sdio.cpp 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™
  3. * Copyright (c) 2024 Tech by Androda, LLC
  4. *
  5. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
  6. *
  7. * https://www.gnu.org/licenses/gpl-3.0.html
  8. * ----
  9. * This program is free software: you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation, either version 3 of the License, or
  12. * (at your option) any later version. 
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17. * GNU General Public License for more details. 
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  21. **/
  22. // Implementation of SDIO communication for RP2040 and RP23XX
  23. //
  24. // The RP2040 official work-in-progress code at
  25. // https://github.com/raspberrypi/pico-extras/tree/master/src/rp2_common/pico_sd_card
  26. // may be useful reference, but this is independent implementation.
  27. //
  28. // For official SDIO specifications, refer to:
  29. // https://www.sdcard.org/downloads/pls/
  30. // "SDIO Physical Layer Simplified Specification Version 8.00"
  31. #include <BlueSCSI_platform.h>
  32. #if defined(SD_USE_SDIO) && !defined(SD_USE_RP2350_SDIO)
  33. #include "sdio.h"
  34. #include <hardware/pio.h>
  35. #include <hardware/dma.h>
  36. #include <hardware/gpio.h>
  37. #include <hardware/structs/scb.h>
  38. #include <BlueSCSI_log.h>
  39. #include "timings_RP2MCU.h"
  40. # include "sdio_RP2MCU.pio.h"
  41. #define SDIO_PIO pio1
  42. #define SDIO_CMD_SM 0
  43. #define SDIO_DATA_SM 1
  44. #define SDIO_DMA_CH 4
  45. #define SDIO_DMA_CHB 5
  46. // If the highest SD pin is beyond the first 32 GPIOs,
  47. // set the base GPIO to 16 to use GPIOs 16-47
  48. #if SDIO_D3 > 31
  49. # define SDIO_GPIO_BASE_HIGH
  50. # define SDIO_BASE_OFFSET 16
  51. #else
  52. # define SDIO_BASE_OFFSET 0
  53. #endif
  54. // Maximum number of 512 byte blocks to transfer in one request
  55. #define SDIO_MAX_BLOCKS 256
  56. enum sdio_transfer_state_t { SDIO_IDLE, SDIO_RX, SDIO_TX, SDIO_TX_WAIT_IDLE};
  57. static struct {
  58. uint32_t pio_cmd_clk_offset;
  59. uint32_t pio_data_rx_offset;
  60. pio_sm_config pio_cfg_data_rx;
  61. uint32_t pio_data_tx_offset;
  62. pio_sm_config pio_cfg_data_tx;
  63. sdio_transfer_state_t transfer_state;
  64. uint32_t transfer_start_time;
  65. uint32_t *data_buf;
  66. uint32_t blocks_done; // Number of blocks transferred so far
  67. uint32_t total_blocks; // Total number of blocks to transfer
  68. uint32_t blocks_checksumed; // Number of blocks that have had CRC calculated
  69. uint32_t checksum_errors; // Number of checksum errors detected
  70. // Variables for block writes
  71. uint64_t next_wr_block_checksum;
  72. uint32_t end_token_buf[3]; // CRC and end token for write block
  73. sdio_status_t wr_status;
  74. uint32_t card_response;
  75. // Variables for block reads
  76. // This is used to perform DMA into data buffers and checksum buffers separately.
  77. struct {
  78. void * write_addr;
  79. uint32_t transfer_count;
  80. } dma_blocks[SDIO_MAX_BLOCKS * 2];
  81. struct {
  82. uint32_t top;
  83. uint32_t bottom;
  84. } received_checksums[SDIO_MAX_BLOCKS];
  85. } g_sdio;
  86. void rp2040_sdio_dma_irq();
  87. /*******************************************************
  88. * Checksum algorithms
  89. *******************************************************/
  90. // Table lookup for calculating CRC-7 checksum that is used in SDIO command packets.
  91. // Usage:
  92. // uint8_t crc = 0;
  93. // crc = crc7_table[crc ^ byte];
  94. // .. repeat for every byte ..
  95. static const uint8_t crc7_table[256] = {
  96. 0x00, 0x12, 0x24, 0x36, 0x48, 0x5a, 0x6c, 0x7e, 0x90, 0x82, 0xb4, 0xa6, 0xd8, 0xca, 0xfc, 0xee,
  97. 0x32, 0x20, 0x16, 0x04, 0x7a, 0x68, 0x5e, 0x4c, 0xa2, 0xb0, 0x86, 0x94, 0xea, 0xf8, 0xce, 0xdc,
  98. 0x64, 0x76, 0x40, 0x52, 0x2c, 0x3e, 0x08, 0x1a, 0xf4, 0xe6, 0xd0, 0xc2, 0xbc, 0xae, 0x98, 0x8a,
  99. 0x56, 0x44, 0x72, 0x60, 0x1e, 0x0c, 0x3a, 0x28, 0xc6, 0xd4, 0xe2, 0xf0, 0x8e, 0x9c, 0xaa, 0xb8,
  100. 0xc8, 0xda, 0xec, 0xfe, 0x80, 0x92, 0xa4, 0xb6, 0x58, 0x4a, 0x7c, 0x6e, 0x10, 0x02, 0x34, 0x26,
  101. 0xfa, 0xe8, 0xde, 0xcc, 0xb2, 0xa0, 0x96, 0x84, 0x6a, 0x78, 0x4e, 0x5c, 0x22, 0x30, 0x06, 0x14,
  102. 0xac, 0xbe, 0x88, 0x9a, 0xe4, 0xf6, 0xc0, 0xd2, 0x3c, 0x2e, 0x18, 0x0a, 0x74, 0x66, 0x50, 0x42,
  103. 0x9e, 0x8c, 0xba, 0xa8, 0xd6, 0xc4, 0xf2, 0xe0, 0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62, 0x70,
  104. 0x82, 0x90, 0xa6, 0xb4, 0xca, 0xd8, 0xee, 0xfc, 0x12, 0x00, 0x36, 0x24, 0x5a, 0x48, 0x7e, 0x6c,
  105. 0xb0, 0xa2, 0x94, 0x86, 0xf8, 0xea, 0xdc, 0xce, 0x20, 0x32, 0x04, 0x16, 0x68, 0x7a, 0x4c, 0x5e,
  106. 0xe6, 0xf4, 0xc2, 0xd0, 0xae, 0xbc, 0x8a, 0x98, 0x76, 0x64, 0x52, 0x40, 0x3e, 0x2c, 0x1a, 0x08,
  107. 0xd4, 0xc6, 0xf0, 0xe2, 0x9c, 0x8e, 0xb8, 0xaa, 0x44, 0x56, 0x60, 0x72, 0x0c, 0x1e, 0x28, 0x3a,
  108. 0x4a, 0x58, 0x6e, 0x7c, 0x02, 0x10, 0x26, 0x34, 0xda, 0xc8, 0xfe, 0xec, 0x92, 0x80, 0xb6, 0xa4,
  109. 0x78, 0x6a, 0x5c, 0x4e, 0x30, 0x22, 0x14, 0x06, 0xe8, 0xfa, 0xcc, 0xde, 0xa0, 0xb2, 0x84, 0x96,
  110. 0x2e, 0x3c, 0x0a, 0x18, 0x66, 0x74, 0x42, 0x50, 0xbe, 0xac, 0x9a, 0x88, 0xf6, 0xe4, 0xd2, 0xc0,
  111. 0x1c, 0x0e, 0x38, 0x2a, 0x54, 0x46, 0x70, 0x62, 0x8c, 0x9e, 0xa8, 0xba, 0xc4, 0xd6, 0xe0, 0xf2
  112. };
  113. // Calculate the CRC16 checksum for parallel 4 bit lines separately.
  114. // When the SDIO bus operates in 4-bit mode, the CRC16 algorithm
  115. // is applied to each line separately and generates total of
  116. // 4 x 16 = 64 bits of checksum.
  117. __attribute__((optimize("O3")))
  118. uint64_t sdio_crc16_4bit_checksum(uint32_t *data, uint32_t num_words)
  119. {
  120. uint64_t crc = 0;
  121. uint32_t *end = data + num_words;
  122. while (data < end)
  123. {
  124. for (int unroll = 0; unroll < 4; unroll++)
  125. {
  126. // Each 32-bit word contains 8 bits per line.
  127. // Reverse the bytes because SDIO protocol is big-endian.
  128. uint32_t data_in = __builtin_bswap32(*data++);
  129. // Shift out 8 bits for each line
  130. uint32_t data_out = crc >> 32;
  131. crc <<= 32;
  132. // XOR outgoing data to itself with 4 bit delay
  133. data_out ^= (data_out >> 16);
  134. // XOR incoming data to outgoing data with 4 bit delay
  135. data_out ^= (data_in >> 16);
  136. // XOR outgoing and incoming data to accumulator at each tap
  137. uint64_t xorred = data_out ^ data_in;
  138. crc ^= xorred;
  139. crc ^= xorred << (5 * 4);
  140. crc ^= xorred << (12 * 4);
  141. }
  142. }
  143. return crc;
  144. }
  145. /*******************************************************
  146. * Status Register Receiver
  147. *******************************************************/
  148. sdio_status_t receive_status_register(uint8_t* sds) {
  149. rp2040_sdio_rx_start(sds, 1, 64);
  150. // Wait for the DMA operation to complete, or fail if it took too long
  151. waitagain:
  152. while (dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH))
  153. {
  154. if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 2)
  155. {
  156. // Reset the state machine program
  157. dma_channel_abort(SDIO_DMA_CHB);
  158. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  159. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  160. return SDIO_ERR_RESPONSE_TIMEOUT;
  161. }
  162. }
  163. // Assert that both DMA channels are complete
  164. if(dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH)) {
  165. // Wait failure, go back.
  166. goto waitagain;
  167. }
  168. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  169. g_sdio.transfer_state = SDIO_IDLE;
  170. return SDIO_OK;
  171. }
  172. /*******************************************************
  173. * Basic SDIO command execution
  174. *******************************************************/
  175. static void sdio_send_command(uint8_t command, uint32_t arg, uint8_t response_bits)
  176. {
  177. // dbgmsg("SDIO Command: ", (int)command, " arg ", arg);
  178. // Format the arguments in the way expected by the PIO code.
  179. uint32_t word0 =
  180. (47 << 24) | // Number of bits in command minus one
  181. ( 1 << 22) | // Transfer direction from host to card
  182. (command << 16) | // Command byte
  183. (((arg >> 24) & 0xFF) << 8) | // MSB byte of argument
  184. (((arg >> 16) & 0xFF) << 0);
  185. uint32_t word1 =
  186. (((arg >> 8) & 0xFF) << 24) |
  187. (((arg >> 0) & 0xFF) << 16) | // LSB byte of argument
  188. ( 1 << 8); // End bit
  189. // Set number of bits in response minus one, or leave at 0 if no response expected
  190. if (response_bits)
  191. {
  192. word1 |= ((response_bits - 1) << 0);
  193. }
  194. // Calculate checksum in the order that the bytes will be transmitted (big-endian)
  195. uint8_t crc = 0;
  196. crc = crc7_table[crc ^ ((word0 >> 16) & 0xFF)];
  197. crc = crc7_table[crc ^ ((word0 >> 8) & 0xFF)];
  198. crc = crc7_table[crc ^ ((word0 >> 0) & 0xFF)];
  199. crc = crc7_table[crc ^ ((word1 >> 24) & 0xFF)];
  200. crc = crc7_table[crc ^ ((word1 >> 16) & 0xFF)];
  201. word1 |= crc << 8;
  202. // Transmit command
  203. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  204. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word0);
  205. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word1);
  206. }
  207. sdio_status_t rp2040_sdio_command_R1(uint8_t command, uint32_t arg, uint32_t *response)
  208. {
  209. sdio_send_command(command, arg, response ? 48 : 0);
  210. // Wait for response
  211. uint32_t start = millis();
  212. uint32_t wait_words = response ? 2 : 1;
  213. while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < wait_words)
  214. {
  215. if ((uint32_t)(millis() - start) > 2)
  216. {
  217. if (command != 8) // Don't log for missing SD card
  218. {
  219. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R1(", (int)command, "), ",
  220. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  221. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  222. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  223. }
  224. // Reset the state machine program
  225. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  226. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  227. return SDIO_ERR_RESPONSE_TIMEOUT;
  228. }
  229. }
  230. if (response)
  231. {
  232. // Read out response packet
  233. uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  234. uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  235. // dbgmsg("SDIO R1 response: ", resp0, " ", resp1);
  236. // Calculate response checksum
  237. uint8_t crc = 0;
  238. crc = crc7_table[crc ^ ((resp0 >> 24) & 0xFF)];
  239. crc = crc7_table[crc ^ ((resp0 >> 16) & 0xFF)];
  240. crc = crc7_table[crc ^ ((resp0 >> 8) & 0xFF)];
  241. crc = crc7_table[crc ^ ((resp0 >> 0) & 0xFF)];
  242. crc = crc7_table[crc ^ ((resp1 >> 8) & 0xFF)];
  243. uint8_t actual_crc = ((resp1 >> 0) & 0xFE);
  244. if (crc != actual_crc)
  245. {
  246. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  247. return SDIO_ERR_RESPONSE_CRC;
  248. }
  249. uint8_t response_cmd = ((resp0 >> 24) & 0xFF);
  250. if (response_cmd != command && command != 41)
  251. {
  252. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): received reply for ", (int)response_cmd);
  253. return SDIO_ERR_RESPONSE_CODE;
  254. }
  255. *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
  256. }
  257. else
  258. {
  259. // Read out dummy marker
  260. pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  261. }
  262. return SDIO_OK;
  263. }
  264. sdio_status_t rp2040_sdio_command_R2(uint8_t command, uint32_t arg, uint8_t response[16])
  265. {
  266. // The response is too long to fit in the PIO FIFO, so use DMA to receive it.
  267. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  268. uint32_t response_buf[5];
  269. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  270. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  271. channel_config_set_read_increment(&dmacfg, false);
  272. channel_config_set_write_increment(&dmacfg, true);
  273. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false));
  274. dma_channel_configure(SDIO_DMA_CH, &dmacfg, &response_buf, &SDIO_PIO->rxf[SDIO_CMD_SM], 5, true);
  275. sdio_send_command(command, arg, 136);
  276. uint32_t start = millis();
  277. while (dma_channel_is_busy(SDIO_DMA_CH))
  278. {
  279. if ((uint32_t)(millis() - start) > 2)
  280. {
  281. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R2(", (int)command, "), ",
  282. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  283. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  284. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  285. // Reset the state machine program
  286. dma_channel_abort(SDIO_DMA_CH);
  287. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  288. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  289. return SDIO_ERR_RESPONSE_TIMEOUT;
  290. }
  291. }
  292. dma_channel_abort(SDIO_DMA_CH);
  293. // Copy the response payload to output buffer
  294. response[0] = ((response_buf[0] >> 16) & 0xFF);
  295. response[1] = ((response_buf[0] >> 8) & 0xFF);
  296. response[2] = ((response_buf[0] >> 0) & 0xFF);
  297. response[3] = ((response_buf[1] >> 24) & 0xFF);
  298. response[4] = ((response_buf[1] >> 16) & 0xFF);
  299. response[5] = ((response_buf[1] >> 8) & 0xFF);
  300. response[6] = ((response_buf[1] >> 0) & 0xFF);
  301. response[7] = ((response_buf[2] >> 24) & 0xFF);
  302. response[8] = ((response_buf[2] >> 16) & 0xFF);
  303. response[9] = ((response_buf[2] >> 8) & 0xFF);
  304. response[10] = ((response_buf[2] >> 0) & 0xFF);
  305. response[11] = ((response_buf[3] >> 24) & 0xFF);
  306. response[12] = ((response_buf[3] >> 16) & 0xFF);
  307. response[13] = ((response_buf[3] >> 8) & 0xFF);
  308. response[14] = ((response_buf[3] >> 0) & 0xFF);
  309. response[15] = ((response_buf[4] >> 0) & 0xFF);
  310. // Calculate checksum of the payload
  311. uint8_t crc = 0;
  312. for (int i = 0; i < 15; i++)
  313. {
  314. crc = crc7_table[crc ^ response[i]];
  315. }
  316. uint8_t actual_crc = response[15] & 0xFE;
  317. if (crc != actual_crc)
  318. {
  319. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  320. return SDIO_ERR_RESPONSE_CRC;
  321. }
  322. uint8_t response_cmd = ((response_buf[0] >> 24) & 0xFF);
  323. if (response_cmd != 0x3F)
  324. {
  325. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): Expected reply code 0x3F");
  326. return SDIO_ERR_RESPONSE_CODE;
  327. }
  328. return SDIO_OK;
  329. }
  330. sdio_status_t rp2040_sdio_command_R3(uint8_t command, uint32_t arg, uint32_t *response)
  331. {
  332. sdio_send_command(command, arg, 48);
  333. // Wait for response
  334. uint32_t start = millis();
  335. while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < 2)
  336. {
  337. if ((uint32_t)(millis() - start) > 2)
  338. {
  339. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R3(", (int)command, "), ",
  340. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  341. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  342. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  343. // Reset the state machine program
  344. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  345. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  346. return SDIO_ERR_RESPONSE_TIMEOUT;
  347. }
  348. }
  349. // Read out response packet
  350. uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  351. uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  352. *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
  353. // dbgmsg("SDIO R3 response: ", resp0, " ", resp1);
  354. return SDIO_OK;
  355. }
  356. /*******************************************************
  357. * Data reception from SD card
  358. *******************************************************/
  359. sdio_status_t rp2040_sdio_rx_start(uint8_t *buffer, uint32_t num_blocks, uint32_t block_size)
  360. {
  361. // Buffer must be aligned
  362. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  363. g_sdio.transfer_state = SDIO_RX;
  364. g_sdio.transfer_start_time = millis();
  365. g_sdio.data_buf = (uint32_t*)buffer;
  366. g_sdio.blocks_done = 0;
  367. g_sdio.total_blocks = num_blocks;
  368. g_sdio.blocks_checksumed = 0;
  369. g_sdio.checksum_errors = 0;
  370. // Create DMA block descriptors to store each block of block_size bytes of data to buffer
  371. // and then 8 bytes to g_sdio.received_checksums.
  372. for (int i = 0; i < num_blocks; i++)
  373. {
  374. g_sdio.dma_blocks[i * 2].write_addr = buffer + i * block_size;
  375. g_sdio.dma_blocks[i * 2].transfer_count = block_size / sizeof(uint32_t);
  376. g_sdio.dma_blocks[i * 2 + 1].write_addr = &g_sdio.received_checksums[i];
  377. g_sdio.dma_blocks[i * 2 + 1].transfer_count = 2;
  378. }
  379. g_sdio.dma_blocks[num_blocks * 2].write_addr = 0;
  380. g_sdio.dma_blocks[num_blocks * 2].transfer_count = 0;
  381. // Configure first DMA channel for reading from the PIO RX fifo
  382. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  383. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  384. channel_config_set_read_increment(&dmacfg, false);
  385. channel_config_set_write_increment(&dmacfg, true);
  386. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  387. channel_config_set_bswap(&dmacfg, true);
  388. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  389. dma_channel_configure(SDIO_DMA_CH, &dmacfg, 0, &SDIO_PIO->rxf[SDIO_DATA_SM], 0, false);
  390. // Configure second DMA channel for reconfiguring the first one
  391. dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  392. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  393. channel_config_set_read_increment(&dmacfg, true);
  394. channel_config_set_write_increment(&dmacfg, true);
  395. channel_config_set_ring(&dmacfg, true, 3);
  396. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &dma_hw->ch[SDIO_DMA_CH].al1_write_addr,
  397. g_sdio.dma_blocks, 2, false);
  398. // Initialize PIO state machine
  399. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_rx_offset, &g_sdio.pio_cfg_data_rx);
  400. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  401. // Write number of nibbles to receive to Y register
  402. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, block_size * 2 + 16 - 1);
  403. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  404. // Enable RX FIFO join because we don't need the TX FIFO during transfer.
  405. // This gives more leeway for the DMA block switching
  406. SDIO_PIO->sm[SDIO_DATA_SM].shiftctrl |= PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS;
  407. // Start PIO and DMA
  408. dma_channel_start(SDIO_DMA_CHB);
  409. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  410. return SDIO_OK;
  411. }
  412. // Check checksums for received blocks
  413. static void sdio_verify_rx_checksums(uint32_t maxcount)
  414. {
  415. while (g_sdio.blocks_checksumed < g_sdio.blocks_done && maxcount-- > 0)
  416. {
  417. // Calculate checksum from received data
  418. int blockidx = g_sdio.blocks_checksumed++;
  419. uint64_t checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  420. SDIO_WORDS_PER_BLOCK);
  421. // Convert received checksum to little-endian format
  422. uint32_t top = __builtin_bswap32(g_sdio.received_checksums[blockidx].top);
  423. uint32_t bottom = __builtin_bswap32(g_sdio.received_checksums[blockidx].bottom);
  424. uint64_t expected = ((uint64_t)top << 32) | bottom;
  425. if (checksum != expected)
  426. {
  427. g_sdio.checksum_errors++;
  428. if (g_sdio.checksum_errors == 1)
  429. {
  430. logmsg("SDIO checksum error in reception: block ", blockidx,
  431. " calculated ", checksum, " expected ", expected);
  432. }
  433. }
  434. }
  435. }
  436. sdio_status_t rp2040_sdio_rx_poll(uint32_t *bytes_complete)
  437. {
  438. // Was everything done when the previous rx_poll() finished?
  439. if (g_sdio.blocks_done >= g_sdio.total_blocks)
  440. {
  441. g_sdio.transfer_state = SDIO_IDLE;
  442. }
  443. else
  444. {
  445. // Use the idle time to calculate checksums
  446. sdio_verify_rx_checksums(4);
  447. // Check how many DMA control blocks have been consumed
  448. uint32_t dma_ctrl_block_count = (dma_hw->ch[SDIO_DMA_CHB].read_addr - (uint32_t)&g_sdio.dma_blocks);
  449. dma_ctrl_block_count /= sizeof(g_sdio.dma_blocks[0]);
  450. // Compute how many complete 512 byte SDIO blocks have been transferred
  451. // When transfer ends, dma_ctrl_block_count == g_sdio.total_blocks * 2 + 1
  452. g_sdio.blocks_done = (dma_ctrl_block_count - 1) / 2;
  453. // NOTE: When all blocks are done, rx_poll() still returns SDIO_BUSY once.
  454. // This provides a chance to start the SCSI transfer before the last checksums
  455. // are computed. Any checksum failures can be indicated in SCSI status after
  456. // the data transfer has finished.
  457. }
  458. if (bytes_complete)
  459. {
  460. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  461. }
  462. if (g_sdio.transfer_state == SDIO_IDLE)
  463. {
  464. // Verify all remaining checksums.
  465. sdio_verify_rx_checksums(g_sdio.total_blocks);
  466. if (g_sdio.checksum_errors == 0)
  467. return SDIO_OK;
  468. else
  469. return SDIO_ERR_DATA_CRC;
  470. }
  471. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  472. {
  473. dbgmsg("rp2040_sdio_rx_poll() timeout, "
  474. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_rx_offset,
  475. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  476. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  477. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  478. rp2040_sdio_stop();
  479. return SDIO_ERR_DATA_TIMEOUT;
  480. }
  481. return SDIO_BUSY;
  482. }
  483. /*******************************************************
  484. * Data transmission to SD card
  485. *******************************************************/
  486. static void sdio_start_next_block_tx()
  487. {
  488. // Initialize PIO
  489. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_tx_offset, &g_sdio.pio_cfg_data_tx);
  490. // Configure DMA to send the data block payload (512 bytes)
  491. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  492. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  493. channel_config_set_read_increment(&dmacfg, true);
  494. channel_config_set_write_increment(&dmacfg, false);
  495. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, true));
  496. channel_config_set_bswap(&dmacfg, true);
  497. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  498. dma_channel_configure(SDIO_DMA_CH, &dmacfg,
  499. &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.data_buf + g_sdio.blocks_done * SDIO_WORDS_PER_BLOCK,
  500. SDIO_WORDS_PER_BLOCK, false);
  501. // Prepare second DMA channel to send the CRC and block end marker
  502. uint64_t crc = g_sdio.next_wr_block_checksum;
  503. g_sdio.end_token_buf[0] = (uint32_t)(crc >> 32);
  504. g_sdio.end_token_buf[1] = (uint32_t)(crc >> 0);
  505. g_sdio.end_token_buf[2] = 0xFFFFFFFF;
  506. channel_config_set_bswap(&dmacfg, false);
  507. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  508. &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.end_token_buf, 3, false);
  509. // Enable IRQ to trigger when block is done
  510. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  511. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 1);
  512. // Initialize register X with nibble count and register Y with response bit count
  513. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 1048);
  514. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_x, 32));
  515. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 31);
  516. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  517. // Initialize pins to output and high
  518. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pins, 15));
  519. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pindirs, 15));
  520. // Write start token and start the DMA transfer.
  521. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 0xFFFFFFF0);
  522. dma_channel_start(SDIO_DMA_CH);
  523. // Start state machine
  524. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  525. }
  526. static void sdio_compute_next_tx_checksum()
  527. {
  528. assert (g_sdio.blocks_done < g_sdio.total_blocks && g_sdio.blocks_checksumed < g_sdio.total_blocks);
  529. int blockidx = g_sdio.blocks_checksumed++;
  530. g_sdio.next_wr_block_checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  531. SDIO_WORDS_PER_BLOCK);
  532. }
  533. // Start transferring data from memory to SD card
  534. sdio_status_t rp2040_sdio_tx_start(const uint8_t *buffer, uint32_t num_blocks)
  535. {
  536. // Buffer must be aligned
  537. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  538. g_sdio.transfer_state = SDIO_TX;
  539. g_sdio.transfer_start_time = millis();
  540. g_sdio.data_buf = (uint32_t*)buffer;
  541. g_sdio.blocks_done = 0;
  542. g_sdio.total_blocks = num_blocks;
  543. g_sdio.blocks_checksumed = 0;
  544. g_sdio.checksum_errors = 0;
  545. // Compute first block checksum
  546. sdio_compute_next_tx_checksum();
  547. // Start first DMA transfer and PIO
  548. sdio_start_next_block_tx();
  549. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  550. {
  551. // Precompute second block checksum
  552. sdio_compute_next_tx_checksum();
  553. }
  554. return SDIO_OK;
  555. }
  556. sdio_status_t check_sdio_write_response(uint32_t card_response)
  557. {
  558. // Shift card response until top bit is 0 (the start bit)
  559. // The format of response is poorly documented in SDIO spec but refer to e.g.
  560. // http://my-cool-projects.blogspot.com/2013/02/the-mysterious-sd-card-crc-status.html
  561. uint32_t resp = card_response;
  562. if (!(~resp & 0xFFFF0000)) resp <<= 16;
  563. if (!(~resp & 0xFF000000)) resp <<= 8;
  564. if (!(~resp & 0xF0000000)) resp <<= 4;
  565. if (!(~resp & 0xC0000000)) resp <<= 2;
  566. if (!(~resp & 0x80000000)) resp <<= 1;
  567. uint32_t wr_status = (resp >> 28) & 7;
  568. if (wr_status == 2)
  569. {
  570. return SDIO_OK;
  571. }
  572. else if (wr_status == 5)
  573. {
  574. logmsg("SDIO card reports write CRC error, status ", card_response);
  575. return SDIO_ERR_WRITE_CRC;
  576. }
  577. else if (wr_status == 6)
  578. {
  579. logmsg("SDIO card reports write failure, status ", card_response);
  580. return SDIO_ERR_WRITE_FAIL;
  581. }
  582. else
  583. {
  584. logmsg("SDIO card reports unknown write status ", card_response);
  585. return SDIO_ERR_WRITE_FAIL;
  586. }
  587. }
  588. // When a block finishes, this IRQ handler starts the next one
  589. static void rp2040_sdio_tx_irq()
  590. {
  591. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  592. if (g_sdio.transfer_state == SDIO_TX)
  593. {
  594. if (!dma_channel_is_busy(SDIO_DMA_CH) && !dma_channel_is_busy(SDIO_DMA_CHB))
  595. {
  596. // Main data transfer is finished now.
  597. // When card is ready, PIO will put card response on RX fifo
  598. g_sdio.transfer_state = SDIO_TX_WAIT_IDLE;
  599. if (!pio_sm_is_rx_fifo_empty(SDIO_PIO, SDIO_DATA_SM))
  600. {
  601. // Card is already idle
  602. g_sdio.card_response = pio_sm_get(SDIO_PIO, SDIO_DATA_SM);
  603. }
  604. else
  605. {
  606. // Use DMA to wait for the response
  607. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  608. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  609. channel_config_set_read_increment(&dmacfg, false);
  610. channel_config_set_write_increment(&dmacfg, false);
  611. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  612. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  613. &g_sdio.card_response, &SDIO_PIO->rxf[SDIO_DATA_SM], 1, true);
  614. }
  615. }
  616. }
  617. if (g_sdio.transfer_state == SDIO_TX_WAIT_IDLE)
  618. {
  619. if (!dma_channel_is_busy(SDIO_DMA_CHB))
  620. {
  621. g_sdio.wr_status = check_sdio_write_response(g_sdio.card_response);
  622. if (g_sdio.wr_status != SDIO_OK)
  623. {
  624. rp2040_sdio_stop();
  625. return;
  626. }
  627. g_sdio.blocks_done++;
  628. if (g_sdio.blocks_done < g_sdio.total_blocks)
  629. {
  630. sdio_start_next_block_tx();
  631. g_sdio.transfer_state = SDIO_TX;
  632. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  633. {
  634. // Precompute the CRC for next block so that it is ready when
  635. // we want to send it.
  636. sdio_compute_next_tx_checksum();
  637. }
  638. }
  639. else
  640. {
  641. rp2040_sdio_stop();
  642. }
  643. }
  644. }
  645. }
  646. // Check if transmission is complete
  647. sdio_status_t rp2040_sdio_tx_poll(uint32_t *bytes_complete)
  648. {
  649. // SCB_ICSR_VECTACTIVE_Msk (0x1FFUL)
  650. if (scb_hw->icsr & (0x1FFUL))
  651. {
  652. // Verify that IRQ handler gets called even if we are in hardfault handler
  653. rp2040_sdio_tx_irq();
  654. }
  655. if (bytes_complete)
  656. {
  657. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  658. }
  659. if (g_sdio.transfer_state == SDIO_IDLE)
  660. {
  661. rp2040_sdio_stop();
  662. return g_sdio.wr_status;
  663. }
  664. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  665. {
  666. dbgmsg("rp2040_sdio_tx_poll() timeout, "
  667. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_tx_offset,
  668. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  669. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  670. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  671. rp2040_sdio_stop();
  672. return SDIO_ERR_DATA_TIMEOUT;
  673. }
  674. return SDIO_BUSY;
  675. }
  676. // Force everything to idle state
  677. sdio_status_t rp2040_sdio_stop()
  678. {
  679. dma_channel_abort(SDIO_DMA_CH);
  680. dma_channel_abort(SDIO_DMA_CHB);
  681. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 0);
  682. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  683. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  684. g_sdio.transfer_state = SDIO_IDLE;
  685. return SDIO_OK;
  686. }
  687. void rp2040_sdio_init(int clock_divider)
  688. {
  689. #ifdef SDIO_GPIO_BASE_HIGH
  690. pio_set_gpio_base(SDIO_PIO, 16);
  691. #endif
  692. // Mark resources as being in use, unless it has been done already.
  693. static bool resources_claimed = false;
  694. if (!resources_claimed)
  695. {
  696. pio_sm_claim(SDIO_PIO, SDIO_CMD_SM);
  697. pio_sm_claim(SDIO_PIO, SDIO_DATA_SM);
  698. dma_channel_claim(SDIO_DMA_CH);
  699. dma_channel_claim(SDIO_DMA_CHB);
  700. resources_claimed = true;
  701. }
  702. memset(&g_sdio, 0, sizeof(g_sdio));
  703. dma_channel_abort(SDIO_DMA_CH);
  704. dma_channel_abort(SDIO_DMA_CHB);
  705. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  706. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  707. // Load PIO programs
  708. pio_clear_instruction_memory(SDIO_PIO);
  709. // Command & clock state machine
  710. uint16_t temp_program_instr[32];
  711. pio_program rewrite_sdio_cmd_clk_program = {
  712. temp_program_instr,
  713. sdio_cmd_clk_program.length,
  714. sdio_cmd_clk_program.origin,
  715. sdio_cmd_clk_program.pio_version };
  716. memcpy(temp_program_instr, sdio_cmd_clk_program_instructions, sizeof(sdio_cmd_clk_program_instructions));
  717. // Set the delays for the sdio_cmd_clk SDIO state machine
  718. for (uint8_t i = 0; i < sizeof(sdio_cmd_clk_program_instructions) / sizeof(sdio_cmd_clk_program_instructions[0]); i++)
  719. {
  720. uint16_t instr = sdio_cmd_clk_program_instructions[i]
  721. | ((i & 1) ? pio_encode_delay(g_bluescsi_timings->sdio.delay0) : pio_encode_delay(g_bluescsi_timings->sdio.delay1));
  722. temp_program_instr[i] = instr;
  723. }
  724. g_sdio.pio_cmd_clk_offset = pio_add_program(SDIO_PIO, &rewrite_sdio_cmd_clk_program);
  725. pio_sm_config cfg = sdio_cmd_clk_program_get_default_config(g_sdio.pio_cmd_clk_offset);
  726. sm_config_set_out_pins(&cfg, SDIO_CMD, 1);
  727. sm_config_set_in_pins(&cfg, SDIO_CMD);
  728. sm_config_set_set_pins(&cfg, SDIO_CMD, 1);
  729. sm_config_set_jmp_pin(&cfg, SDIO_CMD);
  730. sm_config_set_sideset_pins(&cfg, SDIO_CLK);
  731. sm_config_set_out_shift(&cfg, false, true, 32);
  732. sm_config_set_in_shift(&cfg, false, true, 32);
  733. sm_config_set_clkdiv_int_frac(&cfg, clock_divider, 0);
  734. sm_config_set_mov_status(&cfg, STATUS_TX_LESSTHAN, 2);
  735. pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_cmd_clk_offset, &cfg);
  736. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
  737. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, true);
  738. // Data reception program
  739. // Set delays for sdio_data_rx PIO state machine
  740. pio_program rewrite_sdio_data_rx_program = {
  741. temp_program_instr,
  742. sdio_data_rx_program.length,
  743. sdio_data_rx_program.origin,
  744. sdio_data_rx_program.pio_version };
  745. memcpy(temp_program_instr, sdio_data_rx_program_instructions, sizeof(sdio_data_rx_program_instructions));
  746. // wait 1 gpio SDIO_CLK_GPIO [0]; [CLKDIV-1]
  747. uint16_t instr = pio_encode_wait_gpio(true, SDIO_CLK - SDIO_BASE_OFFSET) | pio_encode_delay(g_bluescsi_timings->sdio.clk_div_pio - 1);
  748. temp_program_instr[2] = instr;
  749. // in PINS, 4 [0]; [CLKDIV-2]
  750. instr = sdio_data_rx_program_instructions[3] | pio_encode_delay(g_bluescsi_timings->sdio.clk_div_pio - 2);
  751. temp_program_instr[3] = instr;
  752. g_sdio.pio_data_rx_offset = pio_add_program(SDIO_PIO, &rewrite_sdio_data_rx_program);
  753. g_sdio.pio_cfg_data_rx = sdio_data_rx_program_get_default_config(g_sdio.pio_data_rx_offset);
  754. sm_config_set_in_pins(&g_sdio.pio_cfg_data_rx, SDIO_D0);
  755. sm_config_set_in_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
  756. sm_config_set_out_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
  757. sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_rx, clock_divider, 0);
  758. // Data transmission program
  759. // Set delays for sdio_data_tx PIO state machine
  760. pio_program rewrite_sdio_data_tx_program = {
  761. temp_program_instr,
  762. sdio_data_tx_program.length,
  763. sdio_data_tx_program.origin,
  764. sdio_data_tx_program.pio_version };
  765. memcpy(temp_program_instr, sdio_data_tx_program_instructions, sizeof(sdio_data_tx_program_instructions));
  766. // wait 0 gpio SDIO_CLK_GPIO
  767. instr = pio_encode_wait_gpio(false, SDIO_CLK - SDIO_BASE_OFFSET);
  768. temp_program_instr[0] = instr;
  769. // wait 1 gpio SDIO_CLK_GPIO; [0]; [CLKDIV + D1 - 1];
  770. instr = pio_encode_wait_gpio(true, SDIO_CLK - SDIO_BASE_OFFSET) | pio_encode_delay(g_bluescsi_timings->sdio.clk_div_pio + g_bluescsi_timings->sdio.delay1 - 1);
  771. temp_program_instr[1] = instr;
  772. for (uint8_t i = 2; i < sizeof(sdio_data_tx_program_instructions) / sizeof(sdio_data_tx_program_instructions[0]); i++)
  773. {
  774. uint16_t instr = sdio_data_tx_program_instructions[i]
  775. | ((i & 1) ? pio_encode_delay(g_bluescsi_timings->sdio.delay1) : pio_encode_delay(g_bluescsi_timings->sdio.delay0));
  776. temp_program_instr[i] = instr;
  777. }
  778. g_sdio.pio_data_tx_offset = pio_add_program(SDIO_PIO, &rewrite_sdio_data_tx_program);
  779. g_sdio.pio_cfg_data_tx = sdio_data_tx_program_get_default_config(g_sdio.pio_data_tx_offset);
  780. sm_config_set_in_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0);
  781. sm_config_set_set_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
  782. sm_config_set_out_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
  783. sm_config_set_in_shift(&g_sdio.pio_cfg_data_tx, false, false, 32);
  784. sm_config_set_out_shift(&g_sdio.pio_cfg_data_tx, false, true, 32);
  785. sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_tx, clock_divider, 0);
  786. // Disable SDIO pins input synchronizer.
  787. // This reduces input delay.
  788. // Because the CLK is driven synchronously to CPU clock,
  789. // there should be no metastability problems.
  790. SDIO_PIO->input_sync_bypass |= (1 << (SDIO_CLK - SDIO_BASE_OFFSET)) | (1 << (SDIO_CMD - SDIO_BASE_OFFSET))
  791. | (1 << (SDIO_D0 - SDIO_BASE_OFFSET)) | (1 << (SDIO_D1 - SDIO_BASE_OFFSET))
  792. | (1 << (SDIO_D2 - SDIO_BASE_OFFSET)) | (1 << (SDIO_D3 - SDIO_BASE_OFFSET));
  793. // Redirect GPIOs to PIO
  794. gpio_set_function(SDIO_CMD, GPIO_FUNC_PIO1);
  795. gpio_set_function(SDIO_CLK, GPIO_FUNC_PIO1);
  796. gpio_set_function(SDIO_D0, GPIO_FUNC_PIO1);
  797. gpio_set_function(SDIO_D1, GPIO_FUNC_PIO1);
  798. gpio_set_function(SDIO_D2, GPIO_FUNC_PIO1);
  799. gpio_set_function(SDIO_D3, GPIO_FUNC_PIO1);
  800. // Set up IRQ handler when DMA completes.
  801. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  802. irq_set_enabled(DMA_IRQ_1, true);
  803. #if 0
  804. #ifndef ENABLE_AUDIO_OUTPUT_SPDIF
  805. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  806. #else
  807. // seem to hit assertion in _exclusive_handler call due to DMA_IRQ_0 being shared?
  808. // slightly less efficient to do it this way, so investigate further at some point
  809. irq_add_shared_handler(DMA_IRQ_1, rp2040_sdio_tx_irq, 0xFF);
  810. #endif
  811. irq_set_enabled(DMA_IRQ_1, true);
  812. #endif
  813. }
  814. #endif