Transfer happens in multiples of 4 bytes
  641. assert(start < platform_get_romdrive_maxsize());
  642. assert((count & 3) == 0);
  643. assert((((uint32_t)dest) & 3) == 0);
  644. uint32_t *dest32 = (uint32_t*)dest;
  645. uint32_t words_remain = count / 4;
  646. while (words_remain > 0)
  647. {
  648. if (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))
  649. {
  650. *dest32++ = xip_ctrl_hw->stream_fifo;
  651. words_remain--;
  652. }
  653. }
  654. return true;
  655. }
  656. bool platform_write_romdrive(const uint8_t *data, uint32_t start, uint32_t count)
  657. {
  658. assert(start < platform_get_romdrive_maxsize());
  659. assert((count % PLATFORM_ROMDRIVE_PAGE_SIZE) == 0);
  660. __disable_irq();
  661. flash_range_erase(start + ROMDRIVE_OFFSET, count);
  662. flash_range_program(start + ROMDRIVE_OFFSET, data, count);
  663. __enable_irq();
  664. return true;
  665. }
  666. #endif
  667. /**********************************************/
  668. /* Mapping from data bytes to GPIO BOP values */
  669. /**********************************************/
  670. /* A lookup table is the fastest way to calculate parity and convert the IO pin mapping for data bus.
  671. * For RP2040 we expect that the bits are consecutive and in order.
  672. * The PIO-based parity scheme also requires that the lookup table is aligned to 512-byte increment.
  673. * The parity table is placed into SRAM4 area to reduce bus contention.
  674. */
  675. #define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1)
  676. #define X(n) (\
  677. ((n & 0x01) ? 0 : (1 << SCSI_IO_DB0)) | \
  678. ((n & 0x02) ? 0 : (1 << SCSI_IO_DB1)) | \
  679. ((n & 0x04) ? 0 : (1 << SCSI_IO_DB2)) | \
  680. ((n & 0x08) ? 0 : (1 << SCSI_IO_DB3)) | \
  681. ((n & 0x10) ? 0 : (1 << SCSI_IO_DB4)) | \
  682. ((n & 0x20) ? 0 : (1 << SCSI_IO_DB5)) | \
  683. ((n & 0x40) ? 0 : (1 << SCSI_IO_DB6)) | \
  684. ((n & 0x80) ? 0 : (1 << SCSI_IO_DB7)) | \
  685. (PARITY(n) ? 0 : (1 << SCSI_IO_DBP)) \
  686. )
  687. const uint16_t g_scsi_parity_lookup[256] __attribute__((aligned(512), section(".scratch_x.parity"))) =
  688. {
  689. X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f),
  690. X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f),
  691. X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f),
  692. X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f),
  693. X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f),
  694. X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f),
  695. X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f),
  696. X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f),
  697. X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f),
  698. X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f),
  699. X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf),
  700. X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf),
  701. X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf),
  702. X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf),
  703. X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef),
  704. X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff)
  705. };
  706. #undef X
  707. /* Similarly, another lookup table is used to verify parity of received data.
  708. * This table is indexed by the 8 data bits + 1 parity bit from SCSI bus (active low)
  709. * Each word contains the data byte (inverted to active-high) and a bit indicating whether parity is valid.
  710. */
  711. #define X(n) (\
  712. ((n & 0xFF) ^ 0xFF) | \
  713. (((PARITY(n & 0xFF) ^ (n >> 8)) & 1) << 8) \
  714. )
  715. const uint16_t g_scsi_parity_check_lookup[512] __attribute__((aligned(1024), section(".scratch_x.parity"))) =
  716. {
  717. X(0x000), X(0x001), X(0x002), X(0x003), X(0x004), X(0x005), X(0x006), X(0x007), X(0x008), X(0x009), X(0x00a), X(0x00b), X(0x00c), X(0x00d), X(0x00e), X(0x00f),
  718. X(0x010), X(0x011), X(0x012), X(0x013), X(0x014), X(0x015), X(0x016), X(0x017), X(0x018), X(0x019), X(0x01a), X(0x01b), X(0x01c), X(0x01d), X(0x01e), X(0x01f),
  719. X(0x020), X(0x021), X(0x022), X(0x023), X(0x024), X(0x025), X(0x026), X(0x027), X(0x028), X(0x029), X(0x02a), X(0x02b), X(0x02c), X(0x02d), X(0x02e), X(0x02f),
  720. X(0x030), X(0x031), X(0x032), X(0x033), X(0x034), X(0x035), X(0x036), X(0x037), X(0x038), X(0x039), X(0x03a), X(0x03b), X(0x03c), X(0x03d), X(0x03e), X(0x03f),
  721. X(0x040), X(0x041), X(0x042), X(0x043), X(0x044), X(0x045), X(0x046), X(0x047), X(0x048), X(0x049), X(0x04a), X(0x04b), X(0x04c), X(0x04d), X(0x04e), X(0x04f),
  722. X(0x050), X(0x051), X(0x052), X(0x053), X(0x054), X(0x055), X(0x056), X(0x057), X(0x058), X(0x059), X(0x05a), X(0x05b), X(0x05c), X(0x05d), X(0x05e), X(0x05f),
  723. X(0x060), X(0x061), X(0x062), X(0x063), X(0x064), X(0x065), X(0x066), X(0x067), X(0x068), X(0x069), X(0x06a), X(0x06b), X(0x06c), X(0x06d), X(0x06e), X(0x06f),
  724. X(0x070), X(0x071), X(0x072), X(0x073), X(0x074), X(0x075), X(0x076), X(0x077), X(0x078), X(0x079), X(0x07a), X(0x07b), X(0x07c), X(0x07d), X(0x07e), X(0x07f),
  725. X(0x080), X(0x081), X(0x082), X(0x083), X(0x084), X(0x085), X(0x086), X(0x087), X(0x088), X(0x089), X(0x08a), X(0x08b), X(0x08c), X(0x08d), X(0x08e), X(0x08f),
  726. X(0x090), X(0x091), X(0x092), X(0x093), X(0x094), X(0x095), X(0x096), X(0x097), X(0x098), X(0x099), X(0x09a), X(0x09b), X(0x09c), X(0x09d), X(0x09e), X(0x09f),
  727. X(0x0a0), X(0x0a1), X(0x0a2), X(0x0a3), X(0x0a4), X(0x0a5), X(0x0a6), X(0x0a7), X(0x0a8), X(0x0a9), X(0x0aa), X(0x0ab), X(0x0ac), X(0x0ad), X(0x0ae), X(0x0af),
  728. X(0x0b0), X(0x0b1), X(0x0b2), X(0x0b3), X(0x0b4), X(0x0b5), X(0x0b6), X(0x0b7), X(0x0b8), X(0x0b9), X(0x0ba), X(0x0bb), X(0x0bc), X(0x0bd), X(0x0be), X(0x0bf),
  729. X(0x0c0), X(0x0c1), X(0x0c2), X(0x0c3), X(0x0c4), X(0x0c5), X(0x0c6), X(0x0c7), X(0x0c8), X(0x0c9), X(0x0ca), X(0x0cb), X(0x0cc), X(0x0cd), X(0x0ce), X(0x0cf),
  730. X(0x0d0), X(0x0d1), X(0x0d2), X(0x0d3), X(0x0d4), X(0x0d5), X(0x0d6), X(0x0d7), X(0x0d8), X(0x0d9), X(0x0da), X(0x0db), X(0x0dc), X(0x0dd), X(0x0de), X(0x0df),
  731. X(0x0e0), X(0x0e1), X(0x0e2), X(0x0e3), X(0x0e4), X(0x0e5), X(0x0e6), X(0x0e7), X(0x0e8), X(0x0e9), X(0x0ea), X(0x0eb), X(0x0ec), X(0x0ed), X(0x0ee), X(0x0ef),
  732. X(0x0f0), X(0x0f1), X(0x0f2), X(0x0f3), X(0x0f4), X(0x0f5), X(0x0f6), X(0x0f7), X(0x0f8), X(0x0f9), X(0x0fa), X(0x0fb), X(0x0fc), X(0x0fd), X(0x0fe), X(0x0ff),
  733. X(0x100), X(0x101), X(0x102), X(0x103), X(0x104), X(0x105), X(0x106), X(0x107), X(0x108), X(0x109), X(0x10a), X(0x10b), X(0x10c), X(0x10d), X(0x10e), X(0x10f),
  734. X(0x110), X(0x111), X(0x112), X(0x113), X(0x114), X(0x115), X(0x116), X(0x117), X(0x118), X(0x119), X(0x11a), X(0x11b), X(0x11c), X(0x11d), X(0x11e), X(0x11f),
  735. X(0x120), X(0x121), X(0x122), X(0x123), X(0x124), X(0x125), X(0x126), X(0x127), X(0x128), X(0x129), X(0x12a), X(0x12b), X(0x12c), X(0x12d), X(0x12e), X(0x12f),
  736. X(0x130), X(0x131), X(0x132), X(0x133), X(0x134), X(0x135), X(0x136), X(0x137), X(0x138), X(0x139), X(0x13a), X(0x13b), X(0x13c), X(0x13d), X(0x13e), X(0x13f),
  737. X(0x140), X(0x141), X(0x142), X(0x143), X(0x144), X(0x145), X(0x146), X(0x147), X(0x148), X(0x149), X(0x14a), X(0x14b), X(0x14c), X(0x14d), X(0x14e), X(0x14f),
  738. X(0x150), X(0x151), X(0x152), X(0x153), X(0x154), X(0x155), X(0x156), X(0x157), X(0x158), X(0x159), X(0x15a), X(0x15b), X(0x15c), X(0x15d), X(0x15e), X(0x15f),
  739. X(0x160), X(0x161), X(0x162), X(0x163), X(0x164), X(0x165), X(0x166), X(0x167), X(0x168), X(0x169), X(0x16a), X(0x16b), X(0x16c), X(0x16d), X(0x16e), X(0x16f),
  740. X(0x170), X(0x171), X(0x172), X(0x173), X(0x174), X(0x175), X(0x176), X(0x177), X(0x178), X(0x179), X(0x17a), X(0x17b), X(0x17c), X(0x17d), X(0x17e), X(0x17f),
  741. X(0x180), X(0x181), X(0x182), X(0x183), X(0x184), X(0x185), X(0x186), X(0x187), X(0x188), X(0x189), X(0x18a), X(0x18b), X(0x18c), X(0x18d), X(0x18e), X(0x18f),
  742. X(0x190), X(0x191), X(0x192), X(0x193), X(0x194), X(0x195), X(0x196), X(0x197), X(0x198), X(0x199), X(0x19a), X(0x19b), X(0x19c), X(0x19d), X(0x19e), X(0x19f),
  743. X(0x1a0), X(0x1a1), X(0x1a2), X(0x1a3), X(0x1a4), X(0x1a5), X(0x1a6), X(0x1a7), X(0x1a8), X(0x1a9), X(0x1aa), X(0x1ab), X(0x1ac), X(0x1ad), X(0x1ae), X(0x1af),
  744. X(0x1b0), X(0x1b1), X(0x1b2), X(0x1b3), X(0x1b4), X(0x1b5), X(0x1b6), X(0x1b7), X(0x1b8), X(0x1b9), X(0x1ba), X(0x1bb), X(0x1bc), X(0x1bd), X(0x1be), X(0x1bf),
  745. X(0x1c0), X(0x1c1), X(0x1c2), X(0x1c3), X(0x1c4), X(0x1c5), X(0x1c6), X(0x1c7), X(0x1c8), X(0x1c9), X(0x1ca), X(0x1cb), X(0x1cc), X(0x1cd), X(0x1ce), X(0x1cf),
  746. X(0x1d0), X(0x1d1), X(0x1d2), X(0x1d3), X(0x1d4), X(0x1d5), X(0x1d6), X(0x1d7), X(0x1d8), X(0x1d9), X(0x1da), X(0x1db), X(0x1dc), X(0x1dd), X(0x1de), X(0x1df),
  747. X(0x1e0), X(0x1e1), X(0x1e2), X(0x1e3), X(0x1e4), X(0x1e5), X(0x1e6), X(0x1e7), X(0x1e8), X(0x1e9), X(0x1ea), X(0x1eb), X(0x1ec), X(0x1ed), X(0x1ee), X(0x1ef),
  748. X(0x1f0), X(0x1f1), X(0x1f2), X(0x1f3), X(0x1f4), X(0x1f5), X(0x1f6), X(0x1f7), X(0x1f8), X(0x1f9), X(0x1fa), X(0x1fb), X(0x1fc), X(0x1fd), X(0x1fe), X(0x1ff),
  749. };
  750. #undef X
  751. } /* extern "C" */
  752. /* Logging from mbed */
  753. static class LogTarget: public mbed::FileHandle {
  754. public:
  755. virtual ssize_t read(void *buffer, size_t size) { return 0; }
  756. virtual ssize_t write(const void *buffer, size_t size)
  757. {
  758. // A bit inefficient but mbed seems to write() one character
  759. // at a time anyways.
  760. for (int i = 0; i < size; i++)
  761. {
  762. char buf[2] = {((const char*)buffer)[i], 0};
  763. log_raw(buf);
  764. }
  765. return size;
  766. }
  767. virtual off_t seek(off_t offset, int whence = SEEK_SET) { return offset; }
  768. virtual int close() { return 0; }
  769. virtual off_t size() { return 0; }
  770. } g_LogTarget;
  771. mbed::FileHandle *mbed::mbed_override_console(int fd)
  772. {
  773. return &g_LogTarget;
  774. }
  775. #endif