scsiPhy.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. /**
  2. * SCSI2SD V6 - Copyright (C) 2013 Michael McMaster <michael@codesrc.com>
  3. * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
  4. *
  5. * This file is licensed under the GPL version 3 or any later version.  
  6. * It is derived from scsiPhy.c in SCSI2SD V6.
  7. *
  8. * https://www.gnu.org/licenses/gpl-3.0.html
  9. * ----
  10. * This program is free software: you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation, either version 3 of the License, or
  13. * (at your option) any later version. 
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18. * GNU General Public License for more details. 
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  22. **/
  23. // Implements the low level interface to SCSI bus
  24. // Partially derived from scsiPhy.c from SCSI2SD-V6
  25. #include "scsiPhy.h"
  26. #include "ZuluSCSI_platform.h"
  27. #include "ZuluSCSI_log.h"
  28. #include "ZuluSCSI_log_trace.h"
  29. #include "ZuluSCSI_config.h"
  30. #include "scsi_accel_rp2040.h"
  31. #include "hardware/structs/iobank0.h"
  32. #include <scsi2sd.h>
  33. extern "C" {
  34. #include <scsi.h>
  35. #include <scsi2sd_time.h>
  36. }
  37. /***********************/
  38. /* SCSI status signals */
  39. /***********************/
  40. extern "C" bool scsiStatusATN()
  41. {
  42. return SCSI_IN(ATN);
  43. }
  44. extern "C" bool scsiStatusBSY()
  45. {
  46. return SCSI_IN(BSY);
  47. }
  48. /************************/
  49. /* SCSI selection logic */
  50. /************************/
  51. volatile uint8_t g_scsi_sts_selection;
  52. volatile uint8_t g_scsi_ctrl_bsy;
  53. void scsi_bsy_deassert_interrupt()
  54. {
  55. if (SCSI_IN(SEL) && !SCSI_IN(BSY))
  56. {
  57. // Check if any of the targets we simulate is selected
  58. uint8_t sel_bits = SCSI_IN_DATA();
  59. int sel_id = -1;
  60. for (int i = 0; i < S2S_MAX_TARGETS; i++)
  61. {
  62. if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
  63. {
  64. if (sel_bits & (1 << scsiDev.targets[i].targetId))
  65. {
  66. sel_id = scsiDev.targets[i].targetId;
  67. break;
  68. }
  69. }
  70. }
  71. if (sel_id >= 0)
  72. {
  73. // Set ATN flag here unconditionally, real value is only known after
  74. // OUT_BSY is enabled in scsiStatusSEL() below.
  75. g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | SCSI_STS_SELECTION_ATN | sel_id;
  76. }
  77. // selFlag is required for Philips P2000C which releases it after 600ns
  78. // without waiting for BSY.
  79. // Also required for some early Mac Plus roms
  80. scsiDev.selFlag = *SCSI_STS_SELECTED;
  81. }
  82. }
  83. extern "C" bool scsiStatusSEL()
  84. {
  85. if (g_scsi_ctrl_bsy)
  86. {
  87. // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
  88. // Instead update the state here.
  89. // Releasing happens with bus release.
  90. g_scsi_ctrl_bsy = 0;
  91. #ifdef ZULUSCSI_BS2
  92. // @TODO See if needed
  93. SCSI_OUT(CD, 0);
  94. SCSI_OUT(MSG, 0);
  95. SCSI_ENABLE_CONTROL_OUT();
  96. // @TODO end
  97. #endif
  98. SCSI_OUT(BSY, 1);
  99. // On RP2040 hardware the ATN signal is only available after OUT_BSY enables
  100. // the IO buffer U105, so check the signal status here.
  101. delay_100ns();
  102. if (!scsiStatusATN())
  103. {
  104. // This is a SCSI1 host that does send IDENTIFY message
  105. scsiDev.atnFlag = 0;
  106. scsiDev.target->unitAttention = 0;
  107. scsiDev.compatMode = COMPAT_SCSI1;
  108. }
  109. }
  110. return SCSI_IN(SEL);
  111. }
  112. /************************/
  113. /* SCSI bus reset logic */
  114. /************************/
  115. static void scsi_rst_assert_interrupt()
  116. {
  117. // Glitch filtering
  118. bool rst1 = SCSI_IN(RST);
  119. delay_ns(500);
  120. bool rst2 = SCSI_IN(RST);
  121. if (rst1 && rst2)
  122. {
  123. dbgmsg("BUS RESET");
  124. scsiDev.resetFlag = 1;
  125. }
  126. }
  127. static void scsiPhyIRQ(uint gpio, uint32_t events)
  128. {
  129. if (gpio == SCSI_IN_BSY || gpio == SCSI_IN_SEL)
  130. {
  131. // Note BSY / SEL interrupts only when we are not driving OUT_BSY low ourselves.
  132. // The BSY input pin may be shared with other signals.
  133. if (sio_hw->gpio_out & (1 << SCSI_OUT_BSY))
  134. {
  135. scsi_bsy_deassert_interrupt();
  136. }
  137. }
  138. else if (gpio == SCSI_IN_RST)
  139. {
  140. scsi_rst_assert_interrupt();
  141. }
  142. }
  143. // This function is called to initialize the phy code.
  144. // It is called after power-on and after SCSI bus reset.
  145. extern "C" void scsiPhyReset(void)
  146. {
  147. SCSI_RELEASE_OUTPUTS();
  148. g_scsi_sts_selection = 0;
  149. g_scsi_ctrl_bsy = 0;
  150. scsi_accel_rp2040_init();
  151. // Enable BSY, RST and SEL interrupts
  152. // Note: RP2040 library currently supports only one callback,
  153. // so it has to be same for both pins.
  154. gpio_set_irq_enabled_with_callback(SCSI_IN_BSY, GPIO_IRQ_EDGE_RISE, true, scsiPhyIRQ);
  155. gpio_set_irq_enabled(SCSI_IN_RST, GPIO_IRQ_EDGE_FALL, true);
  156. // Check BSY line status when SEL goes active.
  157. // This is needed to handle SCSI-1 hosts that use the single initiator mode.
  158. // The host will just assert the SEL directly, without asserting BSY first.
  159. gpio_set_irq_enabled(SCSI_IN_SEL, GPIO_IRQ_EDGE_FALL, true);
  160. }
  161. /************************/
  162. /* SCSI bus phase logic */
  163. /************************/
  164. static SCSI_PHASE g_scsi_phase;
  165. extern "C" void scsiEnterPhase(int phase)
  166. {
  167. int delay = scsiEnterPhaseImmediate(phase);
  168. if (delay > 0)
  169. {
  170. s2s_delay_ns(delay);
  171. }
  172. }
  173. // Change state and return nanosecond delay to wait
  174. extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
  175. {
  176. if (phase != g_scsi_phase)
  177. {
  178. // ANSI INCITS 362-2002 SPI-3 10.7.1:
  179. // Phase changes are not allowed while REQ or ACK is asserted.
  180. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
  181. if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT))
  182. {
  183. // Akai S1000/S3000 seems to need extra delay before changing to data phase
  184. // after a command. The code in ZuluSCSI_disk.cpp tries to do this while waiting
  185. // for SD card, to avoid any extra latency.
  186. s2s_delay_ns(400000);
  187. }
  188. int oldphase = g_scsi_phase;
  189. g_scsi_phase = (SCSI_PHASE)phase;
  190. scsiLogPhaseChange(phase);
  191. // Select between synchronous vs. asynchronous SCSI writes
  192. if (scsiDev.target->syncOffset > 0 && (g_scsi_phase == DATA_IN || g_scsi_phase == DATA_OUT))
  193. {
  194. scsi_accel_rp2040_setSyncMode(scsiDev.target->syncOffset, scsiDev.target->syncPeriod);
  195. }
  196. else
  197. {
  198. scsi_accel_rp2040_setSyncMode(0, 0);
  199. }
  200. if (phase < 0)
  201. {
  202. // Other communication on bus or reset state
  203. SCSI_RELEASE_OUTPUTS();
  204. return 0;
  205. }
  206. else
  207. {
  208. // The phase control signals should be changed close to simultaneously.
  209. // The SCSI spec allows 400 ns for this, but some hosts do not seem to be that
  210. // tolerant. The Cortex-M0 is also quite slow in bit twiddling.
  211. //
  212. // To avoid unnecessary delays, precalculate an XOR mask and then apply it
  213. // simultaneously to all three signals.
  214. uint32_t gpio_new = 0;
  215. if (!(phase & __scsiphase_msg)) { gpio_new |= (1 << SCSI_OUT_MSG); }
  216. if (!(phase & __scsiphase_cd)) { gpio_new |= (1 << SCSI_OUT_CD); }
  217. if (!(phase & __scsiphase_io)) { gpio_new |= (1 << SCSI_OUT_IO); }
  218. uint32_t mask = (1 << SCSI_OUT_MSG) | (1 << SCSI_OUT_CD) | (1 << SCSI_OUT_IO);
  219. uint32_t gpio_xor = (sio_hw->gpio_out ^ gpio_new) & mask;
  220. sio_hw->gpio_togl = gpio_xor;
  221. SCSI_ENABLE_CONTROL_OUT();
  222. int delayNs = 400; // Bus settle delay
  223. if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
  224. {
  225. delayNs += 400; // Data release delay
  226. }
  227. if (scsiDev.compatMode < COMPAT_SCSI2)
  228. {
  229. // EMU EMAX needs 100uS ! 10uS is not enough.
  230. delayNs += 100000;
  231. }
  232. return delayNs;
  233. }
  234. }
  235. else
  236. {
  237. return 0;
  238. }
  239. }
  240. // Release all signals
  241. void scsiEnterBusFree(void)
  242. {
  243. g_scsi_phase = BUS_FREE;
  244. g_scsi_sts_selection = 0;
  245. g_scsi_ctrl_bsy = 0;
  246. scsiDev.cdbLen = 0;
  247. SCSI_RELEASE_OUTPUTS();
  248. }
  249. /********************/
  250. /* Transmit to host */
  251. /********************/
  252. #define SCSI_WAIT_ACTIVE(pin) \
  253. if (!SCSI_IN(pin)) { \
  254. if (!SCSI_IN(pin)) { \
  255. while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
  256. } \
  257. }
  258. // In synchronous mode the ACK pulse can be very short, so use edge IRQ to detect it.
  259. #define CHECK_EDGE(pin) \
  260. ((iobank0_hw->intr[pin / 8] >> (4 * (pin % 8))) & GPIO_IRQ_EDGE_FALL)
  261. #define SCSI_WAIT_ACTIVE_EDGE(pin) \
  262. if (!CHECK_EDGE(SCSI_IN_ ## pin)) { \
  263. while(!SCSI_IN(pin) && !CHECK_EDGE(SCSI_IN_ ## pin) && !scsiDev.resetFlag); \
  264. }
  265. #define SCSI_WAIT_INACTIVE(pin) \
  266. if (SCSI_IN(pin)) { \
  267. if (SCSI_IN(pin)) { \
  268. while(SCSI_IN(pin) && !scsiDev.resetFlag); \
  269. } \
  270. }
  271. // Write one byte to SCSI host using the handshake mechanism
  272. // This is suitable for both asynchronous and synchronous communication.
  273. static inline void scsiWriteOneByte(uint8_t value)
  274. {
  275. SCSI_OUT_DATA(value);
  276. delay_100ns(); // DB setup time before REQ
  277. gpio_acknowledge_irq(SCSI_IN_ACK, GPIO_IRQ_EDGE_FALL);
  278. SCSI_OUT(REQ, 1);
  279. SCSI_WAIT_ACTIVE_EDGE(ACK);
  280. SCSI_RELEASE_DATA_REQ();
  281. SCSI_WAIT_INACTIVE(ACK);
  282. }
  283. extern "C" void scsiWriteByte(uint8_t value)
  284. {
  285. scsiLogDataIn(&value, 1);
  286. scsiWriteOneByte(value);
  287. }
  288. extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
  289. {
  290. scsiStartWrite(data, count);
  291. scsiFinishWrite();
  292. }
  293. extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
  294. {
  295. scsiLogDataIn(data, count);
  296. scsi_accel_rp2040_startWrite(data, count, &scsiDev.resetFlag);
  297. }
  298. extern "C" bool scsiIsWriteFinished(const uint8_t *data)
  299. {
  300. return scsi_accel_rp2040_isWriteFinished(data);
  301. }
  302. extern "C" void scsiFinishWrite()
  303. {
  304. scsi_accel_rp2040_finishWrite(&scsiDev.resetFlag);
  305. }
  306. /*********************/
  307. /* Receive from host */
  308. /*********************/
  309. // Read one byte from SCSI host using the handshake mechanism.
  310. static inline uint8_t scsiReadOneByte(int* parityError)
  311. {
  312. SCSI_OUT(REQ, 1);
  313. SCSI_WAIT_ACTIVE(ACK);
  314. delay_100ns();
  315. uint16_t r = SCSI_IN_DATA();
  316. SCSI_OUT(REQ, 0);
  317. SCSI_WAIT_INACTIVE(ACK);
  318. if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ SCSI_IO_DATA_MASK))
  319. {
  320. logmsg("Parity error in scsiReadOneByte(): ", (uint32_t)r);
  321. *parityError = 1;
  322. }
  323. return (uint8_t)r;
  324. }
  325. extern "C" uint8_t scsiReadByte(void)
  326. {
  327. uint8_t r = scsiReadOneByte(NULL);
  328. scsiLogDataOut(&r, 1);
  329. return r;
  330. }
  331. extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
  332. {
  333. *parityError = 0;
  334. if (!(scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY)) { parityError = NULL; }
  335. scsiStartRead(data, count, parityError);
  336. scsiFinishRead(data, count, parityError);
  337. }
  338. extern "C" void scsiStartRead(uint8_t* data, uint32_t count, int *parityError)
  339. {
  340. if (!(scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY)) { parityError = NULL; }
  341. scsi_accel_rp2040_startRead(data, count, parityError, &scsiDev.resetFlag);
  342. }
  343. extern "C" void scsiFinishRead(uint8_t* data, uint32_t count, int *parityError)
  344. {
  345. if (!(scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY)) { parityError = NULL; }
  346. scsi_accel_rp2040_finishRead(data, count, parityError, &scsiDev.resetFlag);
  347. scsiLogDataOut(data, count);
  348. }
  349. extern "C" bool scsiIsReadFinished(const uint8_t *data)
  350. {
  351. return scsi_accel_rp2040_isReadFinished(data);
  352. }