scsi_accel_rp2040.cpp 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
  1. // Copyright (c) 2022 Rabbit Hole Computing™
  2. /* Data flow in SCSI acceleration:
  3. *
  4. * 1. Application provides a buffer of bytes to send.
  5. * 2. Code in this module adds parity bit to the bytes and packs two bytes into 32 bit words.
  6. * 3. DMA controller copies the words to PIO peripheral FIFO.
  7. * 4. PIO peripheral handles low-level SCSI handshake and writes bytes and parity to GPIO.
  8. */
  9. #include "BlueSCSI_platform.h"
  10. #include "BlueSCSI_log.h"
  11. #include "scsi_accel_rp2040.h"
  12. #include "scsi_accel.pio.h"
  13. #include "timings_RP2MCU.h"
  14. #include <hardware/pio.h>
  15. #include <hardware/dma.h>
  16. #include <hardware/irq.h>
  17. #include <hardware/structs/iobank0.h>
  18. #include <hardware/sync.h>
  19. #include <audio.h>
  20. #include <pico/multicore.h>
  21. // SCSI bus write acceleration uses up to 3 PIO state machines:
  22. // SM0: Convert data bytes to lookup addresses to add parity
  23. // SM1: Write data to SCSI bus
  24. // SM2: For synchronous mode only, count ACK pulses
  25. #define SCSI_DMA_PIO pio0
  26. #define SCSI_PARITY_SM 1
  27. #define SCSI_DATA_SM 2
  28. #define SCSI_SYNC_SM 3
  29. // SCSI bus write acceleration uses 3 or 4 DMA channels (data flow A->B->C->D):
  30. // A: Bytes from RAM to scsi_parity PIO
  31. // B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
  32. // C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
  33. // D: For sync transfers, scsi_sync_write to scsi_sync_write_pacer PIO
  34. //
  35. // SCSI bus read acceleration uses 4 DMA channels (data flow D->C->B->A):
  36. // A: Bytes from scsi_read_parity PIO to memory buffer
  37. // B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
  38. // C: Addresses from scsi_accel_read PIO to lookup DMA READ_ADDR register
  39. // D: From pacer to data state machine to trigger transfers
  40. #define SCSI_DMA_CH_A 6
  41. #define SCSI_DMA_CH_B 7
  42. #define SCSI_DMA_CH_C 8
  43. #define SCSI_DMA_CH_D 9
  44. static struct {
  45. uint8_t *app_buf; // Buffer provided by application
  46. uint32_t app_bytes; // Bytes available in application buffer
  47. uint32_t dma_bytes; // Bytes that have been scheduled for DMA so far
  48. uint8_t *next_app_buf; // Next buffer from application after current one finishes
  49. uint32_t next_app_bytes; // Bytes in next buffer
  50. // Synchronous mode?
  51. int syncOffset;
  52. int syncPeriod;
  53. int syncOffsetDivider; // Autopush/autopull threshold for the write pacer state machine
  54. int syncOffsetPreload; // Number of items to preload in the RX fifo of scsi_sync_write
  55. // PIO configurations
  56. uint32_t pio_offset_parity;
  57. uint32_t pio_offset_async_write;
  58. uint32_t pio_offset_sync_write_pacer;
  59. uint32_t pio_offset_sync_write;
  60. uint32_t pio_offset_read;
  61. uint32_t pio_offset_read_parity;
  62. uint32_t pio_offset_sync_read_pacer;
  63. pio_sm_config pio_cfg_parity;
  64. pio_sm_config pio_cfg_async_write;
  65. pio_sm_config pio_cfg_sync_write_pacer;
  66. pio_sm_config pio_cfg_sync_write;
  67. pio_sm_config pio_cfg_read;
  68. pio_sm_config pio_cfg_read_parity;
  69. pio_sm_config pio_cfg_sync_read_pacer;
  70. // PIO Program States
  71. bool pio_removed_parity;
  72. bool pio_removed_async_write;
  73. bool pio_removed_sync_write_pacer;
  74. bool pio_removed_sync_write;
  75. bool pio_removed_read;
  76. bool pio_removed_read_parity;
  77. bool pio_removed_sync_read_pacer;
  78. // DMA configurations for write
  79. dma_channel_config dmacfg_write_chA; // Data from RAM to scsi_parity PIO
  80. dma_channel_config dmacfg_write_chB; // Addresses from scsi_parity PIO to lookup DMA
  81. dma_channel_config dmacfg_write_chC; // Data from g_scsi_parity_lookup to scsi write PIO
  82. dma_channel_config dmacfg_write_chD; // In synchronous mode only, transfer between state machines
  83. // DMA configurations for read
  84. dma_channel_config dmacfg_read_chA; // Data to destination memory buffer
  85. dma_channel_config dmacfg_read_chB; // From lookup table to scsi_read_parity PIO
  86. dma_channel_config dmacfg_read_chC; // From scsi_accel_read to channel B READ_ADDR
  87. dma_channel_config dmacfg_read_chD; // From pacer to data state machine
  88. } g_scsi_dma;
  89. enum scsidma_state_t { SCSIDMA_IDLE = 0,
  90. SCSIDMA_WRITE, SCSIDMA_WRITE_DONE,
  91. SCSIDMA_READ, SCSIDMA_READ_DONE };
  92. static const char* scsidma_states[5] = {"IDLE", "WRITE", "WRITE_DONE", "READ", "READ_DONE"};
  93. static volatile scsidma_state_t g_scsi_dma_state;
  94. static bool g_channels_claimed = false;
  95. static void scsidma_config_gpio();
  96. void scsi_accel_log_state()
  97. {
  98. log("SCSI DMA state: ", scsidma_states[g_scsi_dma_state]);
  99. log("Current buffer: ", g_scsi_dma.dma_bytes, "/", g_scsi_dma.app_bytes, ", next ", g_scsi_dma.next_app_bytes, " bytes");
  100. log("SyncOffset: ", g_scsi_dma.syncOffset, " SyncPeriod ", g_scsi_dma.syncPeriod);
  101. log("PIO Parity SM:",
  102. " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_PARITY_SM),
  103. ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_PARITY_SM),
  104. ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_PARITY_SM),
  105. ", instr ", SCSI_DMA_PIO->sm[SCSI_PARITY_SM].instr);
  106. log("PIO Data SM:",
  107. " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM),
  108. ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM),
  109. ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM),
  110. ", instr ", SCSI_DMA_PIO->sm[SCSI_DATA_SM].instr);
  111. log("PIO Sync SM:",
  112. " tx_fifo ", (int)pio_sm_get_tx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM),
  113. ", rx_fifo ", (int)pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_SYNC_SM),
  114. ", pc ", (int)pio_sm_get_pc(SCSI_DMA_PIO, SCSI_SYNC_SM),
  115. ", instr ", SCSI_DMA_PIO->sm[SCSI_SYNC_SM].instr);
  116. log("DMA CH A:",
  117. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_A].ctrl_trig,
  118. " count: ", dma_hw->ch[SCSI_DMA_CH_A].transfer_count);
  119. log("DMA CH B:",
  120. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_B].ctrl_trig,
  121. " count: ", dma_hw->ch[SCSI_DMA_CH_B].transfer_count);
  122. log("DMA CH C:",
  123. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_C].ctrl_trig,
  124. " count: ", dma_hw->ch[SCSI_DMA_CH_C].transfer_count);
  125. log("DMA CH D:",
  126. " ctrl: ", dma_hw->ch[SCSI_DMA_CH_D].ctrl_trig,
  127. " count: ", dma_hw->ch[SCSI_DMA_CH_D].transfer_count);
  128. log("GPIO states: ", sio_hw->gpio_in);
  129. }
  130. /****************************************/
  131. /* Accelerated writes to SCSI bus */
  132. /****************************************/
  133. // Load the SCSI parity state machine with the address of the parity lookup table.
  134. // Also sets up DMA channels B and C
  135. static void config_parity_sm_for_write()
  136. {
  137. // Load base address to state machine register X
  138. uint32_t addrbase = (uint32_t)&g_scsi_parity_lookup[0];
  139. assert((addrbase & 0x1FF) == 0);
  140. pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_parity, &g_scsi_dma.pio_cfg_parity);
  141. pio_sm_put(SCSI_DMA_PIO, SCSI_PARITY_SM, addrbase >> 9);
  142. pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_pull(false, false));
  143. pio_sm_exec(SCSI_DMA_PIO, SCSI_PARITY_SM, pio_encode_mov(pio_x, pio_osr));
  144. // DMA channel B will copy addresses from parity PIO to DMA channel C read address register.
  145. // It is triggered by the parity SM RX FIFO request
  146. dma_channel_configure(SCSI_DMA_CH_B,
  147. &g_scsi_dma.dmacfg_write_chB,
  148. &dma_hw->ch[SCSI_DMA_CH_C].al3_read_addr_trig,
  149. &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
  150. 1, true);
  151. // DMA channel C will read g_scsi_parity_lookup to copy data + parity to SCSI write state machine.
  152. // It is triggered by SCSI write machine TX FIFO request and chains to re-enable channel B.
  153. dma_channel_configure(SCSI_DMA_CH_C,
  154. &g_scsi_dma.dmacfg_write_chC,
  155. &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
  156. NULL,
  157. 1, false);
  158. }
  159. static void start_dma_write()
  160. {
  161. if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
  162. {
  163. // Buffer has been fully processed, swap it
  164. g_scsi_dma.dma_bytes = 0;
  165. g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
  166. g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
  167. g_scsi_dma.next_app_buf = 0;
  168. g_scsi_dma.next_app_bytes = 0;
  169. }
  170. // Check if we are all done.
  171. // From SCSIDMA_WRITE_DONE state we can either go to IDLE in stopWrite()
  172. // or back to WRITE in startWrite().
  173. uint32_t bytes_to_send = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
  174. if (bytes_to_send == 0)
  175. {
  176. g_scsi_dma_state = SCSIDMA_WRITE_DONE;
  177. return;
  178. }
  179. uint8_t *src_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
  180. g_scsi_dma.dma_bytes += bytes_to_send;
  181. // Start DMA from current buffer to parity generator
  182. dma_channel_configure(SCSI_DMA_CH_A,
  183. &g_scsi_dma.dmacfg_write_chA,
  184. &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
  185. src_buf,
  186. bytes_to_send,
  187. true
  188. );
  189. }
  190. void scsi_accel_rp2040_startWrite(const uint8_t* data, uint32_t count, volatile int *resetFlag)
  191. {
  192. // Any read requests should be matched with a stopRead()
  193. assert(g_scsi_dma_state != SCSIDMA_READ && g_scsi_dma_state != SCSIDMA_READ_DONE);
  194. uint32_t status = save_and_disable_interrupts();
  195. if (g_scsi_dma_state == SCSIDMA_WRITE)
  196. {
  197. if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
  198. {
  199. // Combine with currently running request
  200. g_scsi_dma.app_bytes += count;
  201. count = 0;
  202. }
  203. else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  204. {
  205. // Combine with queued request
  206. g_scsi_dma.next_app_bytes += count;
  207. count = 0;
  208. }
  209. else if (!g_scsi_dma.next_app_buf)
  210. {
  211. // Add as queued request
  212. g_scsi_dma.next_app_buf = (uint8_t*)data;
  213. g_scsi_dma.next_app_bytes = count;
  214. count = 0;
  215. }
  216. }
  217. restore_interrupts_from_disabled(status);
  218. // Check if the request was combined
  219. if (count == 0) return;
  220. if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_WRITE_DONE)
  221. {
  222. // Wait for previous request to finish
  223. scsi_accel_rp2040_finishWrite(resetFlag);
  224. if (*resetFlag)
  225. {
  226. return;
  227. }
  228. }
  229. bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
  230. g_scsi_dma_state = SCSIDMA_WRITE;
  231. g_scsi_dma.app_buf = (uint8_t*)data;
  232. g_scsi_dma.app_bytes = count;
  233. g_scsi_dma.dma_bytes = 0;
  234. g_scsi_dma.next_app_buf = 0;
  235. g_scsi_dma.next_app_bytes = 0;
  236. if (must_reconfig_gpio)
  237. {
  238. SCSI_ENABLE_DATA_OUT();
  239. if (g_scsi_dma.syncOffset == 0)
  240. {
  241. // Asynchronous write
  242. config_parity_sm_for_write();
  243. pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_async_write, &g_scsi_dma.pio_cfg_async_write);
  244. scsidma_config_gpio();
  245. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
  246. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
  247. }
  248. else
  249. {
  250. // Synchronous write
  251. // Data state machine writes data to SCSI bus and dummy bits to its RX fifo.
  252. // Sync state machine empties the dummy bits every time ACK is received, to control the transmit pace.
  253. config_parity_sm_for_write();
  254. pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_sync_write, &g_scsi_dma.pio_cfg_sync_write);
  255. pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_write_pacer, &g_scsi_dma.pio_cfg_sync_write_pacer);
  256. scsidma_config_gpio();
  257. // Prefill RX fifo to set the syncOffset
  258. for (int i = 0; i < g_scsi_dma.syncOffsetPreload; i++)
  259. {
  260. pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM,
  261. pio_encode_push(false, false) | pio_encode_sideset(1, 1));
  262. }
  263. // Fill the pacer TX fifo
  264. // DMA should start transferring only after ACK pulses are received
  265. for (int i = 0; i < 4; i++)
  266. {
  267. pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, 0);
  268. }
  269. // Fill the pacer OSR
  270. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM,
  271. pio_encode_mov(pio_osr, pio_null));
  272. // Start DMA transfer to move dummy bits to write pacer
  273. dma_channel_configure(SCSI_DMA_CH_D,
  274. &g_scsi_dma.dmacfg_write_chD,
  275. &SCSI_DMA_PIO->txf[SCSI_SYNC_SM],
  276. &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
  277. 0xFFFFFFFF,
  278. true
  279. );
  280. // Enable state machines
  281. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
  282. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
  283. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
  284. }
  285. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
  286. }
  287. start_dma_write();
  288. }
  289. bool scsi_accel_rp2040_isWriteFinished(const uint8_t* data)
  290. {
  291. // Check if everything has completed
  292. if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_WRITE_DONE)
  293. {
  294. return true;
  295. }
  296. if (!data)
  297. return false;
  298. // Check if this data item is still in queue.
  299. bool finished = true;
  300. uint32_t status = save_and_disable_interrupts();
  301. if (data >= g_scsi_dma.app_buf &&
  302. data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
  303. (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].al1_read_addr)
  304. {
  305. finished = false; // In current transfer
  306. }
  307. else if (data >= g_scsi_dma.next_app_buf &&
  308. data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  309. {
  310. finished = false; // In queued transfer
  311. }
  312. restore_interrupts_from_disabled(status);
  313. return finished;
  314. }
  315. // Once DMA has finished, check if all PIO queues have been drained
  316. static bool scsi_accel_rp2040_isWriteDone()
  317. {
  318. // Check if data is still waiting in PIO FIFO
  319. if (!pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
  320. !pio_sm_is_rx_fifo_empty(SCSI_DMA_PIO, SCSI_PARITY_SM) ||
  321. !pio_sm_is_tx_fifo_empty(SCSI_DMA_PIO, SCSI_DATA_SM))
  322. {
  323. return false;
  324. }
  325. if (g_scsi_dma.syncOffset > 0)
  326. {
  327. // Check if all bytes of synchronous write have been acknowledged
  328. if (pio_sm_get_rx_fifo_level(SCSI_DMA_PIO, SCSI_DATA_SM) > g_scsi_dma.syncOffsetPreload)
  329. return false;
  330. }
  331. else
  332. {
  333. // Check if state machine has written out its OSR
  334. if (pio_sm_get_pc(SCSI_DMA_PIO, SCSI_DATA_SM) != g_scsi_dma.pio_offset_async_write)
  335. return false;
  336. }
  337. // Check if ACK of the final byte has finished
  338. if (SCSI_IN(ACK))
  339. return false;
  340. return true;
  341. }
  342. static void scsi_accel_rp2040_stopWrite(volatile int *resetFlag)
  343. {
  344. // Wait for TX fifo to be empty and ACK to go high
  345. // For synchronous writes wait for all ACKs to be received also
  346. uint32_t start = millis();
  347. while (!scsi_accel_rp2040_isWriteDone() && !*resetFlag)
  348. {
  349. if ((uint32_t)(millis() - start) > 5000)
  350. {
  351. log("scsi_accel_rp2040_stopWrite() timeout");
  352. scsi_accel_log_state();
  353. *resetFlag = 1;
  354. break;
  355. }
  356. }
  357. dma_channel_abort(SCSI_DMA_CH_A);
  358. dma_channel_abort(SCSI_DMA_CH_B);
  359. dma_channel_abort(SCSI_DMA_CH_C);
  360. dma_channel_abort(SCSI_DMA_CH_D);
  361. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
  362. g_scsi_dma_state = SCSIDMA_IDLE;
  363. SCSI_RELEASE_DATA_REQ();
  364. scsidma_config_gpio();
  365. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
  366. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
  367. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
  368. }
  369. void scsi_accel_rp2040_finishWrite(volatile int *resetFlag)
  370. {
  371. uint32_t start = millis();
  372. while (g_scsi_dma_state != SCSIDMA_IDLE && !*resetFlag)
  373. {
  374. if ((uint32_t)(millis() - start) > 5000)
  375. {
  376. log("scsi_accel_rp2040_finishWrite() timeout");
  377. scsi_accel_log_state();
  378. *resetFlag = 1;
  379. break;
  380. }
  381. if (g_scsi_dma_state == SCSIDMA_WRITE_DONE || *resetFlag)
  382. {
  383. // DMA done, wait for PIO to finish also and reconfig GPIO.
  384. scsi_accel_rp2040_stopWrite(resetFlag);
  385. }
  386. }
  387. }
  388. /****************************************/
  389. /* Accelerated reads from SCSI bus */
  390. /****************************************/
  391. // Load the SCSI read state machine with the address of the parity lookup table.
  392. // Also sets up DMA channels B, C and D
  393. static void config_parity_sm_for_read()
  394. {
  395. // Configure parity check state machine
  396. pio_sm_init(SCSI_DMA_PIO, SCSI_PARITY_SM, g_scsi_dma.pio_offset_read_parity, &g_scsi_dma.pio_cfg_read_parity);
  397. // Load base address to state machine register X
  398. uint32_t addrbase = (uint32_t)&g_scsi_parity_check_lookup[0];
  399. assert((addrbase & 0x3FF) == 0);
  400. pio_sm_init(SCSI_DMA_PIO, SCSI_DATA_SM, g_scsi_dma.pio_offset_read, &g_scsi_dma.pio_cfg_read);
  401. pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, addrbase >> 10);
  402. pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
  403. pio_sm_exec(SCSI_DMA_PIO, SCSI_DATA_SM, pio_encode_mov(pio_y, pio_osr) | pio_encode_sideset(1, 1));
  404. // For synchronous mode, the REQ pin is driven by SCSI_SYNC_SM, so disable it in SCSI_DATA_SM
  405. if (g_scsi_dma.syncOffset > 0)
  406. {
  407. pio_sm_set_sideset_pins(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
  408. }
  409. // DMA channel B will read g_scsi_parity_check_lookup and write to scsi_read_parity PIO.
  410. dma_channel_configure(SCSI_DMA_CH_B,
  411. &g_scsi_dma.dmacfg_read_chB,
  412. &SCSI_DMA_PIO->txf[SCSI_PARITY_SM],
  413. NULL,
  414. 1, false);
  415. // DMA channel C will copy addresses from data PIO to DMA channel B read address register.
  416. // It is triggered by the data SM RX FIFO request.
  417. // This triggers channel B by writing to READ_ADDR_TRIG
  418. // Channel B chaining re-enables this channel.
  419. dma_channel_configure(SCSI_DMA_CH_C,
  420. &g_scsi_dma.dmacfg_read_chC,
  421. &dma_hw->ch[SCSI_DMA_CH_B].al3_read_addr_trig,
  422. &SCSI_DMA_PIO->rxf[SCSI_DATA_SM],
  423. 1, true);
  424. if (g_scsi_dma.syncOffset == 0)
  425. {
  426. // DMA channel D will copy dummy words to scsi_accel_read PIO to set the number
  427. // of bytes to transfer.
  428. static const uint32_t dummy = 0;
  429. dma_channel_configure(SCSI_DMA_CH_D,
  430. &g_scsi_dma.dmacfg_read_chD,
  431. &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
  432. &dummy,
  433. 0, false);
  434. }
  435. else
  436. {
  437. pio_sm_init(SCSI_DMA_PIO, SCSI_SYNC_SM, g_scsi_dma.pio_offset_sync_read_pacer, &g_scsi_dma.pio_cfg_sync_read_pacer);
  438. // DMA channel D will copy words from scsi_sync_read_pacer to scsi_accel_read PIO
  439. // to control the offset between REQ pulses sent and ACK pulses received.
  440. dma_channel_configure(SCSI_DMA_CH_D,
  441. &g_scsi_dma.dmacfg_read_chD,
  442. &SCSI_DMA_PIO->txf[SCSI_DATA_SM],
  443. &SCSI_DMA_PIO->rxf[SCSI_SYNC_SM],
  444. 0, false);
  445. }
  446. // Clear PIO IRQ flag that is used to detect parity error
  447. SCSI_DMA_PIO->irq = 1;
  448. }
  449. static void start_dma_read()
  450. {
  451. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
  452. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
  453. pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_PARITY_SM);
  454. pio_sm_clear_fifos(SCSI_DMA_PIO, SCSI_DATA_SM);
  455. if (g_scsi_dma.app_bytes <= g_scsi_dma.dma_bytes)
  456. {
  457. // Buffer has been fully processed, swap it
  458. g_scsi_dma.dma_bytes = 0;
  459. g_scsi_dma.app_buf = g_scsi_dma.next_app_buf;
  460. g_scsi_dma.app_bytes = g_scsi_dma.next_app_bytes;
  461. g_scsi_dma.next_app_buf = 0;
  462. g_scsi_dma.next_app_bytes = 0;
  463. }
  464. // Check if we are all done.
  465. // From SCSIDMA_READ_DONE state we can either go to IDLE in stopRead()
  466. // or back to READ in startWrite().
  467. uint32_t bytes_to_read = g_scsi_dma.app_bytes - g_scsi_dma.dma_bytes;
  468. if (bytes_to_read == 0)
  469. {
  470. g_scsi_dma_state = SCSIDMA_READ_DONE;
  471. return;
  472. }
  473. if (g_scsi_dma.syncOffset == 0)
  474. {
  475. // Start sending dummy words to scsi_accel_read state machine
  476. dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
  477. }
  478. else
  479. {
  480. // Set number of bytes to receive to the scsi_sync_read_pacer state machine register X
  481. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
  482. hw_clear_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
  483. pio_sm_put(SCSI_DMA_PIO, SCSI_SYNC_SM, bytes_to_read - 1);
  484. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_pull(false, false) | pio_encode_sideset(1, 1));
  485. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_mov(pio_x, pio_osr) | pio_encode_sideset(1, 1));
  486. hw_set_bits(&SCSI_DMA_PIO->sm[SCSI_SYNC_SM].shiftctrl, PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS);
  487. // Prefill FIFOs to get correct syncOffset
  488. int prefill = 12 - g_scsi_dma.syncOffset;
  489. // Always at least 1 word to avoid race condition between REQ and ACK pulses
  490. if (prefill < 1) prefill = 1;
  491. // Up to 4 words in SCSI_DATA_SM TX fifo
  492. for (int i = 0; i < 4 && prefill > 0; i++)
  493. {
  494. pio_sm_put(SCSI_DMA_PIO, SCSI_DATA_SM, 0);
  495. prefill--;
  496. }
  497. // Up to 8 words in SCSI_SYNC_SM RX fifo
  498. for (int i = 0; i < 8 && prefill > 0; i++)
  499. {
  500. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_push(false, false) | pio_encode_sideset(1, 1));
  501. prefill--;
  502. }
  503. pio_sm_exec(SCSI_DMA_PIO, SCSI_SYNC_SM, pio_encode_jmp(g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_sideset(1, 1));
  504. // Start transfers
  505. dma_channel_set_trans_count(SCSI_DMA_CH_D, bytes_to_read, true);
  506. }
  507. // Start DMA to fill the destination buffer
  508. uint8_t *dest_buf = &g_scsi_dma.app_buf[g_scsi_dma.dma_bytes];
  509. g_scsi_dma.dma_bytes += bytes_to_read;
  510. dma_channel_configure(SCSI_DMA_CH_A,
  511. &g_scsi_dma.dmacfg_read_chA,
  512. dest_buf,
  513. &SCSI_DMA_PIO->rxf[SCSI_PARITY_SM],
  514. bytes_to_read,
  515. true
  516. );
  517. // Ready to start the data and parity check state machines
  518. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, true);
  519. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, true);
  520. if (g_scsi_dma.syncOffset > 0)
  521. {
  522. // Start sending REQ pulses
  523. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, true);
  524. }
  525. }
  526. void scsi_accel_rp2040_startRead(uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
  527. {
  528. // Any write requests should be matched with a stopWrite()
  529. assert(g_scsi_dma_state != SCSIDMA_WRITE && g_scsi_dma_state != SCSIDMA_WRITE_DONE);
  530. uint32_t status = save_and_disable_interrupts();
  531. if (g_scsi_dma_state == SCSIDMA_READ)
  532. {
  533. if (!g_scsi_dma.next_app_buf && data == g_scsi_dma.app_buf + g_scsi_dma.app_bytes)
  534. {
  535. // Combine with currently running request
  536. g_scsi_dma.app_bytes += count;
  537. count = 0;
  538. }
  539. else if (data == g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  540. {
  541. // Combine with queued request
  542. g_scsi_dma.next_app_bytes += count;
  543. count = 0;
  544. }
  545. else if (!g_scsi_dma.next_app_buf)
  546. {
  547. // Add as queued request
  548. g_scsi_dma.next_app_buf = (uint8_t*)data;
  549. g_scsi_dma.next_app_bytes = count;
  550. count = 0;
  551. }
  552. }
  553. restore_interrupts_from_disabled(status);
  554. // Check if the request was combined
  555. if (count == 0) return;
  556. if (g_scsi_dma_state != SCSIDMA_IDLE && g_scsi_dma_state != SCSIDMA_READ_DONE)
  557. {
  558. // Wait for previous request to finish
  559. scsi_accel_rp2040_finishRead(NULL, 0, parityError, resetFlag);
  560. if (*resetFlag)
  561. {
  562. return;
  563. }
  564. }
  565. bool must_reconfig_gpio = (g_scsi_dma_state == SCSIDMA_IDLE);
  566. g_scsi_dma_state = SCSIDMA_READ;
  567. g_scsi_dma.app_buf = (uint8_t*)data;
  568. g_scsi_dma.app_bytes = count;
  569. g_scsi_dma.dma_bytes = 0;
  570. g_scsi_dma.next_app_buf = 0;
  571. g_scsi_dma.next_app_bytes = 0;
  572. if (must_reconfig_gpio)
  573. {
  574. config_parity_sm_for_read();
  575. scsidma_config_gpio();
  576. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, true);
  577. }
  578. start_dma_read();
  579. }
  580. bool scsi_accel_rp2040_isReadFinished(const uint8_t* data)
  581. {
  582. // Check if everything has completed
  583. if (g_scsi_dma_state == SCSIDMA_IDLE || g_scsi_dma_state == SCSIDMA_READ_DONE)
  584. {
  585. return true;
  586. }
  587. if (!data)
  588. return false;
  589. // Check if this data item is still in queue.
  590. bool finished = true;
  591. uint32_t status = save_and_disable_interrupts();
  592. if (data >= g_scsi_dma.app_buf &&
  593. data < g_scsi_dma.app_buf + g_scsi_dma.app_bytes &&
  594. (uint32_t)data >= dma_hw->ch[SCSI_DMA_CH_A].write_addr)
  595. {
  596. finished = false; // In current transfer
  597. }
  598. else if (data >= g_scsi_dma.next_app_buf &&
  599. data < g_scsi_dma.next_app_buf + g_scsi_dma.next_app_bytes)
  600. {
  601. finished = false; // In queued transfer
  602. }
  603. restore_interrupts_from_disabled(status);
  604. return finished;
  605. }
  606. static void scsi_accel_rp2040_stopRead()
  607. {
  608. dma_channel_abort(SCSI_DMA_CH_A);
  609. dma_channel_abort(SCSI_DMA_CH_B);
  610. dma_channel_abort(SCSI_DMA_CH_C);
  611. dma_channel_abort(SCSI_DMA_CH_D);
  612. dma_channel_set_irq0_enabled(SCSI_DMA_CH_A, false);
  613. g_scsi_dma_state = SCSIDMA_IDLE;
  614. SCSI_RELEASE_DATA_REQ();
  615. scsidma_config_gpio();
  616. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_PARITY_SM, false);
  617. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_DATA_SM, false);
  618. pio_sm_set_enabled(SCSI_DMA_PIO, SCSI_SYNC_SM, false);
  619. }
  620. void scsi_accel_rp2040_finishRead(const uint8_t *data, uint32_t count, int *parityError, volatile int *resetFlag)
  621. {
  622. uint32_t start = millis();
  623. const uint8_t *query_addr = (data ? (data + count - 1) : NULL);
  624. while (!scsi_accel_rp2040_isReadFinished(query_addr) && !*resetFlag)
  625. {
  626. if ((uint32_t)(millis() - start) > 5000)
  627. {
  628. log("scsi_accel_rp2040_finishRead timeout");
  629. scsi_accel_log_state();
  630. *resetFlag = 1;
  631. break;
  632. }
  633. }
  634. if (g_scsi_dma_state == SCSIDMA_READ_DONE || *resetFlag)
  635. {
  636. // This was last buffer, release bus
  637. scsi_accel_rp2040_stopRead();
  638. }
  639. // Check if any parity errors have been detected during the transfer so far
  640. if (SCSI_DMA_PIO->irq & 1)
  641. {
  642. debuglog("scsi_accel_rp2040_finishRead(", bytearray(data, count), ") detected parity error");
  643. *parityError = true;
  644. }
  645. }
  646. /*******************************************************/
  647. /* Write SCSI PIO program timings and ACK pin */
  648. /*******************************************************/
  649. static void platform_pio_remove_program(PIO pio, const pio_program_t *program, uint loaded_offset, bool &removed)
  650. {
  651. if (!removed)
  652. {
  653. pio_remove_program(pio, program, loaded_offset);
  654. removed = true;
  655. }
  656. }
  657. static int pio_add_scsi_accel_async_write_program()
  658. {
  659. platform_pio_remove_program(SCSI_DMA_PIO,
  660. &scsi_accel_async_write_program,
  661. g_scsi_dma.pio_offset_async_write,
  662. g_scsi_dma.pio_removed_async_write);
  663. uint16_t rewrote_instructions[sizeof(scsi_accel_async_write_program_instructions)/sizeof(scsi_accel_async_write_program_instructions[0])];
  664. pio_program rewrote_program = {rewrote_instructions,
  665. scsi_accel_async_write_program.length,
  666. scsi_accel_async_write_program.origin,
  667. scsi_accel_async_write_program.pio_version};
  668. memcpy(rewrote_instructions,
  669. scsi_accel_async_write_program_instructions,
  670. sizeof(scsi_accel_async_write_program_instructions));
  671. // out null, 23 side 1 [0] ;[REQ_DLY-2] ; Discard unused bits, wait for data preset time
  672. uint8_t delay = g_bluescsi_timings->scsi.req_delay - 2;
  673. assert( delay <= 0xF);
  674. rewrote_instructions[2] |= pio_encode_delay(delay);
  675. // wait 1 gpio ACK side 1 ; Wait for ACK to be inactive
  676. rewrote_instructions[3] = pio_encode_wait_gpio(true, SCSI_IN_ACK) | pio_encode_sideset(1, 1);
  677. // wait 0 gpio ACK side 0 ; Assert REQ, wait for ACK low
  678. rewrote_instructions[4] = pio_encode_wait_gpio(false, SCSI_IN_ACK) | pio_encode_sideset(1, 0);
  679. g_scsi_dma.pio_removed_async_write = false;
  680. return pio_add_program(SCSI_DMA_PIO, &rewrote_program);
  681. }
  682. static int pio_add_scsi_accel_read_program()
  683. {
  684. platform_pio_remove_program(SCSI_DMA_PIO,
  685. &scsi_accel_read_program,
  686. g_scsi_dma.pio_offset_read,
  687. g_scsi_dma.pio_removed_read);
  688. uint16_t rewrote_instructions[sizeof(scsi_accel_read_program_instructions)/sizeof(scsi_accel_read_program_instructions[0])];
  689. pio_program rewrote_program = {
  690. rewrote_instructions,
  691. scsi_accel_read_program.length,
  692. scsi_accel_read_program.origin,
  693. scsi_accel_read_program.pio_version};
  694. memcpy(rewrote_instructions,
  695. scsi_accel_read_program_instructions,
  696. sizeof(scsi_accel_read_program_instructions));
  697. // wait 1 gpio ACK side 1 ; Wait for ACK high
  698. rewrote_instructions[1] = pio_encode_wait_gpio(true, SCSI_IN_ACK) | pio_encode_sideset(1, 1);
  699. // wait 0 gpio ACK side 0 ; Assert REQ, wait for ACK low
  700. rewrote_instructions[3] = pio_encode_wait_gpio(false, SCSI_IN_ACK) | pio_encode_sideset(1, 0);
  701. g_scsi_dma.pio_removed_read = false;
  702. return pio_add_program(SCSI_DMA_PIO, &rewrote_program);
  703. }
  704. static int pio_add_scsi_sync_write_pacer_program()
  705. {
  706. platform_pio_remove_program(SCSI_DMA_PIO,
  707. &scsi_sync_write_pacer_program,
  708. g_scsi_dma.pio_offset_sync_write_pacer,
  709. g_scsi_dma.pio_removed_sync_write_pacer);
  710. uint16_t rewrote_instructions[sizeof(scsi_sync_write_pacer_program_instructions)/sizeof(scsi_sync_write_pacer_program_instructions[0])];
  711. pio_program rewrote_program = {
  712. rewrote_instructions,
  713. scsi_sync_write_pacer_program.length,
  714. scsi_sync_write_pacer_program.origin,
  715. scsi_sync_write_pacer_program.pio_version};
  716. memcpy(rewrote_instructions,
  717. scsi_sync_write_pacer_program_instructions,
  718. sizeof(scsi_sync_write_pacer_program_instructions));
  719. // wait 1 gpio ACK
  720. rewrote_instructions[0] = pio_encode_wait_gpio(true, SCSI_IN_ACK);
  721. // wait 0 gpio ACK ; Wait for falling edge on ACK
  722. rewrote_instructions[1] = pio_encode_wait_gpio(false, SCSI_IN_ACK);
  723. g_scsi_dma.pio_removed_sync_write_pacer = false;
  724. return pio_add_program(SCSI_DMA_PIO, &rewrote_program);
  725. }
  726. static int pio_add_scsi_parity_program()
  727. {
  728. g_scsi_dma.pio_removed_parity = false;
  729. return pio_add_program(SCSI_DMA_PIO, &scsi_parity_program);
  730. }
  731. static int pio_add_scsi_sync_read_pacer_program()
  732. {
  733. g_scsi_dma.pio_removed_sync_read_pacer = false;
  734. return pio_add_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program);
  735. }
  736. static int pio_add_scsi_read_parity_program()
  737. {
  738. g_scsi_dma.pio_removed_read_parity = false;
  739. return pio_add_program(SCSI_DMA_PIO, &scsi_read_parity_program);
  740. }
  741. static int pio_add_scsi_sync_write_program()
  742. {
  743. g_scsi_dma.pio_removed_sync_write = false;
  744. return pio_add_program(SCSI_DMA_PIO, &scsi_sync_write_program);
  745. }
  746. /*******************************************************/
  747. /* Initialization functions common to read/write */
  748. /*******************************************************/
  749. static void scsi_dma_irq()
  750. {
  751. #ifndef ENABLE_AUDIO_OUTPUT
  752. dma_hw->ints0 = (1 << SCSI_DMA_CH_A);
  753. #else
  754. // see audio.h for whats going on here
  755. if (dma_hw->intr & (1 << SCSI_DMA_CH_A)) {
  756. dma_hw->ints0 = (1 << SCSI_DMA_CH_A);
  757. } else {
  758. audio_dma_irq();
  759. return;
  760. }
  761. #endif
  762. scsidma_state_t state = g_scsi_dma_state;
  763. if (state == SCSIDMA_WRITE)
  764. {
  765. // Start writing from next buffer, if any, or set state to SCSIDMA_WRITE_DONE
  766. start_dma_write();
  767. }
  768. else if (state == SCSIDMA_READ)
  769. {
  770. // Start reading into next buffer, if any, or set state to SCSIDMA_READ_DONE
  771. start_dma_read();
  772. }
  773. }
  774. // Select GPIO from PIO peripheral or from software controlled SIO
  775. static void scsidma_config_gpio()
  776. {
  777. if (g_scsi_dma_state == SCSIDMA_IDLE)
  778. {
  779. iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
  780. iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
  781. iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
  782. iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
  783. iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
  784. iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
  785. iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
  786. iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
  787. iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
  788. iobank0_hw->io[scsi_pins.OUT_REQ].ctrl = GPIO_FUNC_SIO;
  789. }
  790. else if (g_scsi_dma_state == SCSIDMA_WRITE)
  791. {
  792. // Make sure the initial state of all pins is high and output
  793. pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.SCSI_ACCEL_PINMASK);
  794. // Binary of 0x3FF is is 0 0 1 1 11111111
  795. // ? A R P DBP
  796. // A = ACK, R = REQ, DBP are the data pins
  797. // REQ internal state needs to be set 'high'
  798. // 100000010000000000111111111
  799. // Probably right to left here, so 0 - 9 are set 'high' and 10/11 are set 'low'
  800. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, true);
  801. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.OUT_REQ, 1, true);
  802. iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_PIO0;
  803. iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_PIO0;
  804. iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_PIO0;
  805. iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_PIO0;
  806. iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_PIO0;
  807. iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_PIO0;
  808. iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_PIO0;
  809. iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_PIO0;
  810. iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_PIO0;
  811. iobank0_hw->io[scsi_pins.OUT_REQ].ctrl = GPIO_FUNC_PIO0;
  812. }
  813. else if (g_scsi_dma_state == SCSIDMA_READ)
  814. {
  815. if (g_scsi_dma.syncOffset == 0)
  816. {
  817. // Asynchronous read
  818. // Data bus as input, REQ pin as output
  819. pio_sm_set_pins(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.SCSI_ACCEL_PINMASK);
  820. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);
  821. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, scsi_pins.OUT_REQ, 1, true);
  822. }
  823. else
  824. {
  825. // Synchronous read, REQ pin is written by SYNC_SM
  826. pio_sm_set_pins(SCSI_DMA_PIO, SCSI_SYNC_SM, scsi_pins.SCSI_ACCEL_PINMASK);
  827. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_DATA_SM, 0, 9, false);
  828. pio_sm_set_consecutive_pindirs(SCSI_DMA_PIO, SCSI_SYNC_SM, scsi_pins.OUT_REQ, 1, true);
  829. }
  830. iobank0_hw->io[SCSI_IO_DB0].ctrl = GPIO_FUNC_SIO;
  831. iobank0_hw->io[SCSI_IO_DB1].ctrl = GPIO_FUNC_SIO;
  832. iobank0_hw->io[SCSI_IO_DB2].ctrl = GPIO_FUNC_SIO;
  833. iobank0_hw->io[SCSI_IO_DB3].ctrl = GPIO_FUNC_SIO;
  834. iobank0_hw->io[SCSI_IO_DB4].ctrl = GPIO_FUNC_SIO;
  835. iobank0_hw->io[SCSI_IO_DB5].ctrl = GPIO_FUNC_SIO;
  836. iobank0_hw->io[SCSI_IO_DB6].ctrl = GPIO_FUNC_SIO;
  837. iobank0_hw->io[SCSI_IO_DB7].ctrl = GPIO_FUNC_SIO;
  838. iobank0_hw->io[SCSI_IO_DBP].ctrl = GPIO_FUNC_SIO;
  839. iobank0_hw->io[scsi_pins.OUT_REQ].ctrl = GPIO_FUNC_PIO0;
  840. }
  841. }
  842. void scsi_accel_rp2040_init()
  843. {
  844. g_scsi_dma_state = SCSIDMA_IDLE;
  845. scsidma_config_gpio();
  846. static bool first_init = true;
  847. if (first_init)
  848. {
  849. g_scsi_dma.pio_removed_parity = true;
  850. g_scsi_dma.pio_removed_async_write = true;
  851. g_scsi_dma.pio_removed_sync_write_pacer = true;
  852. g_scsi_dma.pio_removed_sync_write = true;
  853. g_scsi_dma.pio_removed_read = true;
  854. g_scsi_dma.pio_removed_read_parity = true;
  855. g_scsi_dma.pio_removed_sync_read_pacer = true;
  856. first_init = false;
  857. }
  858. if (g_channels_claimed) {
  859. // Un-claim all SCSI state machines
  860. pio_sm_unclaim(SCSI_DMA_PIO, SCSI_PARITY_SM);
  861. pio_sm_unclaim(SCSI_DMA_PIO, SCSI_DATA_SM);
  862. pio_sm_unclaim(SCSI_DMA_PIO, SCSI_SYNC_SM);
  863. // Remove all SCSI programs
  864. platform_pio_remove_program(SCSI_DMA_PIO, &scsi_parity_program, g_scsi_dma.pio_offset_parity, g_scsi_dma.pio_removed_parity);
  865. platform_pio_remove_program(SCSI_DMA_PIO, &scsi_accel_async_write_program, g_scsi_dma.pio_offset_async_write, g_scsi_dma.pio_removed_async_write);
  866. platform_pio_remove_program(SCSI_DMA_PIO, &scsi_sync_write_pacer_program, g_scsi_dma.pio_offset_sync_write_pacer, g_scsi_dma.pio_removed_sync_write_pacer);
  867. platform_pio_remove_program(SCSI_DMA_PIO, &scsi_accel_read_program, g_scsi_dma.pio_offset_read, g_scsi_dma.pio_removed_read);
  868. platform_pio_remove_program(SCSI_DMA_PIO, &scsi_sync_read_pacer_program, g_scsi_dma.pio_offset_sync_read_pacer, g_scsi_dma.pio_removed_sync_read_pacer);
  869. platform_pio_remove_program(SCSI_DMA_PIO, &scsi_read_parity_program, g_scsi_dma.pio_offset_read_parity, g_scsi_dma.pio_removed_read_parity);
  870. platform_pio_remove_program(SCSI_DMA_PIO, &scsi_sync_write_program, g_scsi_dma.pio_offset_sync_write, g_scsi_dma.pio_removed_sync_write);
  871. // Un-claim all SCSI DMA channels
  872. dma_channel_unclaim(SCSI_DMA_CH_A);
  873. dma_channel_unclaim(SCSI_DMA_CH_B);
  874. dma_channel_unclaim(SCSI_DMA_CH_C);
  875. dma_channel_unclaim(SCSI_DMA_CH_D);
  876. // Set flag to re-initialize SCSI PIO system
  877. g_channels_claimed = false;
  878. }
  879. if (!g_channels_claimed) {
  880. // Mark channels as being in use, unless it has been done already
  881. pio_sm_claim(SCSI_DMA_PIO, SCSI_PARITY_SM);
  882. pio_sm_claim(SCSI_DMA_PIO, SCSI_DATA_SM);
  883. pio_sm_claim(SCSI_DMA_PIO, SCSI_SYNC_SM);
  884. dma_channel_claim(SCSI_DMA_CH_A);
  885. dma_channel_claim(SCSI_DMA_CH_B);
  886. dma_channel_claim(SCSI_DMA_CH_C);
  887. dma_channel_claim(SCSI_DMA_CH_D);
  888. g_channels_claimed = true;
  889. }
  890. // Parity lookup generator
  891. g_scsi_dma.pio_offset_parity = pio_add_scsi_parity_program();
  892. g_scsi_dma.pio_cfg_parity = scsi_parity_program_get_default_config(g_scsi_dma.pio_offset_parity);
  893. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_parity, true, false, 32);
  894. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_parity, true, true, 32);
  895. // Asynchronous SCSI write
  896. g_scsi_dma.pio_offset_async_write = pio_add_scsi_accel_async_write_program();
  897. g_scsi_dma.pio_cfg_async_write = scsi_accel_async_write_program_get_default_config(g_scsi_dma.pio_offset_async_write);
  898. sm_config_set_out_pins(&g_scsi_dma.pio_cfg_async_write, SCSI_IO_DB0, 9);
  899. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_async_write, scsi_pins.OUT_REQ);
  900. sm_config_set_fifo_join(&g_scsi_dma.pio_cfg_async_write, PIO_FIFO_JOIN_TX);
  901. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_async_write, true, false, 32);
  902. // Synchronous SCSI write pacer / ACK handler
  903. g_scsi_dma.pio_offset_sync_write_pacer = pio_add_scsi_sync_write_pacer_program();
  904. g_scsi_dma.pio_cfg_sync_write_pacer = scsi_sync_write_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_write_pacer);
  905. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, 1);
  906. // Synchronous SCSI data writer
  907. g_scsi_dma.pio_offset_sync_write = pio_add_scsi_sync_write_program();
  908. g_scsi_dma.pio_cfg_sync_write = scsi_sync_write_program_get_default_config(g_scsi_dma.pio_offset_sync_write);
  909. sm_config_set_out_pins(&g_scsi_dma.pio_cfg_sync_write, SCSI_IO_DB0, 9);
  910. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_write, scsi_pins.OUT_REQ);
  911. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 32);
  912. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, 1);
  913. // Asynchronous / synchronous SCSI read
  914. g_scsi_dma.pio_offset_read = pio_add_scsi_accel_read_program();
  915. g_scsi_dma.pio_cfg_read = scsi_accel_read_program_get_default_config(g_scsi_dma.pio_offset_read);
  916. sm_config_set_in_pins(&g_scsi_dma.pio_cfg_read, SCSI_IO_DB0);
  917. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_read, scsi_pins.OUT_REQ);
  918. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read, true, false, 32);
  919. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read, true, true, 32);
  920. // Synchronous SCSI read pacer
  921. g_scsi_dma.pio_offset_sync_read_pacer = pio_add_scsi_sync_read_pacer_program();
  922. g_scsi_dma.pio_cfg_sync_read_pacer = scsi_sync_read_pacer_program_get_default_config(g_scsi_dma.pio_offset_sync_read_pacer);
  923. sm_config_set_sideset_pins(&g_scsi_dma.pio_cfg_sync_read_pacer, scsi_pins.OUT_REQ);
  924. // Read parity check
  925. g_scsi_dma.pio_offset_read_parity = pio_add_scsi_read_parity_program();
  926. g_scsi_dma.pio_cfg_read_parity = scsi_read_parity_program_get_default_config(g_scsi_dma.pio_offset_read_parity);
  927. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_read_parity, true, true, 32);
  928. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_read_parity, true, false, 32);
  929. // Create DMA channel configurations so they can be applied quickly later
  930. // For write to SCSI BUS:
  931. // Channel A: Bytes from RAM to scsi_parity PIO
  932. dma_channel_config cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
  933. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
  934. channel_config_set_read_increment(&cfg, true);
  935. channel_config_set_write_increment(&cfg, false);
  936. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, true));
  937. g_scsi_dma.dmacfg_write_chA = cfg;
  938. // Channel B: Addresses from scsi_parity PIO to lookup DMA READ_ADDR register
  939. cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
  940. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  941. channel_config_set_read_increment(&cfg, false);
  942. channel_config_set_write_increment(&cfg, false);
  943. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
  944. g_scsi_dma.dmacfg_write_chB = cfg;
  945. // Channel C: Lookup from g_scsi_parity_lookup and copy to scsi_accel_async_write or scsi_sync_write PIO
  946. // When done, chain to channel B
  947. cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
  948. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
  949. channel_config_set_read_increment(&cfg, false);
  950. channel_config_set_write_increment(&cfg, false);
  951. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
  952. channel_config_set_chain_to(&cfg, SCSI_DMA_CH_B);
  953. g_scsi_dma.dmacfg_write_chC = cfg;
  954. // Channel D: In synchronous mode a second DMA channel is used to transfer dummy bits
  955. // from first state machine to second one.
  956. cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
  957. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  958. channel_config_set_read_increment(&cfg, false);
  959. channel_config_set_write_increment(&cfg, false);
  960. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_SYNC_SM, true));
  961. g_scsi_dma.dmacfg_write_chD = cfg;
  962. // For read from SCSI BUS:
  963. // Channel A: Bytes from scsi_read_parity PIO to destination memory buffer
  964. // This takes the bottom 8 bits which is the data without parity bit.
  965. // Triggered by scsi_read_parity RX FIFO.
  966. cfg = dma_channel_get_default_config(SCSI_DMA_CH_A);
  967. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_8);
  968. channel_config_set_read_increment(&cfg, false);
  969. channel_config_set_write_increment(&cfg, true);
  970. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_PARITY_SM, false));
  971. g_scsi_dma.dmacfg_read_chA = cfg;
  972. // Channel B: Lookup from g_scsi_parity_check_lookup and copy to scsi_read_parity PIO
  973. // Triggered by channel C writing to READ_ADDR_TRIG
  974. // Re-enables channel C by chaining after done.
  975. cfg = dma_channel_get_default_config(SCSI_DMA_CH_B);
  976. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_16);
  977. channel_config_set_read_increment(&cfg, false);
  978. channel_config_set_write_increment(&cfg, false);
  979. channel_config_set_dreq(&cfg, DREQ_FORCE);
  980. channel_config_set_chain_to(&cfg, SCSI_DMA_CH_C);
  981. cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
  982. g_scsi_dma.dmacfg_read_chB = cfg;
  983. // Channel C: Addresses from scsi_read PIO to channel B READ_ADDR register
  984. // A single transfer starts when PIO RX FIFO has data.
  985. // The DMA channel is re-enabled by channel B chaining.
  986. cfg = dma_channel_get_default_config(SCSI_DMA_CH_C);
  987. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  988. channel_config_set_read_increment(&cfg, false);
  989. channel_config_set_write_increment(&cfg, false);
  990. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, false));
  991. g_scsi_dma.dmacfg_read_chC = cfg;
  992. // Channel D: In synchronous mode a second DMA channel is used to transfer dummy words
  993. // from first state machine to second one to control the pace of data transfer.
  994. // In asynchronous mode this just transfers words to control the number of bytes.
  995. cfg = dma_channel_get_default_config(SCSI_DMA_CH_D);
  996. channel_config_set_transfer_data_size(&cfg, DMA_SIZE_32);
  997. channel_config_set_read_increment(&cfg, false);
  998. channel_config_set_write_increment(&cfg, false);
  999. channel_config_set_dreq(&cfg, pio_get_dreq(SCSI_DMA_PIO, SCSI_DATA_SM, true));
  1000. g_scsi_dma.dmacfg_read_chD = cfg;
  1001. // Interrupts are used for data buffer swapping
  1002. irq_set_exclusive_handler(DMA_IRQ_0, scsi_dma_irq);
  1003. irq_set_enabled(DMA_IRQ_0, true);
  1004. }
  1005. bool scsi_accel_rp2040_setSyncMode(int syncOffset, int syncPeriod)
  1006. {
  1007. if (g_scsi_dma_state != SCSIDMA_IDLE)
  1008. {
  1009. log("ERROR: SCSI DMA was in state ", (int)g_scsi_dma_state, " when changing sync mode, forcing bus reset");
  1010. scsi_accel_log_state();
  1011. return false;
  1012. }
  1013. if (syncOffset != g_scsi_dma.syncOffset || syncPeriod != g_scsi_dma.syncPeriod)
  1014. {
  1015. g_scsi_dma.syncOffset = syncOffset;
  1016. g_scsi_dma.syncPeriod = syncPeriod;
  1017. if (syncOffset > 0)
  1018. {
  1019. // Set up offset amount to PIO state machine configs.
  1020. // The RX fifo of scsi_sync_write has 4 slots.
  1021. // We can preload it with 0-3 items and set the autopush threshold 1, 2, 4 ... 32
  1022. // to act as a divider. This allows offsets 1 to 128 bytes.
  1023. // SCSI2SD code currently only uses offsets up to 15.
  1024. if (syncOffset <= 4)
  1025. {
  1026. g_scsi_dma.syncOffsetDivider = 1;
  1027. g_scsi_dma.syncOffsetPreload = 5 - syncOffset;
  1028. }
  1029. else if (syncOffset <= 8)
  1030. {
  1031. g_scsi_dma.syncOffsetDivider = 2;
  1032. g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 2;
  1033. }
  1034. else if (syncOffset <= 16)
  1035. {
  1036. g_scsi_dma.syncOffsetDivider = 4;
  1037. g_scsi_dma.syncOffsetPreload = 5 - syncOffset / 4;
  1038. }
  1039. else
  1040. {
  1041. g_scsi_dma.syncOffsetDivider = 4;
  1042. g_scsi_dma.syncOffsetPreload = 0;
  1043. }
  1044. // To properly detect when all bytes have been ACKed,
  1045. // we need at least one vacant slot in the FIFO.
  1046. if (g_scsi_dma.syncOffsetPreload > 3)
  1047. g_scsi_dma.syncOffsetPreload = 3;
  1048. sm_config_set_out_shift(&g_scsi_dma.pio_cfg_sync_write_pacer, true, true, g_scsi_dma.syncOffsetDivider);
  1049. sm_config_set_in_shift(&g_scsi_dma.pio_cfg_sync_write, true, true, g_scsi_dma.syncOffsetDivider);
  1050. // Set up the timing parameters to PIO program
  1051. // The scsi_sync_write PIO program consists of three instructions.
  1052. // The delays are in clock cycles, each taking 8 ns (@100MHz) or 6.66ns (@150MHz).
  1053. // delay0: Delay from data write to REQ assertion (data setup)
  1054. // delay1: Delay from REQ assert to REQ deassert (req pulse width)
  1055. // delay2: Delay from REQ deassert to data write (negation period)
  1056. // see timings.c for delay periods in clock cycles
  1057. int delay0, delay1, delay2;
  1058. uint32_t up_rounder = g_bluescsi_timings->scsi.clk_period_ps / 2 + 1;
  1059. uint32_t delay_in_ps = (syncPeriod * 4) * 1000;
  1060. // This is the delay in clock cycles rounded up
  1061. int totalDelay = (delay_in_ps + up_rounder) / g_bluescsi_timings->scsi.clk_period_ps;
  1062. if (syncPeriod < 25)
  1063. {
  1064. // Fast-20 SCSI timing: 15 ns assertion period
  1065. // The hardware rise and fall time require some extra delay,
  1066. // These delays are in addition to the 1 cycle that the PIO takes to execute the instruction
  1067. totalDelay += g_bluescsi_timings->scsi_20.total_delay_adjust;
  1068. delay0 = g_bluescsi_timings->scsi_20.delay0; //Data setup time, should be min 11.5ns according to the spec for FAST-20
  1069. delay1 = g_bluescsi_timings->scsi_20.delay1; //pulse width, should be min 15ns according to the spec for FAST-20
  1070. delay2 = totalDelay - delay0 - delay1 - 3; //Data hold time, should be min 16.5ns according to the spec for FAST-20
  1071. if (delay2 < 0) delay2 = 0;
  1072. if (delay2 > 15) delay2 = 15;
  1073. }
  1074. else if (syncPeriod < 50 )
  1075. {
  1076. // Fast-10 SCSI timing: 30 ns assertion period, 25 ns skew delay
  1077. // The hardware rise and fall time require some extra delay,
  1078. totalDelay += g_bluescsi_timings->scsi_10.total_delay_adjust;
  1079. delay0 = g_bluescsi_timings->scsi_10.delay0; // 4;
  1080. delay1 = g_bluescsi_timings->scsi_10.delay1; // 6;
  1081. delay2 = totalDelay - delay0 - delay1 - 3;
  1082. if (delay2 < 0) delay2 = 0;
  1083. if (delay2 > 15) delay2 = 15;
  1084. }
  1085. else
  1086. {
  1087. // Slow SCSI timing: 90 ns assertion period, 55 ns skew delay
  1088. totalDelay += g_bluescsi_timings->scsi_5.total_delay_adjust;
  1089. delay0 = g_bluescsi_timings->scsi_5.delay0;
  1090. delay1 = g_bluescsi_timings->scsi_5.delay1;
  1091. delay2 = totalDelay - delay0 - delay1 - 3;
  1092. if (delay2 < 0) delay2 = 0;
  1093. if (delay2 > 15) delay2 = 15;
  1094. }
  1095. // Patch the delay values into the instructions in scsi_sync_write.
  1096. // The code in scsi_accel.pio must have delay set to 0 for this to work correctly.
  1097. uint16_t instr0 = scsi_sync_write_program_instructions[0] | pio_encode_delay(delay0);
  1098. uint16_t instr1 = scsi_sync_write_program_instructions[1] | pio_encode_delay(delay1);
  1099. uint16_t instr2 = scsi_sync_write_program_instructions[2] | pio_encode_delay(delay2);
  1100. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 0] = instr0;
  1101. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 1] = instr1;
  1102. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_write + 2] = instr2;
  1103. // And similar patching for scsi_sync_read_pacer
  1104. int rdelay2 = totalDelay - delay1 - 2;
  1105. if (rdelay2 > 15) rdelay2 = 15;
  1106. if (rdelay2 < 5) rdelay2 = 5;
  1107. uint16_t rinstr0 = scsi_sync_read_pacer_program_instructions[0] | pio_encode_delay(rdelay2);
  1108. uint16_t rinstr1 = (scsi_sync_read_pacer_program_instructions[1] + g_scsi_dma.pio_offset_sync_read_pacer) | pio_encode_delay(delay1);
  1109. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 0] = rinstr0;
  1110. SCSI_DMA_PIO->instr_mem[g_scsi_dma.pio_offset_sync_read_pacer + 1] = rinstr1;
  1111. }
  1112. }
  1113. return true;
  1114. }