scsiPhy.cpp 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434
  1. // Implements the low level interface to SCSI bus
  2. // Partially derived from scsiPhy.c from SCSI2SD-V6
  3. #include "scsiPhy.h"
  4. #include "AzulSCSI_platform.h"
  5. #include "scsi_accel_asm.h"
  6. #include "scsi_accel_dma.h"
  7. #include "AzulSCSI_log.h"
  8. #include "AzulSCSI_log_trace.h"
  9. #include <scsi2sd.h>
  10. extern "C" {
  11. #include <scsi.h>
  12. #include <time.h>
  13. }
  14. static void init_irqs();
  15. /***********************/
  16. /* SCSI status signals */
  17. /***********************/
  18. extern "C" bool scsiStatusATN()
  19. {
  20. return SCSI_IN(ATN);
  21. }
  22. extern "C" bool scsiStatusBSY()
  23. {
  24. return SCSI_IN(BSY);
  25. }
  26. /************************/
  27. /* SCSI selection logic */
  28. /************************/
  29. volatile uint8_t g_scsi_sts_selection;
  30. volatile uint8_t g_scsi_ctrl_bsy;
  31. static void scsi_bsy_deassert_interrupt()
  32. {
  33. if (SCSI_IN(SEL) && !SCSI_IN(BSY))
  34. {
  35. uint8_t sel_bits = SCSI_IN_DATA();
  36. int sel_id = -1;
  37. for (int i = 0; i < S2S_MAX_TARGETS; i++)
  38. {
  39. if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
  40. {
  41. if (sel_bits & (1 << scsiDev.targets[i].targetId))
  42. {
  43. sel_id = scsiDev.targets[i].targetId;
  44. break;
  45. }
  46. }
  47. }
  48. if (sel_id >= 0)
  49. {
  50. uint8_t atn_flag = SCSI_IN(ATN) ? SCSI_STS_SELECTION_ATN : 0;
  51. g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | atn_flag | sel_id;
  52. }
  53. // selFlag is required for Philips P2000C which releases it after 600ns
  54. // without waiting for BSY.
  55. // Also required for some early Mac Plus roms
  56. scsiDev.selFlag = *SCSI_STS_SELECTED;
  57. }
  58. }
  59. extern "C" bool scsiStatusSEL()
  60. {
  61. if (g_scsi_ctrl_bsy)
  62. {
  63. // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
  64. // Instead update the state here.
  65. // Releasing happens with bus release.
  66. g_scsi_ctrl_bsy = 0;
  67. SCSI_OUT(BSY, 1);
  68. }
  69. return SCSI_IN(SEL);
  70. }
  71. /************************/
  72. /* SCSI bus reset logic */
  73. /************************/
  74. static void scsi_rst_assert_interrupt()
  75. {
  76. bool rst1 = SCSI_IN(RST);
  77. delay_ns(500);
  78. bool rst2 = SCSI_IN(RST);
  79. if (rst1 && rst2)
  80. {
  81. azdbg("BUS RESET");
  82. scsiDev.resetFlag = 1;
  83. }
  84. }
  85. extern "C" void scsiPhyReset(void)
  86. {
  87. SCSI_RELEASE_OUTPUTS();
  88. g_scsi_sts_selection = 0;
  89. g_scsi_ctrl_bsy = 0;
  90. init_irqs();
  91. #ifdef SCSI_ACCEL_DMA_AVAILABLE
  92. scsi_accel_dma_init();
  93. #endif
  94. }
  95. /************************/
  96. /* SCSI bus phase logic */
  97. /************************/
  98. static SCSI_PHASE g_scsi_phase;
  99. extern "C" void scsiEnterPhase(int phase)
  100. {
  101. int delay = scsiEnterPhaseImmediate(phase);
  102. if (delay > 0)
  103. {
  104. s2s_delay_ns(delay);
  105. }
  106. }
  107. // Change state and return nanosecond delay to wait
  108. extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
  109. {
  110. // ANSI INCITS 362-2002 SPI-3 10.7.1:
  111. // Phase changes are not allowed while REQ or ACK is asserted.
  112. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
  113. if (phase != g_scsi_phase)
  114. {
  115. int oldphase = g_scsi_phase;
  116. g_scsi_phase = (SCSI_PHASE)phase;
  117. scsiLogPhaseChange(phase);
  118. if (phase < 0)
  119. {
  120. // Other communication on bus or reset state
  121. SCSI_RELEASE_OUTPUTS();
  122. return 0;
  123. }
  124. else
  125. {
  126. SCSI_OUT(MSG, phase & __scsiphase_msg);
  127. SCSI_OUT(CD, phase & __scsiphase_cd);
  128. SCSI_OUT(IO, phase & __scsiphase_io);
  129. int delayNs = 400; // Bus settle delay
  130. if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
  131. {
  132. delayNs += 400; // Data release delay
  133. }
  134. if (scsiDev.compatMode < COMPAT_SCSI2)
  135. {
  136. // EMU EMAX needs 100uS ! 10uS is not enough.
  137. delayNs += 100000;
  138. }
  139. return delayNs;
  140. }
  141. }
  142. else
  143. {
  144. return 0;
  145. }
  146. }
  147. // Release all signals
  148. void scsiEnterBusFree(void)
  149. {
  150. g_scsi_phase = BUS_FREE;
  151. g_scsi_sts_selection = 0;
  152. g_scsi_ctrl_bsy = 0;
  153. scsiDev.cdbLen = 0;
  154. SCSI_RELEASE_OUTPUTS();
  155. }
  156. /********************/
  157. /* Transmit to host */
  158. /********************/
  159. #define SCSI_WAIT_ACTIVE(pin) \
  160. if (!SCSI_IN(pin)) { \
  161. if (!SCSI_IN(pin)) { \
  162. while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
  163. } \
  164. }
  165. #define SCSI_WAIT_INACTIVE(pin) \
  166. if (SCSI_IN(pin)) { \
  167. if (SCSI_IN(pin)) { \
  168. while(SCSI_IN(pin) && !scsiDev.resetFlag); \
  169. } \
  170. }
  171. static inline void scsiWriteOneByte(uint8_t value)
  172. {
  173. SCSI_OUT_DATA(value);
  174. delay_100ns(); // DB setup time before REQ
  175. SCSI_OUT(REQ, 1);
  176. SCSI_WAIT_ACTIVE(ACK);
  177. SCSI_RELEASE_DATA_REQ(); // Release data and REQ
  178. SCSI_WAIT_INACTIVE(ACK);
  179. }
  180. extern "C" void scsiWriteByte(uint8_t value)
  181. {
  182. scsiLogDataIn(&value, 1);
  183. scsiWriteOneByte(value);
  184. }
  185. extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
  186. {
  187. scsiStartWrite(data, count);
  188. scsiFinishWrite();
  189. }
  190. static struct {
  191. const uint8_t *data;
  192. uint32_t count;
  193. } g_scsi_writereq;
  194. extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
  195. {
  196. scsiLogDataIn(data, count);
  197. #ifdef SCSI_ACCEL_DMA_AVAILABLE
  198. if (gpio_input_bit_get(DIP_PORT, DIPSW1_PIN))
  199. {
  200. scsi_accel_dma_startWrite(data, count, &scsiDev.resetFlag);
  201. return;
  202. }
  203. #endif
  204. if (g_scsi_writereq.count)
  205. {
  206. if (data == g_scsi_writereq.data + g_scsi_writereq.count)
  207. {
  208. // Combine with previous one
  209. g_scsi_writereq.count += count;
  210. return;
  211. }
  212. else
  213. {
  214. // Actually execute previous request
  215. scsiFinishWrite();
  216. }
  217. }
  218. // Queue polling write requests.
  219. // This allows better parallelism with SD card transfers.
  220. g_scsi_writereq.data = data;
  221. g_scsi_writereq.count = count;
  222. }
  223. static void processPollingWrite(uint32_t count)
  224. {
  225. if (count > g_scsi_writereq.count)
  226. count = g_scsi_writereq.count;
  227. const uint8_t *data = g_scsi_writereq.data;
  228. uint32_t count_words = count / 4;
  229. if (count_words * 4 == count)
  230. {
  231. // Use accelerated subroutine
  232. scsi_accel_asm_send((const uint32_t*)data, count_words, &scsiDev.resetFlag);
  233. }
  234. else
  235. {
  236. for (uint32_t i = 0; i < count; i++)
  237. {
  238. if (scsiDev.resetFlag) break;
  239. scsiWriteOneByte(data[i]);
  240. }
  241. }
  242. g_scsi_writereq.count -= count;
  243. if (g_scsi_writereq.count)
  244. {
  245. g_scsi_writereq.data += count;
  246. }
  247. else
  248. {
  249. g_scsi_writereq.data = NULL;
  250. }
  251. }
  252. static bool isPollingWriteFinished(const uint8_t *data)
  253. {
  254. if (g_scsi_writereq.count)
  255. {
  256. if (data == NULL)
  257. {
  258. return false;
  259. }
  260. else if (data >= g_scsi_writereq.data &&
  261. data < g_scsi_writereq.data + g_scsi_writereq.count)
  262. {
  263. return false;
  264. }
  265. }
  266. return true;
  267. }
  268. extern "C" bool scsiIsWriteFinished(const uint8_t *data)
  269. {
  270. #ifdef SCSI_ACCEL_DMA_AVAILABLE
  271. if (!scsi_accel_dma_isWriteFinished(data))
  272. return false;
  273. #endif
  274. // Check if there is still a polling transfer in progress
  275. if (!isPollingWriteFinished(data))
  276. {
  277. // Process the transfer piece-by-piece while waiting
  278. // for SD card to react.
  279. processPollingWrite(256);
  280. return isPollingWriteFinished(data);
  281. }
  282. return true;
  283. }
  284. extern "C" void scsiFinishWrite()
  285. {
  286. #ifdef SCSI_ACCEL_DMA_AVAILABLE
  287. scsi_accel_dma_finishWrite(&scsiDev.resetFlag);
  288. #endif
  289. // Finish previously started polling write request.
  290. if (g_scsi_writereq.count)
  291. {
  292. processPollingWrite(g_scsi_writereq.count);
  293. }
  294. }
  295. /*********************/
  296. /* Receive from host */
  297. /*********************/
  298. static inline uint8_t scsiReadOneByte(void)
  299. {
  300. SCSI_OUT(REQ, 1);
  301. SCSI_WAIT_ACTIVE(ACK);
  302. delay_100ns();
  303. uint8_t r = SCSI_IN_DATA();
  304. SCSI_OUT(REQ, 0);
  305. SCSI_WAIT_INACTIVE(ACK);
  306. return r;
  307. }
  308. extern "C" uint8_t scsiReadByte(void)
  309. {
  310. uint8_t r = scsiReadOneByte();
  311. scsiLogDataOut(&r, 1);
  312. return r;
  313. }
  314. extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
  315. {
  316. *parityError = 0;
  317. uint32_t count_words = count / 4;
  318. if (count_words * 4 == count)
  319. {
  320. // Use accelerated subroutine
  321. scsi_accel_asm_recv((uint32_t*)data, count_words, &scsiDev.resetFlag);
  322. }
  323. else
  324. {
  325. for (uint32_t i = 0; i < count; i++)
  326. {
  327. if (scsiDev.resetFlag) break;
  328. data[i] = scsiReadOneByte();
  329. }
  330. }
  331. scsiLogDataOut(data, count);
  332. }
  333. /**********************/
  334. /* Interrupt handlers */
  335. /**********************/
  336. extern "C"
  337. void SCSI_RST_IRQ (void)
  338. {
  339. if (exti_interrupt_flag_get(SCSI_RST_EXTI))
  340. {
  341. exti_interrupt_flag_clear(SCSI_RST_EXTI);
  342. scsi_rst_assert_interrupt();
  343. }
  344. if (exti_interrupt_flag_get(SCSI_BSY_EXTI))
  345. {
  346. exti_interrupt_flag_clear(SCSI_BSY_EXTI);
  347. scsi_bsy_deassert_interrupt();
  348. }
  349. }
  350. #if SCSI_RST_IRQn != SCSI_BSY_IRQn
  351. extern "C"
  352. void SCSI_BSY_IRQ (void)
  353. {
  354. SCSI_RST_IRQ();
  355. }
  356. #endif
  357. static void init_irqs()
  358. {
  359. // Falling edge of RST pin
  360. gpio_exti_source_select(SCSI_RST_EXTI_SOURCE_PORT, SCSI_RST_EXTI_SOURCE_PIN);
  361. exti_init(SCSI_RST_EXTI, EXTI_INTERRUPT, EXTI_TRIG_FALLING);
  362. NVIC_SetPriority(SCSI_RST_IRQn, 1);
  363. NVIC_EnableIRQ(SCSI_RST_IRQn);
  364. // Rising edge of BSY pin
  365. gpio_exti_source_select(SCSI_BSY_EXTI_SOURCE_PORT, SCSI_BSY_EXTI_SOURCE_PIN);
  366. exti_init(SCSI_BSY_EXTI, EXTI_INTERRUPT, EXTI_TRIG_RISING);
  367. NVIC_SetPriority(SCSI_BSY_IRQn, 1);
  368. NVIC_EnableIRQ(SCSI_BSY_IRQn);
  369. }