BlueSCSI_initiator.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758
  1. /*
  2. * ZuluSCSI
  3. * Copyright (c) 2022 Rabbit Hole Computing
  4. *
  5. * Main program for initiator mode.
  6. */
  7. #include "BlueSCSI_config.h"
  8. #include "BlueSCSI_log.h"
  9. #include "BlueSCSI_log_trace.h"
  10. #include "BlueSCSI_initiator.h"
  11. #include <BlueSCSI_platform.h>
  12. #include "SdFat.h"
  13. #include <scsi2sd.h>
  14. extern "C" {
  15. #include <scsi.h>
  16. }
  17. #ifndef PLATFORM_HAS_INITIATOR_MODE
  18. void scsiInitiatorInit()
  19. {
  20. }
  21. void scsiInitiatorMainLoop()
  22. {
  23. }
  24. int scsiInitiatorRunCommand(const uint8_t *command, size_t cmdlen,
  25. uint8_t *bufIn, size_t bufInLen,
  26. const uint8_t *bufOut, size_t bufOutLen)
  27. {
  28. return -1;
  29. }
  30. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  31. {
  32. return false;
  33. }
  34. #else
  35. /*************************************
  36. * High level initiator mode logic *
  37. *************************************/
  38. static struct {
  39. // Bitmap of all drives that have been imaged
  40. uint32_t drives_imaged;
  41. // Is imaging a drive in progress, or are we scanning?
  42. bool imaging;
  43. // Information about currently selected drive
  44. int target_id;
  45. uint32_t sectorsize;
  46. uint32_t sectorcount;
  47. uint32_t sectorcount_all;
  48. uint32_t sectors_done;
  49. uint32_t max_sector_per_transfer;
  50. // Retry information for sector reads.
  51. // If a large read fails, retry is done sector-by-sector.
  52. int retrycount;
  53. uint32_t failposition;
  54. FsFile target_file;
  55. } g_initiator_state;
  56. extern SdFs SD;
  57. // Initialization of initiator mode
  58. void scsiInitiatorInit()
  59. {
  60. scsiHostPhyReset();
  61. g_initiator_state.drives_imaged = 0;
  62. g_initiator_state.imaging = false;
  63. g_initiator_state.target_id = -1;
  64. g_initiator_state.sectorsize = 0;
  65. g_initiator_state.sectorcount = 0;
  66. g_initiator_state.sectors_done = 0;
  67. g_initiator_state.retrycount = 0;
  68. g_initiator_state.failposition = 0;
  69. g_initiator_state.max_sector_per_transfer = 512;
  70. }
  71. // Update progress bar LED during transfers
  72. static void scsiInitiatorUpdateLed()
  73. {
  74. // Update status indicator, the led blinks every 5 seconds and is on the longer the more data has been transferred
  75. const int period = 256;
  76. int phase = (millis() % period);
  77. int duty = g_initiator_state.sectors_done * period / g_initiator_state.sectorcount;
  78. // Minimum and maximum time to verify that the blink is visible
  79. if (duty < 50) duty = 50;
  80. if (duty > period - 50) duty = period - 50;
  81. if (phase <= duty)
  82. {
  83. LED_ON();
  84. }
  85. else
  86. {
  87. LED_OFF();
  88. }
  89. }
  90. void delay_with_poll(uint32_t ms)
  91. {
  92. uint32_t start = millis();
  93. while ((uint32_t)(millis() - start) < ms)
  94. {
  95. platform_poll();
  96. delay(1);
  97. }
  98. }
  99. // High level logic of the initiator mode
  100. void scsiInitiatorMainLoop()
  101. {
  102. SCSI_RELEASE_OUTPUTS();
  103. SCSI_ENABLE_INITIATOR();
  104. if (g_scsiHostPhyReset)
  105. {
  106. log("Executing BUS RESET after aborted command");
  107. scsiHostPhyReset();
  108. }
  109. if (!g_initiator_state.imaging)
  110. {
  111. // Scan for SCSI drives one at a time
  112. g_initiator_state.target_id = (g_initiator_state.target_id + 1) % 8;
  113. g_initiator_state.sectors_done = 0;
  114. g_initiator_state.retrycount = 0;
  115. g_initiator_state.max_sector_per_transfer = 512;
  116. if (!(g_initiator_state.drives_imaged & (1 << g_initiator_state.target_id)))
  117. {
  118. delay_with_poll(1000);
  119. uint8_t inquiry_data[36];
  120. LED_ON();
  121. bool startstopok =
  122. scsiTestUnitReady(g_initiator_state.target_id) &&
  123. scsiStartStopUnit(g_initiator_state.target_id, true);
  124. bool readcapok = startstopok &&
  125. scsiInitiatorReadCapacity(g_initiator_state.target_id,
  126. &g_initiator_state.sectorcount,
  127. &g_initiator_state.sectorsize);
  128. bool inquiryok = startstopok &&
  129. scsiInquiry(g_initiator_state.target_id, inquiry_data);
  130. LED_OFF();
  131. if (readcapok)
  132. {
  133. log("SCSI ID ", g_initiator_state.target_id,
  134. " capacity ", (int)g_initiator_state.sectorcount,
  135. " sectors x ", (int)g_initiator_state.sectorsize, " bytes");
  136. g_initiator_state.sectorcount_all = g_initiator_state.sectorcount;
  137. uint64_t total_bytes = (uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize;
  138. log("Drive total size is ", (int)(total_bytes / (1024 * 1024)), " MiB");
  139. if (total_bytes >= 0xFFFFFFFF && SD.fatType() != FAT_TYPE_EXFAT)
  140. {
  141. // Note: the FAT32 limit is 4 GiB - 1 byte
  142. log("Image files equal or larger than 4 GiB are only possible on exFAT filesystem");
  143. log("Please reformat the SD card with exFAT format to image this drive.");
  144. g_initiator_state.sectorsize = 0;
  145. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  146. }
  147. }
  148. else if (startstopok)
  149. {
  150. log("SCSI ID ", g_initiator_state.target_id, " responds but ReadCapacity command failed");
  151. log("Possibly SCSI-1 drive? Attempting to read up to 1 GB.");
  152. g_initiator_state.sectorsize = 512;
  153. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 2097152;
  154. g_initiator_state.max_sector_per_transfer = 128;
  155. }
  156. else
  157. {
  158. debuglog("No response from SCSI ID ", g_initiator_state.target_id);
  159. g_initiator_state.sectorsize = 0;
  160. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  161. }
  162. const char *filename_format = "HD00_imaged.hda";
  163. if (inquiryok)
  164. {
  165. if ((inquiry_data[0] & 0x1F) == 5)
  166. {
  167. filename_format = "CD00_imaged.iso";
  168. }
  169. }
  170. if (g_initiator_state.sectorcount > 0)
  171. {
  172. char filename[32] = {0};
  173. strncpy(filename, filename_format, sizeof(filename) - 1);
  174. filename[2] += g_initiator_state.target_id;
  175. SD.remove(filename);
  176. g_initiator_state.target_file = SD.open(filename, O_RDWR | O_CREAT | O_TRUNC);
  177. if (!g_initiator_state.target_file.isOpen())
  178. {
  179. log("Failed to open file for writing: ", filename);
  180. return;
  181. }
  182. if (SD.fatType() == FAT_TYPE_EXFAT)
  183. {
  184. // Only preallocate on exFAT, on FAT32 preallocating can result in false garbage data in the
  185. // file if write is interrupted.
  186. log("Preallocating image file");
  187. g_initiator_state.target_file.preAllocate((uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize);
  188. }
  189. log("Starting to copy drive data to ", filename);
  190. g_initiator_state.imaging = true;
  191. }
  192. }
  193. }
  194. else
  195. {
  196. // Copy sectors from SCSI drive to file
  197. if (g_initiator_state.sectors_done >= g_initiator_state.sectorcount)
  198. {
  199. scsiStartStopUnit(g_initiator_state.target_id, false);
  200. log("Finished imaging drive with id ", g_initiator_state.target_id);
  201. LED_OFF();
  202. if (g_initiator_state.sectorcount != g_initiator_state.sectorcount_all)
  203. {
  204. log("NOTE: Image size was limited to first 4 GiB due to SD card filesystem limit");
  205. log("Please reformat the SD card with exFAT format to image this drive fully");
  206. }
  207. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  208. g_initiator_state.imaging = false;
  209. g_initiator_state.target_file.close();
  210. return;
  211. }
  212. scsiInitiatorUpdateLed();
  213. // How many sectors to read in one batch?
  214. int numtoread = g_initiator_state.sectorcount - g_initiator_state.sectors_done;
  215. if (numtoread > g_initiator_state.max_sector_per_transfer)
  216. numtoread = g_initiator_state.max_sector_per_transfer;
  217. // Retry sector-by-sector after failure
  218. if (g_initiator_state.sectors_done < g_initiator_state.failposition)
  219. numtoread = 1;
  220. uint32_t time_start = millis();
  221. bool status = scsiInitiatorReadDataToFile(g_initiator_state.target_id,
  222. g_initiator_state.sectors_done, numtoread, g_initiator_state.sectorsize,
  223. g_initiator_state.target_file);
  224. if (!status)
  225. {
  226. log("Failed to transfer ", numtoread, " sectors starting at ", (int)g_initiator_state.sectors_done);
  227. if (g_initiator_state.retrycount < 5)
  228. {
  229. log("Retrying.. ", g_initiator_state.retrycount, "/5");
  230. delay_with_poll(200);
  231. scsiHostPhyReset();
  232. delay_with_poll(200);
  233. g_initiator_state.retrycount++;
  234. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  235. if (g_initiator_state.retrycount > 1 && numtoread > 1)
  236. {
  237. log("Multiple failures, retrying sector-by-sector");
  238. g_initiator_state.failposition = g_initiator_state.sectors_done + numtoread;
  239. }
  240. }
  241. else
  242. {
  243. log("Retry limit exceeded, skipping one sector");
  244. g_initiator_state.retrycount = 0;
  245. g_initiator_state.sectors_done++;
  246. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  247. }
  248. }
  249. else
  250. {
  251. g_initiator_state.retrycount = 0;
  252. g_initiator_state.sectors_done += numtoread;
  253. g_initiator_state.target_file.flush();
  254. int speed_kbps = numtoread * g_initiator_state.sectorsize / (millis() - time_start);
  255. log("SCSI read succeeded, sectors done: ",
  256. (int)g_initiator_state.sectors_done, " / ", (int)g_initiator_state.sectorcount,
  257. " speed ", speed_kbps, " kB/s");
  258. }
  259. }
  260. }
  261. /*************************************
  262. * Low level command implementations *
  263. *************************************/
  264. int scsiInitiatorRunCommand(int target_id,
  265. const uint8_t *command, size_t cmdLen,
  266. uint8_t *bufIn, size_t bufInLen,
  267. const uint8_t *bufOut, size_t bufOutLen,
  268. bool returnDataPhase)
  269. {
  270. if (!scsiHostPhySelect(target_id))
  271. {
  272. debuglog("------ Target ", target_id, " did not respond");
  273. scsiHostPhyRelease();
  274. return -1;
  275. }
  276. SCSI_PHASE phase;
  277. int status = -1;
  278. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  279. {
  280. platform_poll();
  281. if (phase == MESSAGE_IN)
  282. {
  283. uint8_t dummy = 0;
  284. scsiHostRead(&dummy, 1);
  285. }
  286. else if (phase == MESSAGE_OUT)
  287. {
  288. uint8_t identify_msg = 0x80;
  289. scsiHostWrite(&identify_msg, 1);
  290. }
  291. else if (phase == COMMAND)
  292. {
  293. scsiHostWrite(command, cmdLen);
  294. }
  295. else if (phase == DATA_IN)
  296. {
  297. if (returnDataPhase) return 0;
  298. if (bufInLen == 0)
  299. {
  300. log("DATA_IN phase but no data to receive!");
  301. status = -3;
  302. break;
  303. }
  304. if (scsiHostRead(bufIn, bufInLen) == 0)
  305. {
  306. log("scsiHostRead failed, tried to read ", (int)bufInLen, " bytes");
  307. status = -2;
  308. break;
  309. }
  310. }
  311. else if (phase == DATA_OUT)
  312. {
  313. if (returnDataPhase) return 0;
  314. if (bufOutLen == 0)
  315. {
  316. log("DATA_OUT phase but no data to send!");
  317. status = -3;
  318. break;
  319. }
  320. if (scsiHostWrite(bufOut, bufOutLen) < bufOutLen)
  321. {
  322. log("scsiHostWrite failed, was writing ", bytearray(bufOut, bufOutLen));
  323. status = -2;
  324. break;
  325. }
  326. }
  327. else if (phase == STATUS)
  328. {
  329. uint8_t tmp = -1;
  330. scsiHostRead(&tmp, 1);
  331. status = tmp;
  332. debuglog("------ STATUS: ", tmp);
  333. }
  334. }
  335. scsiHostPhyRelease();
  336. return status;
  337. }
  338. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  339. {
  340. uint8_t command[10] = {0x25, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  341. uint8_t response[8] = {0};
  342. int status = scsiInitiatorRunCommand(target_id,
  343. command, sizeof(command),
  344. response, sizeof(response),
  345. NULL, 0);
  346. if (status == 0)
  347. {
  348. *sectorcount = ((uint32_t)response[0] << 24)
  349. | ((uint32_t)response[1] << 16)
  350. | ((uint32_t)response[2] << 8)
  351. | ((uint32_t)response[3] << 0);
  352. *sectorcount += 1; // SCSI reports last sector address
  353. *sectorsize = ((uint32_t)response[4] << 24)
  354. | ((uint32_t)response[5] << 16)
  355. | ((uint32_t)response[6] << 8)
  356. | ((uint32_t)response[7] << 0);
  357. return true;
  358. }
  359. else if (status == 2)
  360. {
  361. uint8_t sense_key;
  362. scsiRequestSense(target_id, &sense_key);
  363. log("READ CAPACITY on target ", target_id, " failed, sense key ", sense_key);
  364. return false;
  365. }
  366. else
  367. {
  368. *sectorcount = *sectorsize = 0;
  369. return false;
  370. }
  371. }
  372. // Execute REQUEST SENSE command to get more information about error status
  373. bool scsiRequestSense(int target_id, uint8_t *sense_key)
  374. {
  375. uint8_t command[6] = {0x03, 0, 0, 0, 18, 0};
  376. uint8_t response[18] = {0};
  377. int status = scsiInitiatorRunCommand(target_id,
  378. command, sizeof(command),
  379. response, sizeof(response),
  380. NULL, 0);
  381. debuglog("RequestSense response: ", bytearray(response, 18));
  382. *sense_key = response[2];
  383. return status == 0;
  384. }
  385. // Execute UNIT START STOP command to load/unload media
  386. bool scsiStartStopUnit(int target_id, bool start)
  387. {
  388. uint8_t command[6] = {0x1B, 0x1, 0, 0, 0, 0};
  389. uint8_t response[4] = {0};
  390. if (start)
  391. {
  392. command[4] |= 1; // Start
  393. command[1] = 0; // Immediate
  394. }
  395. int status = scsiInitiatorRunCommand(target_id,
  396. command, sizeof(command),
  397. response, sizeof(response),
  398. NULL, 0);
  399. if (status == 2)
  400. {
  401. uint8_t sense_key;
  402. scsiRequestSense(target_id, &sense_key);
  403. log("START STOP UNIT on target ", target_id, " failed, sense key ", sense_key);
  404. }
  405. return status == 0;
  406. }
  407. // Execute INQUIRY command
  408. bool scsiInquiry(int target_id, uint8_t inquiry_data[36])
  409. {
  410. uint8_t command[6] = {0x12, 0, 0, 0, 36, 0};
  411. int status = scsiInitiatorRunCommand(target_id,
  412. command, sizeof(command),
  413. inquiry_data, 36,
  414. NULL, 0);
  415. return status == 0;
  416. }
  417. // Execute TEST UNIT READY command and handle unit attention state
  418. bool scsiTestUnitReady(int target_id)
  419. {
  420. for (int retries = 0; retries < 2; retries++)
  421. {
  422. uint8_t command[6] = {0x00, 0, 0, 0, 0, 0};
  423. int status = scsiInitiatorRunCommand(target_id,
  424. command, sizeof(command),
  425. NULL, 0,
  426. NULL, 0);
  427. if (status == 0)
  428. {
  429. return true;
  430. }
  431. else if (status == -1)
  432. {
  433. // No response to select
  434. return false;
  435. }
  436. else if (status == 2)
  437. {
  438. uint8_t sense_key;
  439. scsiRequestSense(target_id, &sense_key);
  440. if (sense_key == 6)
  441. {
  442. uint8_t inquiry[36];
  443. log("Target ", target_id, " reports UNIT_ATTENTION, running INQUIRY");
  444. scsiInquiry(target_id, inquiry);
  445. }
  446. else if (sense_key == 2)
  447. {
  448. log("Target ", target_id, " reports NOT_READY, running STARTSTOPUNIT");
  449. scsiStartStopUnit(target_id, true);
  450. }
  451. }
  452. else
  453. {
  454. log("Target ", target_id, " TEST UNIT READY response: ", status);
  455. }
  456. }
  457. return false;
  458. }
  459. // This uses callbacks to run SD and SCSI transfers in parallel
  460. static struct {
  461. uint32_t bytes_sd; // Number of bytes that have been transferred on SD card side
  462. uint32_t bytes_sd_scheduled; // Number of bytes scheduled for transfer on SD card side
  463. uint32_t bytes_scsi; // Number of bytes that have been scheduled for transfer on SCSI side
  464. uint32_t bytes_scsi_done; // Number of bytes that have been transferred on SCSI side
  465. uint32_t bytes_per_sector;
  466. bool all_ok;
  467. } g_initiator_transfer;
  468. static void initiatorReadSDCallback(uint32_t bytes_complete)
  469. {
  470. if (g_initiator_transfer.bytes_scsi_done < g_initiator_transfer.bytes_scsi)
  471. {
  472. // How many bytes remaining in the transfer?
  473. uint32_t remain = g_initiator_transfer.bytes_scsi - g_initiator_transfer.bytes_scsi_done;
  474. uint32_t len = remain;
  475. // Limit maximum amount of data transferred at one go, to give enough callbacks to SD driver.
  476. // Select the limit based on total bytes in the transfer.
  477. // Transfer size is reduced towards the end of transfer to reduce the dead time between
  478. // end of SCSI transfer and the SD write completing.
  479. uint32_t limit = g_initiator_transfer.bytes_scsi / 8;
  480. uint32_t bytesPerSector = g_initiator_transfer.bytes_per_sector;
  481. if (limit < PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE;
  482. if (limit > PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE;
  483. if (limit > len) limit = PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE;
  484. if (limit < bytesPerSector) limit = bytesPerSector;
  485. if (len > limit)
  486. {
  487. len = limit;
  488. }
  489. // Split read so that it doesn't wrap around buffer edge
  490. uint32_t bufsize = sizeof(scsiDev.data);
  491. uint32_t start = (g_initiator_transfer.bytes_scsi_done % bufsize);
  492. if (start + len > bufsize)
  493. len = bufsize - start;
  494. // Don't overwrite data that has not yet been written to SD card
  495. uint32_t sd_ready_cnt = g_initiator_transfer.bytes_sd + bytes_complete;
  496. if (g_initiator_transfer.bytes_scsi_done + len > sd_ready_cnt + bufsize)
  497. len = sd_ready_cnt + bufsize - g_initiator_transfer.bytes_scsi_done;
  498. if (sd_ready_cnt == g_initiator_transfer.bytes_sd_scheduled &&
  499. g_initiator_transfer.bytes_sd_scheduled + bytesPerSector <= g_initiator_transfer.bytes_scsi_done)
  500. {
  501. // Current SD transfer is complete, it is better we return now and offer a chance for the next
  502. // transfer to begin.
  503. return;
  504. }
  505. // Keep transfers a multiple of sector size.
  506. if (remain >= bytesPerSector && len % bytesPerSector != 0)
  507. {
  508. len -= len % bytesPerSector;
  509. }
  510. if (len == 0)
  511. return;
  512. // debuglog("SCSI read ", (int)start, " + ", (int)len, ", sd ready cnt ", (int)sd_ready_cnt, " ", (int)bytes_complete, ", scsi done ", (int)g_initiator_transfer.bytes_scsi_done);
  513. if (scsiHostRead(&scsiDev.data[start], len) != len)
  514. {
  515. log("Read failed at byte ", (int)g_initiator_transfer.bytes_scsi_done);
  516. g_initiator_transfer.all_ok = false;
  517. }
  518. g_initiator_transfer.bytes_scsi_done += len;
  519. }
  520. }
  521. static void scsiInitiatorWriteDataToSd(FsFile &file, bool use_callback)
  522. {
  523. // Figure out longest continuous block in buffer
  524. uint32_t bufsize = sizeof(scsiDev.data);
  525. uint32_t start = g_initiator_transfer.bytes_sd % bufsize;
  526. uint32_t len = g_initiator_transfer.bytes_scsi_done - g_initiator_transfer.bytes_sd;
  527. if (start + len > bufsize) len = bufsize - start;
  528. // Try to do writes in multiple of 512 bytes
  529. // This allows better performance for SD card access.
  530. if (len >= 512) len &= ~511;
  531. // Start writing to SD card and simultaneously reading more from SCSI bus
  532. uint8_t *buf = &scsiDev.data[start];
  533. // debuglog("SD write ", (int)start, " + ", (int)len);
  534. if (use_callback)
  535. {
  536. platform_set_sd_callback(&initiatorReadSDCallback, buf);
  537. }
  538. g_initiator_transfer.bytes_sd_scheduled = g_initiator_transfer.bytes_sd + len;
  539. if (file.write(buf, len) != len)
  540. {
  541. log("scsiInitiatorReadDataToFile: SD card write failed");
  542. g_initiator_transfer.all_ok = false;
  543. }
  544. platform_set_sd_callback(NULL, NULL);
  545. g_initiator_transfer.bytes_sd += len;
  546. }
  547. bool scsiInitiatorReadDataToFile(int target_id, uint32_t start_sector, uint32_t sectorcount, uint32_t sectorsize,
  548. FsFile &file)
  549. {
  550. int status = -1;
  551. if (start_sector < 0xFFFFFF && sectorcount <= 256)
  552. {
  553. // Use READ6 command for compatibility with old SCSI1 drives
  554. uint8_t command[6] = {0x08,
  555. (uint8_t)(start_sector >> 16),
  556. (uint8_t)(start_sector >> 8),
  557. (uint8_t)start_sector,
  558. (uint8_t)sectorcount,
  559. 0x00
  560. };
  561. // Start executing command, return in data phase
  562. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  563. }
  564. else
  565. {
  566. // Use READ10 command for larger number of blocks
  567. uint8_t command[10] = {0x28, 0x00,
  568. (uint8_t)(start_sector >> 24), (uint8_t)(start_sector >> 16),
  569. (uint8_t)(start_sector >> 8), (uint8_t)start_sector,
  570. 0x00,
  571. (uint8_t)(sectorcount >> 8), (uint8_t)(sectorcount),
  572. 0x00
  573. };
  574. // Start executing command, return in data phase
  575. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  576. }
  577. if (status != 0)
  578. {
  579. uint8_t sense_key;
  580. scsiRequestSense(target_id, &sense_key);
  581. log("scsiInitiatorReadDataToFile: READ failed: ", status, " sense key ", sense_key);
  582. scsiHostPhyRelease();
  583. return false;
  584. }
  585. SCSI_PHASE phase;
  586. g_initiator_transfer.bytes_scsi = sectorcount * sectorsize;
  587. g_initiator_transfer.bytes_per_sector = sectorsize;
  588. g_initiator_transfer.bytes_sd = 0;
  589. g_initiator_transfer.bytes_sd_scheduled = 0;
  590. g_initiator_transfer.bytes_scsi_done = 0;
  591. g_initiator_transfer.all_ok = true;
  592. while (true)
  593. {
  594. platform_poll();
  595. phase = (SCSI_PHASE)scsiHostPhyGetPhase();
  596. if (phase != DATA_IN && phase != BUS_BUSY)
  597. {
  598. break;
  599. }
  600. // Read next block from SCSI bus if buffer empty
  601. if (g_initiator_transfer.bytes_sd == g_initiator_transfer.bytes_scsi_done)
  602. {
  603. initiatorReadSDCallback(0);
  604. }
  605. else
  606. {
  607. // Write data to SD card and simultaneously read more from SCSI
  608. scsiInitiatorUpdateLed();
  609. scsiInitiatorWriteDataToSd(file, true);
  610. }
  611. }
  612. // Write any remaining buffered data
  613. while (g_initiator_transfer.bytes_sd < g_initiator_transfer.bytes_scsi_done)
  614. {
  615. platform_poll();
  616. scsiInitiatorWriteDataToSd(file, false);
  617. }
  618. if (g_initiator_transfer.bytes_sd != g_initiator_transfer.bytes_scsi)
  619. {
  620. log("SCSI read from sector ", (int)start_sector, " was incomplete: expected ",
  621. (int)g_initiator_transfer.bytes_scsi, " got ", (int)g_initiator_transfer.bytes_sd, " bytes");
  622. g_initiator_transfer.all_ok = false;
  623. }
  624. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  625. {
  626. platform_poll();
  627. if (phase == MESSAGE_IN)
  628. {
  629. uint8_t dummy = 0;
  630. scsiHostRead(&dummy, 1);
  631. }
  632. else if (phase == MESSAGE_OUT)
  633. {
  634. uint8_t identify_msg = 0x80;
  635. scsiHostWrite(&identify_msg, 1);
  636. }
  637. else if (phase == STATUS)
  638. {
  639. uint8_t tmp = 0;
  640. scsiHostRead(&tmp, 1);
  641. status = tmp;
  642. debuglog("------ STATUS: ", tmp);
  643. }
  644. }
  645. scsiHostPhyRelease();
  646. return status == 0 && g_initiator_transfer.all_ok;
  647. }
  648. #endif