scsiPhy.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387
  1. // Implements the low level interface to SCSI bus
  2. // Partially derived from scsiPhy.c from SCSI2SD-V6
  3. #include "scsiPhy.h"
  4. #include "BlueSCSI_platform.h"
  5. #include "BlueSCSI_log.h"
  6. #include "BlueSCSI_log_trace.h"
  7. #include "BlueSCSI_config.h"
  8. #include "scsi_accel_rp2040.h"
  9. #include "hardware/structs/iobank0.h"
  10. #include <scsi2sd.h>
  11. extern "C" {
  12. #include <scsi.h>
  13. #include <scsi2sd_time.h>
  14. }
  15. /***********************/
  16. /* SCSI status signals */
  17. /***********************/
  18. extern "C" bool scsiStatusATN()
  19. {
  20. return SCSI_IN(ATN);
  21. }
  22. extern "C" bool scsiStatusBSY()
  23. {
  24. return SCSI_IN(BSY);
  25. }
  26. /************************/
  27. /* SCSI selection logic */
  28. /************************/
  29. volatile uint8_t g_scsi_sts_selection;
  30. volatile uint8_t g_scsi_ctrl_bsy;
  31. void scsi_bsy_deassert_interrupt()
  32. {
  33. if (SCSI_IN(SEL) && !SCSI_IN(BSY))
  34. {
  35. // Check if any of the targets we simulate is selected
  36. uint8_t sel_bits = SCSI_IN_DATA();
  37. int sel_id = -1;
  38. for (int i = 0; i < S2S_MAX_TARGETS; i++)
  39. {
  40. if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
  41. {
  42. if (sel_bits & (1 << scsiDev.targets[i].targetId))
  43. {
  44. sel_id = scsiDev.targets[i].targetId;
  45. break;
  46. }
  47. }
  48. }
  49. if (sel_id >= 0)
  50. {
  51. // Set ATN flag here unconditionally, real value is only known after
  52. // OUT_BSY is enabled in scsiStatusSEL() below.
  53. g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | SCSI_STS_SELECTION_ATN | sel_id;
  54. }
  55. // selFlag is required for Philips P2000C which releases it after 600ns
  56. // without waiting for BSY.
  57. // Also required for some early Mac Plus roms
  58. scsiDev.selFlag = *SCSI_STS_SELECTED;
  59. }
  60. }
  61. extern "C" bool scsiStatusSEL()
  62. {
  63. if (g_scsi_ctrl_bsy)
  64. {
  65. // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
  66. // Instead update the state here.
  67. // Releasing happens with bus release.
  68. g_scsi_ctrl_bsy = 0;
  69. SCSI_OUT(CD, 0);
  70. SCSI_OUT(MSG, 0);
  71. SCSI_ENABLE_CONTROL_OUT();
  72. SCSI_OUT(BSY, 1);
  73. // On RP2040 hardware the ATN signal is only available after OUT_BSY enables
  74. // the IO buffer U105, so check the signal status here.
  75. delay_100ns();
  76. if (!scsiStatusATN())
  77. {
  78. // This is a SCSI1 host that does send IDENTIFY message
  79. scsiDev.atnFlag = 0;
  80. scsiDev.target->unitAttention = 0;
  81. scsiDev.compatMode = COMPAT_SCSI1;
  82. }
  83. }
  84. return SCSI_IN(SEL);
  85. }
  86. /************************/
  87. /* SCSI bus reset logic */
  88. /************************/
  89. static void scsi_rst_assert_interrupt()
  90. {
  91. // Glitch filtering
  92. bool rst1 = SCSI_IN(RST);
  93. delay_ns(500);
  94. bool rst2 = SCSI_IN(RST);
  95. if (rst1 && rst2)
  96. {
  97. debuglog("BUS RESET");
  98. scsiDev.resetFlag = 1;
  99. }
  100. }
  101. static void scsiPhyIRQ(uint gpio, uint32_t events)
  102. {
  103. if (gpio == scsi_pins.IN_BSY || gpio == scsi_pins.IN_SEL)
  104. {
  105. // Note BSY / SEL interrupts only when we are not driving OUT_BSY low ourselves.
  106. // The BSY input pin may be shared with other signals.
  107. if (sio_hw->gpio_out & (1 << scsi_pins.OUT_BSY))
  108. {
  109. scsi_bsy_deassert_interrupt();
  110. }
  111. }
  112. else if (gpio == scsi_pins.IN_RST && ((~sio_hw->gpio_oe) & (1 << scsi_pins.OUT_SEL)))
  113. {
  114. // If oSEL is in input mode, this is a real reset. Otherwise ignore.
  115. scsi_rst_assert_interrupt();
  116. }
  117. }
  118. // This function is called to initialize the phy code.
  119. // It is called after power-on and after SCSI bus reset.
  120. extern "C" void scsiPhyReset(void)
  121. {
  122. SCSI_RELEASE_OUTPUTS();
  123. g_scsi_sts_selection = 0;
  124. g_scsi_ctrl_bsy = 0;
  125. scsi_accel_rp2040_init();
  126. // Enable BSY, RST and SEL interrupts
  127. // Note: RP2040 library currently supports only one callback,
  128. // so it has to be same for all pins.
  129. gpio_set_irq_enabled_with_callback(scsi_pins.IN_BSY, GPIO_IRQ_EDGE_RISE, true, scsiPhyIRQ);
  130. gpio_set_irq_enabled(scsi_pins.IN_RST, GPIO_IRQ_EDGE_FALL, true);
  131. // Check BSY line status when SEL goes active.
  132. // This is needed to handle SCSI-1 hosts that use the single initiator mode.
  133. // The host will just assert the SEL directly, without asserting BSY first.
  134. gpio_set_irq_enabled(scsi_pins.IN_SEL, GPIO_IRQ_EDGE_FALL, true);
  135. }
  136. /************************/
  137. /* SCSI bus phase logic */
  138. /************************/
  139. static SCSI_PHASE g_scsi_phase;
  140. extern "C" void scsiEnterPhase(int phase)
  141. {
  142. int delay = scsiEnterPhaseImmediate(phase);
  143. if (delay > 0)
  144. {
  145. s2s_delay_ns(delay);
  146. }
  147. }
  148. // Change state and return nanosecond delay to wait
  149. extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
  150. {
  151. if (phase != g_scsi_phase)
  152. {
  153. // ANSI INCITS 362-2002 SPI-3 10.7.1:
  154. // Phase changes are not allowed while REQ or ACK is asserted.
  155. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
  156. if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT))
  157. {
  158. // Akai S1000/S3000 seems to need extra delay before changing to data phase
  159. // after a command. The code in BlueSCSI_disk.cpp tries to do this while waiting
  160. // for SD card, to avoid any extra latency.
  161. s2s_delay_ns(400000);
  162. }
  163. int oldphase = g_scsi_phase;
  164. g_scsi_phase = (SCSI_PHASE)phase;
  165. scsiLogPhaseChange(phase);
  166. // Select between synchronous vs. asynchronous SCSI writes
  167. bool syncstatus = false;
  168. if (scsiDev.target->syncOffset > 0 && (g_scsi_phase == DATA_IN || g_scsi_phase == DATA_OUT))
  169. {
  170. syncstatus = scsi_accel_rp2040_setSyncMode(scsiDev.target->syncOffset, scsiDev.target->syncPeriod);
  171. }
  172. else
  173. {
  174. syncstatus = scsi_accel_rp2040_setSyncMode(0, 0);
  175. }
  176. if (!syncstatus)
  177. {
  178. // SCSI DMA was not idle, we are in some kind of error state, force bus reset
  179. scsiDev.resetFlag = 1;
  180. return 0;
  181. }
  182. if (phase < 0)
  183. {
  184. // Other communication on bus or reset state
  185. SCSI_RELEASE_OUTPUTS();
  186. return 0;
  187. }
  188. else
  189. {
  190. // The phase control signals should be changed close to simultaneously.
  191. // The SCSI spec allows 400 ns for this, but some hosts do not seem to be that
  192. // tolerant. The Cortex-M0 is also quite slow in bit twiddling.
  193. //
  194. // To avoid unnecessary delays, precalculate an XOR mask and then apply it
  195. // simultaneously to all three signals.
  196. uint32_t gpio_new = 0;
  197. if (!(phase & __scsiphase_msg)) { gpio_new |= (1 << scsi_pins.OUT_MSG); }
  198. if (!(phase & __scsiphase_cd)) { gpio_new |= (1 << scsi_pins.OUT_CD); }
  199. if (!(phase & __scsiphase_io)) { gpio_new |= (1 << scsi_pins.OUT_IO); }
  200. uint32_t mask = (1 << scsi_pins.OUT_MSG) | (1 << scsi_pins.OUT_CD) | (1 << scsi_pins.OUT_IO);
  201. uint32_t gpio_xor = (sio_hw->gpio_out ^ gpio_new) & mask;
  202. sio_hw->gpio_togl = gpio_xor;
  203. SCSI_ENABLE_CONTROL_OUT();
  204. int delayNs = 400; // Bus settle delay
  205. if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
  206. {
  207. delayNs += 400; // Data release delay
  208. }
  209. if (scsiDev.compatMode < COMPAT_SCSI2)
  210. {
  211. // EMU EMAX needs 100uS ! 10uS is not enough.
  212. delayNs += 100000;
  213. }
  214. return delayNs;
  215. }
  216. }
  217. else
  218. {
  219. return 0;
  220. }
  221. }
  222. // Release all signals
  223. void scsiEnterBusFree(void)
  224. {
  225. g_scsi_phase = BUS_FREE;
  226. g_scsi_sts_selection = 0;
  227. g_scsi_ctrl_bsy = 0;
  228. scsiDev.cdbLen = 0;
  229. SCSI_RELEASE_OUTPUTS();
  230. }
  231. /********************/
  232. /* Transmit to host */
  233. /********************/
  234. #define SCSI_WAIT_ACTIVE(pin) \
  235. if (!SCSI_IN(pin)) { \
  236. if (!SCSI_IN(pin)) { \
  237. while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
  238. } \
  239. }
  240. // In synchronous mode the ACK pulse can be very short, so use edge IRQ to detect it.
  241. #define CHECK_EDGE(pin) \
  242. ((iobank0_hw->intr[pin / 8] >> (4 * (pin % 8))) & GPIO_IRQ_EDGE_FALL)
  243. #define SCSI_WAIT_ACTIVE_EDGE(pin) \
  244. if (!CHECK_EDGE(SCSI_IN_ ## pin)) { \
  245. while(!SCSI_IN(pin) && !CHECK_EDGE(SCSI_IN_ ## pin) && !scsiDev.resetFlag); \
  246. }
  247. #define SCSI_WAIT_INACTIVE(pin) \
  248. if (SCSI_IN(pin)) { \
  249. if (SCSI_IN(pin)) { \
  250. while(SCSI_IN(pin) && !scsiDev.resetFlag); \
  251. } \
  252. }
  253. // Write one byte to SCSI host using the handshake mechanism
  254. // This is suitable for both asynchronous and synchronous communication.
  255. static inline void scsiWriteOneByte(uint8_t value)
  256. {
  257. SCSI_OUT_DATA(value);
  258. delay_100ns(); // DB setup time before REQ
  259. gpio_acknowledge_irq(scsi_pins.IN_ACK, GPIO_IRQ_EDGE_FALL);
  260. SCSI_OUT(REQ, 1);
  261. SCSI_WAIT_ACTIVE_EDGE(ACK);
  262. SCSI_RELEASE_DATA_REQ();
  263. SCSI_WAIT_INACTIVE(ACK);
  264. }
  265. extern "C" void scsiWriteByte(uint8_t value)
  266. {
  267. scsiLogDataIn(&value, 1);
  268. scsiWriteOneByte(value);
  269. }
  270. extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
  271. {
  272. scsiStartWrite(data, count);
  273. scsiFinishWrite();
  274. }
  275. extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
  276. {
  277. scsiLogDataIn(data, count);
  278. scsi_accel_rp2040_startWrite(data, count, &scsiDev.resetFlag);
  279. }
  280. extern "C" bool scsiIsWriteFinished(const uint8_t *data)
  281. {
  282. return scsi_accel_rp2040_isWriteFinished(data);
  283. }
  284. extern "C" void scsiFinishWrite()
  285. {
  286. scsi_accel_rp2040_finishWrite(&scsiDev.resetFlag);
  287. }
  288. /*********************/
  289. /* Receive from host */
  290. /*********************/
  291. // Read one byte from SCSI host using the handshake mechanism.
  292. static inline uint8_t scsiReadOneByte(int* parityError)
  293. {
  294. SCSI_OUT(REQ, 1);
  295. SCSI_WAIT_ACTIVE(ACK);
  296. delay_100ns();
  297. uint16_t r = SCSI_IN_DATA();
  298. SCSI_OUT(REQ, 0);
  299. SCSI_WAIT_INACTIVE(ACK);
  300. if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ SCSI_IO_DATA_MASK))
  301. {
  302. debuglog("Parity error in scsiReadOneByte(): ", (uint32_t)r);
  303. *parityError = 1;
  304. }
  305. return (uint8_t)r;
  306. }
  307. extern "C" uint8_t scsiReadByte(void)
  308. {
  309. uint8_t r = scsiReadOneByte(NULL);
  310. scsiLogDataOut(&r, 1);
  311. return r;
  312. }
  313. extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
  314. {
  315. *parityError = 0;
  316. scsiStartRead(data, count, parityError);
  317. scsiFinishRead(data, count, parityError);
  318. }
  319. extern "C" void scsiStartRead(uint8_t* data, uint32_t count, int *parityError)
  320. {
  321. scsi_accel_rp2040_startRead(data, count, parityError, &scsiDev.resetFlag);
  322. }
  323. extern "C" void scsiFinishRead(uint8_t* data, uint32_t count, int *parityError)
  324. {
  325. scsi_accel_rp2040_finishRead(data, count, parityError, &scsiDev.resetFlag);
  326. scsiLogDataOut(data, count);
  327. }
  328. extern "C" bool scsiIsReadFinished(const uint8_t *data)
  329. {
  330. return scsi_accel_rp2040_isReadFinished(data);
  331. }