| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034 | /* Data flow in SCSI acceleration: * * 1. Application provides a buffer of bytes to send. * 2. Code in this module adds parity bit to the bytes and packs two bytes into 32 bit words. * 3. DMA controller copies the words to PIO peripheral FIFO. * 4. PIO peripheral handles low-level SCSI handshake and writes bytes and parity to GPIO. */#include "BlueSCSI_platform.h"#include "BlueSCSI_log.h"#include "scsi_accel_rp2040.h"#include "scsi_accel.pio.h"#include <hardware/pio.h>#include <hardware/dma.h>#include <hardware/irq.h>#include <hardware/structs/iobank0.h>#include <hardware/sync.h>#include <multicore.h>// SCSI bus write acceleration uses up to 3 PIO state machines:// SM0: Convert data bytes to lookup addresses to add parity// SM1: Write data to SCSI bus// SM2: For synchronous mode only, count ACK pulses#define SCSI_DMA_PIO pio0#define SCSI_PARITY_SM 0#define SCSI_DATA_SM 1#define SCSI_SYNC_SM 2// SCSI bus write acceleration uses 3 or 4 DMA channels (data flow A->B->C->D):// A: Bytes from RAM to scsi_parity PIO// B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register// C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO// D: For sync transfers, scsi_sync_write to scsi_sync_write_pacer PIO//// SCSI bus read acceleration uses 4 DMA channels (data flow D->C->B->A):// A: Bytes from scsi_read_parity PIO to memory buffer// B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO// C: Addresses from scsi_accel_read PIO to lookup DMA READ_ADDR register// D: From pacer to data state machine to trigger transfers#define SCSI_DMA_CH_A 0#define SCSI_DMA_CH_B 1#define SCSI_DMA_CH_C 2#define SCSI_DMA_CH_D 3static struct {    uint8_t *app_buf; // Buffer provided by application    uint32_t app_bytes; // Bytes available in application buffer    uint32_t dma_bytes; // Bytes that have been scheduled for DMA so far        uint8_t *next_app_buf; // Next buffer from application after current one finishes    uint32_t next_app_bytes; // Bytes in next buffer    // Synchronous mode?    int syncOffset;    int syncPeriod;    int syncOffsetDivider; // Autopush/autopull threshold for the write pacer state machine    int syncOffsetPreload; // Number of items to preload in the RX fifo of scsi_sync_write    // PIO configurations    uint32_t pio_offset_parity;    uint32_t pio_offset_async_write;    uint32_t pio_offset_sync_write_pacer;    uint32_t pio_offset_sync_write;    uint32_t pio_offset_read;    uint32_t pio_offset_read_parity;    uint32_t pio_offset_sync_read_pacer;    pio_sm_config pio_cfg_parity;    pio_sm_config pio_cfg_async_write;    pio_sm_config pio_cfg_sync_write_pacer;    pio_sm_config pio_cfg_sync_write;    pio_sm_config pio_cfg_read;    pio_sm_config pio_cfg_read_parity;    pio_sm_config pio_cfg_sync_read_pacer;        // DMA configurations for write    dma_channel_config dmacfg_write_chA; // Data from RAM to scsi_parity PIO    dma_channel_config dmacfg_write_chB; // Addresses from scsi_parity PIO to lookup DMA    dma_channel_config dmacfg_write_chC; // Data from g_scsi_parity_lookup to scsi write PIO    dma_channel_config dmacfg_write_chD; // In synchronous mode only, transfer between state machines    // DMA configurations for read    dma_channel_config dmacfg_read_chA; // Data to destination memory buffer    dma_channel_config dmacfg_read_chB; // From lookup table to scsi_read_parity PIO    dma_channel_config dmacfg_read_chC; // From scsi_accel_read to channel B READ_ADDR    dma_channel_config dmacfg_read_chD; // From pacer to data state machine} g_scsi_dma;enum scsidma_state_t { SCSIDMA_IDLE = 0,                       SCSIDMA_WRITE, SCSIDMA_WRITE_DONE,                       SCSIDMA_READ, SCSIDMA_READ_DONE };static volatile scsidma_state_t g_scsi_dma_state;static bool g_channels_claimed = false;static void scsidma_config_gpio();/****************************************//* Accelerated writes to SCSI bus       *//****************************************/// Load the SCSI parity state machine with the address of the parity lookup table.// Also sets up DMA channels B and Cstatic void config_parity_sm_for_write(){    // Load base address to state machine register X    uint32_t addrbase = (uint32_t)&g_scsi_parity_lookup[0];    assert((addrbase & 0x1FF) == 0);    pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_parity, &g_scsi_dma.pio_cfg_parity);    pio_sm_put(SCSI_DMA_PIO, SCSI_PARITY_SM, addrbase >> 9);    pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_pull(false, false));    pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_mov(pio_x, pio_osr));        // DMA channel B will copy addresses from parity PIO to DMA channel C read address register.    // It is triggered by the parity SM RX FIFO request    dma_channel_configure(SCSI_DMA_CH_B,        &g_scsi_dma.dmacfg_write_chB,        &dma_hw->ch[SCSI_DMA_CH_C].al3_read_addr_trig,        &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],        1, true);        // DMA channel C will read g_scsi_parity_lookup to copy data + parity to SCSI write state machine.    // It is triggered by SCSI write machine TX FIFO request and chains to re-enable channel B.    dma_channel_configure(SCSI_DMA_CH_C,        &g_scsi_dma.dmacfg_write_chC,        &SCSI_DMA_PIO->txf[SCSI_DATA_SM],        NULL,        1, false);}static void start_dma_write(){    if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)    {        // Buffer has been fully processed, swap it        g_scsi_dma.dma_bytes = 0;        g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;        g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;        g_scsi_dma.next_app_buf = 0;        g_scsi_dma.next_app_bytes = 0;    }    // Check if we are all done.    // From SCSIDMA_WRITE_DONE state we can either go to IDLE in stopWrite()    // or back to WRITE in startWrite().    uint32_t bytes_to_send = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;    if (bytes_to_send == 0)    {        g_scsi_dma_state = SCSIDMA_WRITE_DONE;        return;    }    uint8_t *src_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];    g_scsi_dma.dma_bytes += bytes_to_send;        // Start DMA from current buffer to parity generator    dma_channel_configure(SCSI_DMA_CH_A,        &g_scsi_dma.dmacfg_write_chA,        &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],        src_buf,        bytes_to_send,        true    );}void scsi_accel_rp2040_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag){    // Any read requests should be matched with a stopRead()    assert(g_scsi_dma_state != SCSIDMA_READ && g_scsi_dma_state != SCSIDMA_READ_DONE);    __disable_irq();    if (g_scsi_dma_state == SCSIDMA_WRITE)    {        if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)        {            // Combine with currently running request            g_scsi_dma.app_bytes += count;            count = 0;        }        else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)        {            // Combine with queued request            g_scsi_dma.next_app_bytes += count;            count = 0;        }        else if (!g_scsi_dma.next_app_buf)        {            // Add as queued request            g_scsi_dma.next_app_buf = (uint8_t*)data;            g_scsi_dma.next_app_bytes = count;            count = 0;        }    }    __enable_irq();    // Check if the request was combined    if (count == 0) return;    if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_WRITE_DONE)    {        // Wait for previous request to finish        scsi_accel_rp2040_finishWrite(resetFlag);        if (*resetFlag)        {            return;        }    }    bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);    g_scsi_dma_state = SCSIDMA_WRITE;    g_scsi_dma.app_buf = (uint8_t*)data;    g_scsi_dma.app_bytes = count;    g_scsi_dma.dma_bytes = 0;    g_scsi_dma.next_app_buf = 0;    g_scsi_dma.next_app_bytes = 0;        if (must_reconfig_gpio)    {        SCSI_ENABLE_DATA_OUT();        if (g_scsi_dma.syncOffset == 0)        {            // Asynchronous write            config_parity_sm_for_write();            pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_async_write, &g_scsi_dma.pio_cfg_async_write);            scsidma_config_gpio();            pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);            pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);        }        else        {            // Synchronous write            // Data state machine writes data to SCSI bus and dummy bits to its RX fifo.            // Sync state machine empties the dummy bits every time ACK is received, to control the transmit pace.            config_parity_sm_for_write();            pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_sync_write, &g_scsi_dma.pio_cfg_sync_write);            pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_write_pacer, &g_scsi_dma.pio_cfg_sync_write_pacer);            scsidma_config_gpio();            // Prefill RX fifo to set the syncOffset            for (int i = 0; i < g_scsi_dma.syncOffsetPreload; i++)            {                pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM,                    pio_encode_push(false, false) | pio_encode_sideset(1, 1));            }            // Fill the pacer TX fifo            // DMA should start transferring only after ACK pulses are received            for (int i = 0; i < 4; i++)            {                pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, 0);            }            // Fill the pacer OSR            pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM,                pio_encode_mov(pio_osr, pio_null));            // Start DMA transfer to move dummy bits to write pacer            dma_channel_configure(SCSI_DMA_CH_D,                &g_scsi_dma.dmacfg_write_chD,                &SCSI_DMA_PIO->txf[SCSI_SYNC_SM],                &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],                0xFFFFFFFF,                true            );            // Enable state machines            pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);            pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);            pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);        }                dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);    }    start_dma_write();}bool scsi_accel_rp2040_isWriteFinished(const uint8_t* data){    // Check if everything has completed    if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_WRITE_DONE)    {        return true;    }    if (!data)        return false;    // Check if this data item is still in queue.    bool finished = true;    __disable_irq();    if (data >= g_scsi_dma.app_buf &&        data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&        (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].al1_read_addr)    {        finished = false; // In current transfer    }    else if (data >= g_scsi_dma.next_app_buf &&             data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)    {        finished = false; // In queued transfer    }    __enable_irq();    return finished;}// Once DMA has finished, check if all PIO queues have been drainedstatic bool scsi_accel_rp2040_isWriteDone(){    // Check if data is still waiting in PIO FIFO    if (!pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||        !pio_sm_is_rx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||        !pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_DATA_SM))    {        return false;    }    if (g_scsi_dma.syncOffset > 0)    {        // Check if all bytes of synchronous write have been acknowledged        if (pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM) > g_scsi_dma.syncOffsetPreload)            return false;    }    else    {        // Check if state machine has written out its OSR        if (pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM) != g_scsi_dma.pio_offset_async_write)            return false;    }    // Check if ACK of the final byte has finished    if (SCSI_IN(ACK))        return false;    return true;}static void scsi_accel_rp2040_stopWrite(volatile int *resetFlag){    // Wait for TX fifo to be empty and ACK to go high    // For synchronous writes wait for all ACKs to be received also    uint32_t start = millis();    while (!scsi_accel_rp2040_isWriteDone() && !*resetFlag)    {        if ((uint32_t)(millis() - start) > 5000)        {            log("scsi_accel_rp2040_stopWrite() timeout, FIFO levels ",                (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ",                (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " PC ",                (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM));            *resetFlag = 1;            break;        }    }    dma_channel_abort(SCSI_DMA_CH_A);    dma_channel_abort(SCSI_DMA_CH_B);    dma_channel_abort(SCSI_DMA_CH_C);    dma_channel_abort(SCSI_DMA_CH_D);    dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);    g_scsi_dma_state = SCSIDMA_IDLE;    SCSI_RELEASE_DATA_REQ();    scsidma_config_gpio();    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);}void scsi_accel_rp2040_finishWrite(volatile int *resetFlag){    uint32_t start = millis();    while (g_scsi_dma_state != SCSIDMA_IDLE && !*resetFlag)    {        if ((uint32_t)(millis() - start) > 5000)        {            log("scsi_accel_rp2040_finishWrite() timeout,"             " state: ", (int)g_scsi_dma_state, " ", (int)g_scsi_dma.dma_bytes, "/", (int)g_scsi_dma.app_bytes, ", ", (int)g_scsi_dma.next_app_bytes,             " PIO PC: ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM),             " PIO FIFO: ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM),             " DMA counts: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count,                         " ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count);            *resetFlag = 1;            break;        }        if (g_scsi_dma_state == SCSIDMA_WRITE_DONE)        {            // DMA done, wait for PIO to finish also and reconfig GPIO.            scsi_accel_rp2040_stopWrite(resetFlag);        }    }}/****************************************//* Accelerated reads from SCSI bus      *//****************************************/// Load the SCSI read state machine with the address of the parity lookup table.// Also sets up DMA channels B, C and Dstatic void config_parity_sm_for_read(){    // Configure parity check state machine    pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_read_parity, &g_scsi_dma.pio_cfg_read_parity);    // Load base address to state machine register X    uint32_t addrbase = (uint32_t)&g_scsi_parity_check_lookup[0];    assert((addrbase & 0x3FF) == 0);    pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_read, &g_scsi_dma.pio_cfg_read);    pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, addrbase >> 10);    pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));    pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_mov(pio_y, pio_osr) | pio_encode_sideset(1, 1));        // For synchronous mode, the REQ pin is driven by SCSI_SYNC_SM, so disable it in SCSI_DATA_SM    if (g_scsi_dma.syncOffset > 0)    {        pio_sm_set_sideset_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0);    }    // DMA channel B will read g_scsi_parity_check_lookup and write to scsi_read_parity PIO.    dma_channel_configure(SCSI_DMA_CH_B,        &g_scsi_dma.dmacfg_read_chB,        &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],        NULL,        1, false);        // DMA channel C will copy addresses from data PIO to DMA channel B read address register.    // It is triggered by the data SM RX FIFO request.    // This triggers channel B by writing to READ_ADDR_TRIG    // Channel B chaining re-enables this channel.    dma_channel_configure(SCSI_DMA_CH_C,        &g_scsi_dma.dmacfg_read_chC,        &dma_hw->ch[SCSI_DMA_CH_B].al3_read_addr_trig,        &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],        1, true);    if (g_scsi_dma.syncOffset == 0)    {        // DMA channel D will copy dummy words to scsi_accel_read PIO to set the number        // of bytes to transfer.        static const uint32_t dummy = 0;        dma_channel_configure(SCSI_DMA_CH_D,            &g_scsi_dma.dmacfg_read_chD,            &SCSI_DMA_PIO->txf[SCSI_DATA_SM],            &dummy,            0, false);    }    else    {        pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_read_pacer, &g_scsi_dma.pio_cfg_sync_read_pacer);        // DMA channel D will copy words from scsi_sync_read_pacer to scsi_accel_read PIO        // to control the offset between REQ pulses sent and ACK pulses received.        dma_channel_configure(SCSI_DMA_CH_D,            &g_scsi_dma.dmacfg_read_chD,            &SCSI_DMA_PIO->txf[SCSI_DATA_SM],            &SCSI_DMA_PIO->rxf[SCSI_SYNC_SM],            0, false);    }    // Clear PIO IRQ flag that is used to detect parity error    SCSI_DMA_PIO->irq = 1;}static void start_dma_read(){    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);    pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_PARITY_SM);    pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_DATA_SM);        if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)    {        // Buffer has been fully processed, swap it        g_scsi_dma.dma_bytes = 0;        g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;        g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;        g_scsi_dma.next_app_buf = 0;        g_scsi_dma.next_app_bytes = 0;    }        // Check if we are all done.    // From SCSIDMA_READ_DONE state we can either go to IDLE in stopRead()    // or back to READ in startWrite().    uint32_t bytes_to_read = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;    if (bytes_to_read == 0)    {        g_scsi_dma_state = SCSIDMA_READ_DONE;        return;    }    if (g_scsi_dma.syncOffset == 0)    {        // Start sending dummy words to scsi_accel_read state machine        dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);    }    else    {        // Set number of bytes to receive to the scsi_sync_read_pacer state machine register X        pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);        hw_clear_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);        pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, bytes_to_read - 1);        pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));        pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_mov(pio_x, pio_osr) | pio_encode_sideset(1, 1));        hw_set_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);                // Prefill FIFOs to get correct syncOffset        int prefill = 12 - g_scsi_dma.syncOffset;                // Always at least 1 word to avoid race condition between REQ and ACK pulses        if (prefill < 1) prefill = 1;        // Up to 4 words in SCSI_DATA_SM TX fifo        for (int i = 0; i < 4 && prefill > 0; i++)        {            pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, 0);            prefill--;        }        // Up to 8 words in SCSI_SYNC_SM RX fifo        for (int i = 0; i < 8 && prefill > 0; i++)        {            pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_push(false, false) | pio_encode_sideset(1, 1));            prefill--;        }                pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_jmp(g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_sideset(1, 1));        // Start transfers        dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);    }    // Start DMA to fill the destination buffer    uint8_t *dest_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];    g_scsi_dma.dma_bytes += bytes_to_read;    dma_channel_configure(SCSI_DMA_CH_A,        &g_scsi_dma.dmacfg_read_chA,        dest_buf,        &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],        bytes_to_read,        true    );    // Ready to start the data and parity check state machines    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);    if (g_scsi_dma.syncOffset > 0)    {        // Start sending REQ pulses        pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);    }}void scsi_accel_rp2040_startRead(uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag){    // Any write requests should be matched with a stopWrite()    assert(g_scsi_dma_state != SCSIDMA_WRITE && g_scsi_dma_state != SCSIDMA_WRITE_DONE);    __disable_irq();    if (g_scsi_dma_state == SCSIDMA_READ)    {        if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)        {            // Combine with currently running request            g_scsi_dma.app_bytes += count;            count = 0;        }        else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)        {            // Combine with queued request            g_scsi_dma.next_app_bytes += count;            count = 0;        }        else if (!g_scsi_dma.next_app_buf)        {            // Add as queued request            g_scsi_dma.next_app_buf = (uint8_t*)data;            g_scsi_dma.next_app_bytes = count;            count = 0;        }    }    __enable_irq();    // Check if the request was combined    if (count == 0) return;    if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_READ_DONE)    {        // Wait for previous request to finish        scsi_accel_rp2040_finishRead(NULL, 0, parityError, resetFlag);        if (*resetFlag)        {            return;        }    }    bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);    g_scsi_dma_state = SCSIDMA_READ;    g_scsi_dma.app_buf = (uint8_t*)data;    g_scsi_dma.app_bytes = count;    g_scsi_dma.dma_bytes = 0;    g_scsi_dma.next_app_buf = 0;    g_scsi_dma.next_app_bytes = 0;    if (must_reconfig_gpio)    {        config_parity_sm_for_read();        scsidma_config_gpio();        dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);    }    start_dma_read();}bool scsi_accel_rp2040_isReadFinished(const uint8_t* data){    // Check if everything has completed    if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_READ_DONE)    {        return true;    }    if (!data)        return false;    // Check if this data item is still in queue.    bool finished = true;    __disable_irq();    if (data >= g_scsi_dma.app_buf &&        data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&        (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].write_addr)    {        finished = false; // In current transfer    }    else if (data >= g_scsi_dma.next_app_buf &&             data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)    {        finished = false; // In queued transfer    }    __enable_irq();    return finished;}static void scsi_accel_rp2040_stopRead(){    dma_channel_abort(SCSI_DMA_CH_A);    dma_channel_abort(SCSI_DMA_CH_B);    dma_channel_abort(SCSI_DMA_CH_C);    dma_channel_abort(SCSI_DMA_CH_D);    dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);    g_scsi_dma_state = SCSIDMA_IDLE;    SCSI_RELEASE_DATA_REQ();    scsidma_config_gpio();    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);    pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);}void scsi_accel_rp2040_finishRead(const uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag){    uint32_t start = millis();    const uint8_t *query_addr = (data ? (data + count - 1) : NULL);    while (!scsi_accel_rp2040_isReadFinished(query_addr) && !*resetFlag)    {        if ((uint32_t)(millis() - start) > 5000)        {            log("scsi_accel_rp2040_finishRead timeout,"             " state: ", (int)g_scsi_dma_state, " ", (int)g_scsi_dma.dma_bytes, "/", (int)g_scsi_dma.app_bytes, ", ", (int)g_scsi_dma.next_app_bytes,             " PIO PC: ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM),             " PIO FIFO: ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM), " ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM),             " DMA counts: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count,                         " ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count, " ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count);            *resetFlag = 1;            break;        }    }        if (g_scsi_dma_state == SCSIDMA_READ_DONE || *resetFlag)    {        // This was last buffer, release bus        scsi_accel_rp2040_stopRead();    }        // Check if any parity errors have been detected during the transfer so far    if (SCSI_DMA_PIO->irq & 1)    {        debuglog("scsi_accel_rp2040_finishRead(", bytearray(data, count), ") detected parity error");        *parityError = true;    }}/*******************************************************//* Initialization functions common to read/write       *//*******************************************************/static void scsi_dma_irq(){    dma_hw->ints0 = (1 << SCSI_DMA_CH_A);    scsidma_state_t state = g_scsi_dma_state;    if (state == SCSIDMA_WRITE)    {        // Start writing from next buffer, if any, or set state to SCSIDMA_WRITE_DONE        start_dma_write();    }    else if (state == SCSIDMA_READ)    {        // Start reading into next buffer, if any, or set state to SCSIDMA_READ_DONE        start_dma_read();    }}// Select GPIO from PIO peripheral or from software controlled SIOstatic void scsidma_config_gpio(){    if (g_scsi_dma_state == SCSIDMA_IDLE)    {        iobank0_hw->io[SCSI_IO_DB0].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB1].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB2].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB3].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB4].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB5].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB6].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB7].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DBP].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_SIO;    }    else if (g_scsi_dma_state == SCSIDMA_WRITE)    {        // Make sure the initial state of all pins is high and output        pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0x201FF);  // 3FF        // Binary of 0x3FF is is 0 0 1 1 11111111        //                       ? A R P DBP        // A = ACK, R = REQ, DBP are the data pins        // REQ internal state needs to be set 'high'        // 100000000111111111        // Probably right to left here, so 0 - 9 are set 'high' and 10/11 are set 'low'        pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, true);        pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 17, 1, true);        iobank0_hw->io[SCSI_IO_DB0].ctrl  = GPIO_FUNC_PIO0;        iobank0_hw->io[SCSI_IO_DB1].ctrl  = GPIO_FUNC_PIO0;        iobank0_hw->io[SCSI_IO_DB2].ctrl  = GPIO_FUNC_PIO0;        iobank0_hw->io[SCSI_IO_DB3].ctrl  = GPIO_FUNC_PIO0;        iobank0_hw->io[SCSI_IO_DB4].ctrl  = GPIO_FUNC_PIO0;        iobank0_hw->io[SCSI_IO_DB5].ctrl  = GPIO_FUNC_PIO0;        iobank0_hw->io[SCSI_IO_DB6].ctrl  = GPIO_FUNC_PIO0;        iobank0_hw->io[SCSI_IO_DB7].ctrl  = GPIO_FUNC_PIO0;        iobank0_hw->io[SCSI_IO_DBP].ctrl  = GPIO_FUNC_PIO0;        iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;    }    else if (g_scsi_dma_state == SCSIDMA_READ)    {        if (g_scsi_dma.syncOffset == 0)        {            // Asynchronous read            // Data bus as input, REQ pin as output            pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0x201FF);            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 17, 1, true);        }        else        {            // Synchronous read, REQ pin is written by SYNC_SM            pio_sm_set_pins(SCSI_DMA_PIO, SCSI_SYNC_SM, 0x201FF);            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);            pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_SYNC_SM, 17, 1, true);        }        iobank0_hw->io[SCSI_IO_DB0].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB1].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB2].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB3].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB4].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB5].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB6].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DB7].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_IO_DBP].ctrl  = GPIO_FUNC_SIO;        iobank0_hw->io[SCSI_OUT_REQ].ctrl = GPIO_FUNC_PIO0;    }}void scsi_accel_rp2040_init(){    g_scsi_dma_state = SCSIDMA_IDLE;    scsidma_config_gpio();    // Mark channels as being in use, unless it has been done already    if (!g_channels_claimed)    {        pio_sm_claim(SCSI_DMA_PIO, SCSI_PARITY_SM);        pio_sm_claim(SCSI_DMA_PIO, SCSI_DATA_SM);        pio_sm_claim(SCSI_DMA_PIO, SCSI_SYNC_SM);        dma_channel_claim(SCSI_DMA_CH_A);        dma_channel_claim(SCSI_DMA_CH_B);        dma_channel_claim(SCSI_DMA_CH_C);        dma_channel_claim(SCSI_DMA_CH_D);        g_channels_claimed = true;    }    // Load PIO programs    pio_clear_instruction_memory(SCSI_DMA_PIO);        // Parity lookup generator    g_scsi_dma.pio_offset_parity = pio_add_program(SCSI_DMA_PIO, &scsi_parity_program);    g_scsi_dma.pio_cfg_parity = scsi_parity_program_get_default_config(g_scsi_dma.pio_offset_parity);    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_parity, true, false, 32);    sm_config_set_in_shift(&g_scsi_dma.pio_cfg_parity, true, true, 32);    // Asynchronous SCSI write    g_scsi_dma.pio_offset_async_write = pio_add_program(SCSI_DMA_PIO, &scsi_accel_async_write_program);    g_scsi_dma.pio_cfg_async_write = scsi_accel_async_write_program_get_default_config(g_scsi_dma.pio_offset_async_write);    sm_config_set_out_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_IO_DB0, 9);    sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_OUT_REQ);    sm_config_set_fifo_join(&g_scsi_dma.pio_cfg_async_write, PIO_FIFO_JOIN_TX);    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_write, true, false, 32);    // Synchronous SCSI write pacer / ACK handler    g_scsi_dma.pio_offset_sync_write_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_pacer_program);    g_scsi_dma.pio_cfg_sync_write_pacer = scsi_sync_write_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_write_pacer);    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, 1);    // Synchronous SCSI data writer    g_scsi_dma.pio_offset_sync_write = pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_program);    g_scsi_dma.pio_cfg_sync_write = scsi_sync_write_program_get_default_config(g_scsi_dma.pio_offset_sync_write);    sm_config_set_out_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_IO_DB0, 9);    sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_OUT_REQ);    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 32);    sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 1);    // Asynchronous / synchronous SCSI read    g_scsi_dma.pio_offset_read = pio_add_program(SCSI_DMA_PIO, &scsi_accel_read_program);    g_scsi_dma.pio_cfg_read = scsi_accel_read_program_get_default_config(g_scsi_dma.pio_offset_read);    sm_config_set_in_pins(&g_scsi_dma.pio_cfg_read, SCSI_IO_DB0);    sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_read, SCSI_OUT_REQ);    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read, true, false, 32);    sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read, true, true, 32);    // Synchronous SCSI read pacer    g_scsi_dma.pio_offset_sync_read_pacer = pio_add_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program);    g_scsi_dma.pio_cfg_sync_read_pacer = scsi_sync_read_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_read_pacer);    sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_read_pacer, SCSI_OUT_REQ);    // Read parity check    g_scsi_dma.pio_offset_read_parity = pio_add_program(SCSI_DMA_PIO, &scsi_read_parity_program);    g_scsi_dma.pio_cfg_read_parity = scsi_read_parity_program_get_default_config(g_scsi_dma.pio_offset_read_parity);    sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read_parity, true, true, 32);    sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read_parity, true, false, 32);    // Create DMA channel configurations so they can be applied quickly later        // For write to SCSI BUS:    // Channel A: Bytes from RAM to scsi_parity PIO    dma_channel_config cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);    channel_config_set_read_increment(&cfg, true);    channel_config_set_write_increment(&cfg, false);    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, true));    g_scsi_dma.dmacfg_write_chA = cfg;    // Channel B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register    cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);    channel_config_set_read_increment(&cfg, false);    channel_config_set_write_increment(&cfg, false);    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));    g_scsi_dma.dmacfg_write_chB = cfg;    // Channel C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO    // When done, chain to channel B    cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);    channel_config_set_read_increment(&cfg, false);    channel_config_set_write_increment(&cfg, false);    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));    channel_config_set_chain_to(&cfg, SCSI_DMA_CH_B);    g_scsi_dma.dmacfg_write_chC = cfg;    // Channel D: In synchronous mode a second DMA channel is used to transfer dummy bits    // from first state machine to second one.    cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);    channel_config_set_read_increment(&cfg, false);    channel_config_set_write_increment(&cfg, false);    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_SYNC_SM, true));    g_scsi_dma.dmacfg_write_chD = cfg;    // For read from SCSI BUS:    // Channel A: Bytes from scsi_read_parity PIO to destination memory buffer    // This takes the bottom 8 bits which is the data without parity bit.    // Triggered by scsi_read_parity RX FIFO.    cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);    channel_config_set_read_increment(&cfg, false);    channel_config_set_write_increment(&cfg, true);    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));    g_scsi_dma.dmacfg_read_chA = cfg;    // Channel B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO    // Triggered by channel C writing to READ_ADDR_TRIG    // Re-enables channel C by chaining after done.    cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);    channel_config_set_read_increment(&cfg, false);    channel_config_set_write_increment(&cfg, false);    channel_config_set_dreq(&cfg, DREQ_FORCE);    channel_config_set_chain_to(&cfg, SCSI_DMA_CH_C);    cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;    g_scsi_dma.dmacfg_read_chB = cfg;    // Channel C: Addresses from scsi_read PIO to channel B READ_ADDR register    // A single transfer starts when PIO RX FIFO has data.    // The DMA channel is re-enabled by channel B chaining.    cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);    channel_config_set_read_increment(&cfg, false);    channel_config_set_write_increment(&cfg, false);    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, false));    g_scsi_dma.dmacfg_read_chC = cfg;    // Channel D: In synchronous mode a second DMA channel is used to transfer dummy words    // from first state machine to second one to control the pace of data transfer.    // In asynchronous mode this just transfers words to control the number of bytes.    cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);    channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);    channel_config_set_read_increment(&cfg, false);    channel_config_set_write_increment(&cfg, false);    channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));    g_scsi_dma.dmacfg_read_chD = cfg;        // Interrupts are used for data buffer swapping    irq_set_exclusive_handler(DMA_IRQ_0, scsi_dma_irq);    irq_set_enabled(DMA_IRQ_0, true);}void scsi_accel_rp2040_setSyncMode(int syncOffset, int syncPeriod){    assert(g_scsi_dma_state == SCSIDMA_IDLE);    if (syncOffset != g_scsi_dma.syncOffset || syncPeriod != g_scsi_dma.syncPeriod)    {        g_scsi_dma.syncOffset = syncOffset;        g_scsi_dma.syncPeriod = syncPeriod;        if (syncOffset > 0)        {            // Set up offset amount to PIO state machine configs.            // The RX fifo of scsi_sync_write has 4 slots.            // We can preload it with 0-3 items and set the autopush threshold 1, 2, 4 ... 32            // to act as a divider. This allows offsets 1 to 128 bytes.            // SCSI2SD code currently only uses offsets up to 15.            if (syncOffset <= 4)            {                g_scsi_dma.syncOffsetDivider = 1;                g_scsi_dma.syncOffsetPreload = 5 - syncOffset;            }            else if (syncOffset <= 8)            {                g_scsi_dma.syncOffsetDivider = 2;                g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 2;            }            else if (syncOffset <= 16)            {                g_scsi_dma.syncOffsetDivider = 4;                g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 4;            }            else            {                g_scsi_dma.syncOffsetDivider = 4;                g_scsi_dma.syncOffsetPreload = 0;            }            // To properly detect when all bytes have been ACKed,            // we need at least one vacant slot in the FIFO.            if (g_scsi_dma.syncOffsetPreload > 3)                g_scsi_dma.syncOffsetPreload = 3;            sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, g_scsi_dma.syncOffsetDivider);            sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, g_scsi_dma.syncOffsetDivider);            // Set up the timing parameters to PIO program            // The scsi_sync_write PIO program consists of three instructions.            // The delays are in clock cycles, each taking 8 ns.            // delay0: Delay from data write to REQ assertion            // delay1: Delay from REQ assert to REQ deassert            // delay2: Delay from REQ deassert to data write            int delay0, delay1, delay2;            int totalDelay = syncPeriod * 4 / 8;            if (syncPeriod <= 25)            {                // Fast SCSI timing: 30 ns assertion period, 25 ns skew delay                // The hardware rise and fall time require some extra delay,                // the values below are tuned based on oscilloscope measurements.                delay0 = 3;                delay1 = 5;                delay2 = totalDelay - delay0 - delay1 - 3;                if (delay2 < 0) delay2 = 0;                if (delay2 > 15) delay2 = 15;            }            else            {                // Slow SCSI timing: 90 ns assertion period, 55 ns skew delay                delay0 = 6;                delay1 = 12;                delay2 = totalDelay - delay0 - delay1 - 3;                if (delay2 < 0) delay2 = 0;                if (delay2 > 15) delay2 = 15;            }            // Patch the delay values into the instructions in scsi_sync_write.            // The code in scsi_accel.pio must have delay set to 0 for this to work correctly.            uint16_t instr0 = scsi_sync_write_program_instructions[0] | pio_encode_delay(delay0);            uint16_t instr1 = scsi_sync_write_program_instructions[1] | pio_encode_delay(delay1);            uint16_t instr2 = scsi_sync_write_program_instructions[2] | pio_encode_delay(delay2);            SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 0] = instr0;            SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 1] = instr1;            SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 2] = instr2;            // And similar patching for scsi_sync_read_pacer            int rdelay2 = totalDelay - delay1 - 2;            if (rdelay2 > 15) rdelay2 = 15;            if (rdelay2 < 5) rdelay2 = 5;            uint16_t rinstr0 = scsi_sync_read_pacer_program_instructions[0] | pio_encode_delay(rdelay2);            uint16_t rinstr1 = (scsi_sync_read_pacer_program_instructions[1] + g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_delay(delay1);            SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 0] = rinstr0;            SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 1] = rinstr1;        }    }}
 |