BlueSCSI_initiator.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
  1. /*
  2. * ZuluSCSI
  3. * Copyright (c) 2022 Rabbit Hole Computing
  4. *
  5. * Main program for initiator mode.
  6. */
  7. #include "BlueSCSI_config.h"
  8. #include "BlueSCSI_log.h"
  9. #include "BlueSCSI_log_trace.h"
  10. #include "BlueSCSI_initiator.h"
  11. #include <BlueSCSI_platform.h>
  12. #include <minIni.h>
  13. #include "SdFat.h"
  14. #include <scsi2sd.h>
  15. extern "C" {
  16. #include <scsi.h>
  17. }
  18. #ifndef PLATFORM_HAS_INITIATOR_MODE
  19. void scsiInitiatorInit()
  20. {
  21. }
  22. void scsiInitiatorMainLoop()
  23. {
  24. }
  25. int scsiInitiatorRunCommand(const uint8_t *command, size_t cmdlen,
  26. uint8_t *bufIn, size_t bufInLen,
  27. const uint8_t *bufOut, size_t bufOutLen)
  28. {
  29. return -1;
  30. }
  31. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  32. {
  33. return false;
  34. }
  35. #else
  36. /*************************************
  37. * High level initiator mode logic *
  38. *************************************/
  39. static struct {
  40. // Bitmap of all drives that have been imaged
  41. uint32_t drives_imaged;
  42. uint8_t initiator_id;
  43. // Is imaging a drive in progress, or are we scanning?
  44. bool imaging;
  45. // Information about currently selected drive
  46. int target_id;
  47. uint32_t sectorsize;
  48. uint32_t sectorcount;
  49. uint32_t sectorcount_all;
  50. uint32_t sectors_done;
  51. uint32_t max_sector_per_transfer;
  52. uint32_t badSectorCount;
  53. uint8_t ansiVersion;
  54. uint8_t maxRetryCount;
  55. uint8_t deviceType;
  56. // Retry information for sector reads.
  57. // If a large read fails, retry is done sector-by-sector.
  58. int retrycount;
  59. uint32_t failposition;
  60. bool ejectWhenDone;
  61. FsFile target_file;
  62. } g_initiator_state;
  63. extern SdFs SD;
  64. // Initialization of initiator mode
  65. void scsiInitiatorInit()
  66. {
  67. scsiHostPhyReset();
  68. g_initiator_state.initiator_id = ini_getl("SCSI", "InitiatorID", 7, CONFIGFILE);
  69. if (g_initiator_state.initiator_id > 7)
  70. {
  71. log("InitiatorID set to illegal value in, ", CONFIGFILE, ", defaulting to 7");
  72. g_initiator_state.initiator_id = 7;
  73. } else
  74. {
  75. log_f("InitiatorID set to ID %d", g_initiator_state.initiator_id);
  76. }
  77. g_initiator_state.maxRetryCount = ini_getl("SCSI", "InitiatorMaxRetry", 5, CONFIGFILE);
  78. // treat initiator id as already imaged drive so it gets skipped
  79. g_initiator_state.drives_imaged = 1 << g_initiator_state.initiator_id;
  80. g_initiator_state.imaging = false;
  81. g_initiator_state.target_id = -1;
  82. g_initiator_state.sectorsize = 0;
  83. g_initiator_state.sectorcount = 0;
  84. g_initiator_state.sectors_done = 0;
  85. g_initiator_state.retrycount = 0;
  86. g_initiator_state.failposition = 0;
  87. g_initiator_state.max_sector_per_transfer = 512;
  88. g_initiator_state.ansiVersion = 0;
  89. g_initiator_state.badSectorCount = 0;
  90. g_initiator_state.deviceType = DEVICE_TYPE_DIRECT_ACCESS;
  91. g_initiator_state.ejectWhenDone = false;
  92. }
  93. // Update progress bar LED during transfers
  94. static void scsiInitiatorUpdateLed()
  95. {
  96. // Update status indicator, the led blinks every 5 seconds and is on the longer the more data has been transferred
  97. const int period = 256;
  98. int phase = (millis() % period);
  99. int duty = g_initiator_state.sectors_done * period / g_initiator_state.sectorcount;
  100. // Minimum and maximum time to verify that the blink is visible
  101. if (duty < 50) duty = 50;
  102. if (duty > period - 50) duty = period - 50;
  103. if (phase <= duty)
  104. {
  105. LED_ON();
  106. }
  107. else
  108. {
  109. LED_OFF();
  110. }
  111. }
  112. void delay_with_poll(uint32_t ms)
  113. {
  114. uint32_t start = millis();
  115. while ((uint32_t)(millis() - start) < ms)
  116. {
  117. platform_poll();
  118. delay(1);
  119. }
  120. }
  121. // High level logic of the initiator mode
  122. void scsiInitiatorMainLoop()
  123. {
  124. SCSI_RELEASE_OUTPUTS();
  125. SCSI_ENABLE_INITIATOR();
  126. if (g_scsiHostPhyReset)
  127. {
  128. log("Executing BUS RESET after aborted command");
  129. scsiHostPhyReset();
  130. }
  131. if (!g_initiator_state.imaging)
  132. {
  133. // Scan for SCSI drives one at a time
  134. g_initiator_state.target_id = (g_initiator_state.target_id + 1) % 8;
  135. g_initiator_state.sectors_done = 0;
  136. g_initiator_state.retrycount = 0;
  137. g_initiator_state.max_sector_per_transfer = 512;
  138. g_initiator_state.badSectorCount = 0;
  139. g_initiator_state.ejectWhenDone = false;
  140. if (!(g_initiator_state.drives_imaged & (1 << g_initiator_state.target_id)))
  141. {
  142. delay_with_poll(1000);
  143. uint8_t inquiry_data[36] = {0};
  144. LED_ON();
  145. bool startstopok =
  146. scsiTestUnitReady(g_initiator_state.target_id) &&
  147. scsiStartStopUnit(g_initiator_state.target_id, true);
  148. bool readcapok = startstopok &&
  149. scsiInitiatorReadCapacity(g_initiator_state.target_id,
  150. &g_initiator_state.sectorcount,
  151. &g_initiator_state.sectorsize);
  152. bool inquiryok = startstopok &&
  153. scsiInquiry(g_initiator_state.target_id, inquiry_data);
  154. g_initiator_state.ansiVersion = inquiry_data[2] & 0x7;
  155. LED_OFF();
  156. uint64_t total_bytes = 0;
  157. if (readcapok)
  158. {
  159. log("SCSI ID ", g_initiator_state.target_id,
  160. " capacity ", (int)g_initiator_state.sectorcount,
  161. " sectors x ", (int)g_initiator_state.sectorsize, " bytes");
  162. log_f("SCSI-%d: Vendor: %.8s, Product: %.16s, Version: %.4s",
  163. g_initiator_state.ansiVersion,
  164. &inquiry_data[8],
  165. &inquiry_data[16],
  166. &inquiry_data[32]);
  167. // Check for well known ejectable media.
  168. if(strncmp((char*)(&inquiry_data[8]), "IOMEGA", 6) == 0 &&
  169. strncmp((char*)(&inquiry_data[16]), "ZIP", 3) == 0)
  170. {
  171. g_initiator_state.ejectWhenDone = true;
  172. }
  173. g_initiator_state.sectorcount_all = g_initiator_state.sectorcount;
  174. total_bytes = (uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize;
  175. log("Drive total size is ", (int)(total_bytes / (1024 * 1024)), " MiB");
  176. if (total_bytes >= 0xFFFFFFFF && SD.fatType() != FAT_TYPE_EXFAT)
  177. {
  178. // Note: the FAT32 limit is 4 GiB - 1 byte
  179. log("Image files equal or larger than 4 GiB are only possible on exFAT filesystem");
  180. log("Please reformat the SD card with exFAT format to image this drive.");
  181. g_initiator_state.sectorsize = 0;
  182. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  183. }
  184. if(g_initiator_state.ansiVersion < 0x02)
  185. {
  186. // this is a SCSI-1 drive, use READ6 and 256 bytes to be safe.
  187. g_initiator_state.max_sector_per_transfer = 256;
  188. }
  189. }
  190. else if (startstopok)
  191. {
  192. log("SCSI ID ", g_initiator_state.target_id, " responds but ReadCapacity command failed");
  193. log("Possibly SCSI-1 drive? Attempting to read up to 1 GB.");
  194. g_initiator_state.sectorsize = 512;
  195. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 2097152;
  196. g_initiator_state.max_sector_per_transfer = 128;
  197. }
  198. else
  199. {
  200. log("* No response from SCSI ID ", g_initiator_state.target_id);
  201. g_initiator_state.sectorsize = 0;
  202. g_initiator_state.sectorcount = g_initiator_state.sectorcount_all = 0;
  203. }
  204. char filename[18] = "";
  205. if (inquiryok)
  206. {
  207. g_initiator_state.deviceType = inquiry_data[0] & 0x1F;
  208. if (g_initiator_state.deviceType == DEVICE_TYPE_CD)
  209. {
  210. g_initiator_state.ejectWhenDone = true;
  211. }
  212. else if(g_initiator_state.deviceType != DEVICE_TYPE_DIRECT_ACCESS)
  213. {
  214. log("Unhandled device type: ", g_initiator_state.deviceType, ". Handling it as Direct Access Device.");
  215. }
  216. }
  217. if (g_initiator_state.sectorcount > 0)
  218. {
  219. int image_num = 0;
  220. uint64_t sd_card_free_bytes = (uint64_t)SD.vol()->freeClusterCount() * SD.vol()->bytesPerCluster();
  221. if(sd_card_free_bytes < total_bytes)
  222. {
  223. log("SD Card only has ", (int)(sd_card_free_bytes / (1024 * 1024)), " MiB - not enough free space to image this drive!");
  224. g_initiator_state.imaging = false;
  225. return;
  226. }
  227. do {
  228. sprintf(filename, "%s%d_imaged-%03d.%s",
  229. (g_initiator_state.deviceType == DEVICE_TYPE_CD) ? "CD" : "HD",
  230. g_initiator_state.target_id,
  231. ++image_num,
  232. (g_initiator_state.deviceType == DEVICE_TYPE_CD) ? "iso" : "hda");
  233. } while(SD.exists(filename));
  234. log("Imaging filename: ", filename, ".");
  235. g_initiator_state.target_file = SD.open(filename, O_WRONLY | O_CREAT | O_TRUNC);
  236. if (!g_initiator_state.target_file.isOpen())
  237. {
  238. log("Failed to open file for writing: ", filename);
  239. return;
  240. }
  241. if (SD.fatType() == FAT_TYPE_EXFAT)
  242. {
  243. // Only preallocate on exFAT, on FAT32 preallocating can result in false garbage data in the
  244. // file if write is interrupted.
  245. log("Preallocating image file");
  246. g_initiator_state.target_file.preAllocate((uint64_t)g_initiator_state.sectorcount * g_initiator_state.sectorsize);
  247. }
  248. log("Starting to copy drive data to ", filename);
  249. g_initiator_state.imaging = true;
  250. }
  251. }
  252. }
  253. else
  254. {
  255. // Copy sectors from SCSI drive to file
  256. if (g_initiator_state.sectors_done >= g_initiator_state.sectorcount)
  257. {
  258. scsiStartStopUnit(g_initiator_state.target_id, false);
  259. log("Finished imaging drive with id ", g_initiator_state.target_id);
  260. LED_OFF();
  261. if (g_initiator_state.sectorcount != g_initiator_state.sectorcount_all)
  262. {
  263. log("NOTE: Image size was limited to first 4 GiB due to SD card filesystem limit");
  264. log("Please reformat the SD card with exFAT format to image this drive fully");
  265. }
  266. if(g_initiator_state.badSectorCount != 0)
  267. {
  268. log_f("NOTE: There were %d bad sectors that could not be read off this drive.", g_initiator_state.badSectorCount);
  269. }
  270. if(!g_initiator_state.ejectWhenDone)
  271. {
  272. log("Marking this ID as imaged, wont ask it again.");
  273. g_initiator_state.drives_imaged |= (1 << g_initiator_state.target_id);
  274. }
  275. g_initiator_state.imaging = false;
  276. g_initiator_state.target_file.close();
  277. return;
  278. }
  279. scsiInitiatorUpdateLed();
  280. // How many sectors to read in one batch?
  281. int numtoread = g_initiator_state.sectorcount - g_initiator_state.sectors_done;
  282. if (numtoread > g_initiator_state.max_sector_per_transfer)
  283. numtoread = g_initiator_state.max_sector_per_transfer;
  284. // Retry sector-by-sector after failure
  285. if (g_initiator_state.sectors_done < g_initiator_state.failposition)
  286. numtoread = 1;
  287. uint32_t time_start = millis();
  288. bool status = scsiInitiatorReadDataToFile(g_initiator_state.target_id,
  289. g_initiator_state.sectors_done, numtoread, g_initiator_state.sectorsize,
  290. g_initiator_state.target_file);
  291. if (!status)
  292. {
  293. log("Failed to transfer ", numtoread, " sectors starting at ", (int)g_initiator_state.sectors_done);
  294. if (g_initiator_state.retrycount < g_initiator_state.maxRetryCount)
  295. {
  296. log("Retrying.. ", g_initiator_state.retrycount + 1, "/", (int)g_initiator_state.maxRetryCount);
  297. delay_with_poll(200);
  298. // This reset causes some drives to hang and seems to have no effect if left off.
  299. // scsiHostPhyReset();
  300. delay_with_poll(200);
  301. g_initiator_state.retrycount++;
  302. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  303. if (g_initiator_state.retrycount > 1 && numtoread > 1)
  304. {
  305. log("Multiple failures, retrying sector-by-sector");
  306. g_initiator_state.failposition = g_initiator_state.sectors_done + numtoread;
  307. }
  308. }
  309. else
  310. {
  311. log("Retry limit exceeded, skipping one sector");
  312. g_initiator_state.retrycount = 0;
  313. g_initiator_state.sectors_done++;
  314. g_initiator_state.badSectorCount++;
  315. g_initiator_state.target_file.seek((uint64_t)g_initiator_state.sectors_done * g_initiator_state.sectorsize);
  316. }
  317. }
  318. else
  319. {
  320. g_initiator_state.retrycount = 0;
  321. g_initiator_state.sectors_done += numtoread;
  322. g_initiator_state.target_file.flush();
  323. int speed_kbps = numtoread * g_initiator_state.sectorsize / (millis() - time_start);
  324. log_f("SCSI read succeeded, sectors done: %d / %d speed %d kB/s - %.2f%%",
  325. g_initiator_state.sectors_done, g_initiator_state.sectorcount, speed_kbps,
  326. (float)(((float)g_initiator_state.sectors_done / (float)g_initiator_state.sectorcount) * 100.0));
  327. }
  328. }
  329. }
  330. /*************************************
  331. * Low level command implementations *
  332. *************************************/
  333. int scsiInitiatorRunCommand(int target_id,
  334. const uint8_t *command, size_t cmdLen,
  335. uint8_t *bufIn, size_t bufInLen,
  336. const uint8_t *bufOut, size_t bufOutLen,
  337. bool returnDataPhase)
  338. {
  339. if (!scsiHostPhySelect(target_id, g_initiator_state.initiator_id))
  340. {
  341. debuglog("------ Target ", target_id, " did not respond");
  342. scsiHostPhyRelease();
  343. return -1;
  344. }
  345. SCSI_PHASE phase;
  346. int status = -1;
  347. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  348. {
  349. platform_poll();
  350. if (phase == MESSAGE_IN)
  351. {
  352. uint8_t dummy = 0;
  353. scsiHostRead(&dummy, 1);
  354. }
  355. else if (phase == MESSAGE_OUT)
  356. {
  357. uint8_t identify_msg = 0x80;
  358. scsiHostWrite(&identify_msg, 1);
  359. }
  360. else if (phase == COMMAND)
  361. {
  362. scsiHostWrite(command, cmdLen);
  363. }
  364. else if (phase == DATA_IN)
  365. {
  366. if (returnDataPhase) return 0;
  367. if (bufInLen == 0)
  368. {
  369. log("DATA_IN phase but no data to receive!");
  370. status = -3;
  371. break;
  372. }
  373. if (scsiHostRead(bufIn, bufInLen) == 0)
  374. {
  375. log("scsiHostRead failed, tried to read ", (int)bufInLen, " bytes");
  376. status = -2;
  377. break;
  378. }
  379. }
  380. else if (phase == DATA_OUT)
  381. {
  382. if (returnDataPhase) return 0;
  383. if (bufOutLen == 0)
  384. {
  385. log("DATA_OUT phase but no data to send!");
  386. status = -3;
  387. break;
  388. }
  389. if (scsiHostWrite(bufOut, bufOutLen) < bufOutLen)
  390. {
  391. log("scsiHostWrite failed, was writing ", bytearray(bufOut, bufOutLen));
  392. status = -2;
  393. break;
  394. }
  395. }
  396. else if (phase == STATUS)
  397. {
  398. uint8_t tmp = -1;
  399. scsiHostRead(&tmp, 1);
  400. status = tmp;
  401. debuglog("------ STATUS: ", tmp);
  402. }
  403. }
  404. scsiHostPhyRelease();
  405. return status;
  406. }
  407. bool scsiInitiatorReadCapacity(int target_id, uint32_t *sectorcount, uint32_t *sectorsize)
  408. {
  409. uint8_t command[10] = {0x25, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  410. uint8_t response[8] = {0};
  411. int status = scsiInitiatorRunCommand(target_id,
  412. command, sizeof(command),
  413. response, sizeof(response),
  414. NULL, 0);
  415. if (status == 0)
  416. {
  417. *sectorcount = ((uint32_t)response[0] << 24)
  418. | ((uint32_t)response[1] << 16)
  419. | ((uint32_t)response[2] << 8)
  420. | ((uint32_t)response[3] << 0);
  421. *sectorcount += 1; // SCSI reports last sector address
  422. *sectorsize = ((uint32_t)response[4] << 24)
  423. | ((uint32_t)response[5] << 16)
  424. | ((uint32_t)response[6] << 8)
  425. | ((uint32_t)response[7] << 0);
  426. return true;
  427. }
  428. else if (status == 2)
  429. {
  430. uint8_t sense_key;
  431. scsiRequestSense(target_id, &sense_key);
  432. log("READ CAPACITY on target ", target_id, " failed, sense key ", sense_key);
  433. return false;
  434. }
  435. else
  436. {
  437. *sectorcount = *sectorsize = 0;
  438. return false;
  439. }
  440. }
  441. // Execute REQUEST SENSE command to get more information about error status
  442. bool scsiRequestSense(int target_id, uint8_t *sense_key)
  443. {
  444. uint8_t command[6] = {0x03, 0, 0, 0, 18, 0};
  445. uint8_t response[18] = {0};
  446. int status = scsiInitiatorRunCommand(target_id,
  447. command, sizeof(command),
  448. response, sizeof(response),
  449. NULL, 0);
  450. log("RequestSense response: ", bytearray(response, 18));
  451. *sense_key = response[2] & 0x0F;
  452. return status == 0;
  453. }
  454. // Execute UNIT START STOP command to load/unload media
  455. bool scsiStartStopUnit(int target_id, bool start)
  456. {
  457. uint8_t command[6] = {0x1B, 0x1, 0, 0, 0, 0};
  458. uint8_t response[4] = {0};
  459. if (start)
  460. {
  461. command[4] |= 1; // Start
  462. command[1] = 0; // Immediate
  463. }
  464. else // stop
  465. {
  466. if(g_initiator_state.deviceType == DEVICE_TYPE_CD)
  467. {
  468. command[4] = 0b00000010; // eject(6), stop(7).
  469. }
  470. }
  471. int status = scsiInitiatorRunCommand(target_id,
  472. command, sizeof(command),
  473. response, sizeof(response),
  474. NULL, 0);
  475. if (status == 2)
  476. {
  477. uint8_t sense_key;
  478. scsiRequestSense(target_id, &sense_key);
  479. log("START STOP UNIT on target ", target_id, " failed, sense key ", sense_key);
  480. }
  481. return status == 0;
  482. }
  483. // Execute INQUIRY command
  484. bool scsiInquiry(int target_id, uint8_t inquiry_data[36])
  485. {
  486. uint8_t command[6] = {0x12, 0, 0, 0, 36, 0};
  487. int status = scsiInitiatorRunCommand(target_id,
  488. command, sizeof(command),
  489. inquiry_data, 36,
  490. NULL, 0);
  491. return status == 0;
  492. }
  493. // Execute TEST UNIT READY command and handle unit attention state
  494. bool scsiTestUnitReady(int target_id)
  495. {
  496. for (int retries = 0; retries < 2; retries++)
  497. {
  498. uint8_t command[6] = {0x00, 0, 0, 0, 0, 0};
  499. int status = scsiInitiatorRunCommand(target_id,
  500. command, sizeof(command),
  501. NULL, 0,
  502. NULL, 0);
  503. if (status == 0)
  504. {
  505. return true;
  506. }
  507. else if (status == -1)
  508. {
  509. // No response to select
  510. return false;
  511. }
  512. else if (status == 2)
  513. {
  514. uint8_t sense_key;
  515. scsiRequestSense(target_id, &sense_key);
  516. if (sense_key == 6)
  517. {
  518. uint8_t inquiry[36];
  519. log("Target ", target_id, " reports UNIT_ATTENTION, running INQUIRY");
  520. scsiInquiry(target_id, inquiry);
  521. }
  522. else if (sense_key == 2)
  523. {
  524. log("Target ", target_id, " reports NOT_READY, running STARTSTOPUNIT");
  525. scsiStartStopUnit(target_id, true);
  526. }
  527. }
  528. else
  529. {
  530. log("Target ", target_id, " TEST UNIT READY response: ", status);
  531. }
  532. }
  533. return false;
  534. }
  535. // This uses callbacks to run SD and SCSI transfers in parallel
  536. static struct {
  537. uint32_t bytes_sd; // Number of bytes that have been transferred on SD card side
  538. uint32_t bytes_sd_scheduled; // Number of bytes scheduled for transfer on SD card side
  539. uint32_t bytes_scsi; // Number of bytes that have been scheduled for transfer on SCSI side
  540. uint32_t bytes_scsi_done; // Number of bytes that have been transferred on SCSI side
  541. uint32_t bytes_per_sector;
  542. bool all_ok;
  543. } g_initiator_transfer;
  544. static void initiatorReadSDCallback(uint32_t bytes_complete)
  545. {
  546. if (g_initiator_transfer.bytes_scsi_done < g_initiator_transfer.bytes_scsi)
  547. {
  548. // How many bytes remaining in the transfer?
  549. uint32_t remain = g_initiator_transfer.bytes_scsi - g_initiator_transfer.bytes_scsi_done;
  550. uint32_t len = remain;
  551. // Limit maximum amount of data transferred at one go, to give enough callbacks to SD driver.
  552. // Select the limit based on total bytes in the transfer.
  553. // Transfer size is reduced towards the end of transfer to reduce the dead time between
  554. // end of SCSI transfer and the SD write completing.
  555. uint32_t limit = g_initiator_transfer.bytes_scsi / 8;
  556. uint32_t bytesPerSector = g_initiator_transfer.bytes_per_sector;
  557. if (limit < PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MIN_SD_WRITE_SIZE;
  558. if (limit > PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE) limit = PLATFORM_OPTIMAL_MAX_SD_WRITE_SIZE;
  559. if (limit > len) limit = PLATFORM_OPTIMAL_LAST_SD_WRITE_SIZE;
  560. if (limit < bytesPerSector) limit = bytesPerSector;
  561. if (len > limit)
  562. {
  563. len = limit;
  564. }
  565. // Split read so that it doesn't wrap around buffer edge
  566. uint32_t bufsize = sizeof(scsiDev.data);
  567. uint32_t start = (g_initiator_transfer.bytes_scsi_done % bufsize);
  568. if (start + len > bufsize)
  569. len = bufsize - start;
  570. // Don't overwrite data that has not yet been written to SD card
  571. uint32_t sd_ready_cnt = g_initiator_transfer.bytes_sd + bytes_complete;
  572. if (g_initiator_transfer.bytes_scsi_done + len > sd_ready_cnt + bufsize)
  573. len = sd_ready_cnt + bufsize - g_initiator_transfer.bytes_scsi_done;
  574. if (sd_ready_cnt == g_initiator_transfer.bytes_sd_scheduled &&
  575. g_initiator_transfer.bytes_sd_scheduled + bytesPerSector <= g_initiator_transfer.bytes_scsi_done)
  576. {
  577. // Current SD transfer is complete, it is better we return now and offer a chance for the next
  578. // transfer to begin.
  579. return;
  580. }
  581. // Keep transfers a multiple of sector size.
  582. if (remain >= bytesPerSector && len % bytesPerSector != 0)
  583. {
  584. len -= len % bytesPerSector;
  585. }
  586. if (len == 0)
  587. return;
  588. // debuglog("SCSI read ", (int)start, " + ", (int)len, ", sd ready cnt ", (int)sd_ready_cnt, " ", (int)bytes_complete, ", scsi done ", (int)g_initiator_transfer.bytes_scsi_done);
  589. if (scsiHostRead(&scsiDev.data[start], len) != len)
  590. {
  591. log("Read failed at byte ", (int)g_initiator_transfer.bytes_scsi_done);
  592. g_initiator_transfer.all_ok = false;
  593. }
  594. g_initiator_transfer.bytes_scsi_done += len;
  595. }
  596. }
  597. static void scsiInitiatorWriteDataToSd(FsFile &file, bool use_callback)
  598. {
  599. // Figure out longest continuous block in buffer
  600. uint32_t bufsize = sizeof(scsiDev.data);
  601. uint32_t start = g_initiator_transfer.bytes_sd % bufsize;
  602. uint32_t len = g_initiator_transfer.bytes_scsi_done - g_initiator_transfer.bytes_sd;
  603. if (start + len > bufsize) len = bufsize - start;
  604. // Try to do writes in multiple of 512 bytes
  605. // This allows better performance for SD card access.
  606. if (len >= 512) len &= ~511;
  607. // Start writing to SD card and simultaneously reading more from SCSI bus
  608. uint8_t *buf = &scsiDev.data[start];
  609. // debuglog("SD write ", (int)start, " + ", (int)len);
  610. if (use_callback)
  611. {
  612. platform_set_sd_callback(&initiatorReadSDCallback, buf);
  613. }
  614. g_initiator_transfer.bytes_sd_scheduled = g_initiator_transfer.bytes_sd + len;
  615. if (file.write(buf, len) != len)
  616. {
  617. log("scsiInitiatorReadDataToFile: SD card write failed");
  618. g_initiator_transfer.all_ok = false;
  619. }
  620. platform_set_sd_callback(NULL, NULL);
  621. g_initiator_transfer.bytes_sd += len;
  622. }
  623. bool scsiInitiatorReadDataToFile(int target_id, uint32_t start_sector, uint32_t sectorcount, uint32_t sectorsize,
  624. FsFile &file)
  625. {
  626. int status = -1;
  627. // Read6 command supports 21 bit LBA - max of 0x1FFFFF
  628. // ref: https://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068j.pdf pg 134
  629. if (g_initiator_state.ansiVersion < 0x02 || (start_sector < 0x1FFFFF && sectorcount <= 256))
  630. {
  631. // Use READ6 command for compatibility with old SCSI1 drives
  632. uint8_t command[6] = {0x08,
  633. (uint8_t)(start_sector >> 16),
  634. (uint8_t)(start_sector >> 8),
  635. (uint8_t)start_sector,
  636. (uint8_t)sectorcount,
  637. 0x00
  638. };
  639. // Start executing command, return in data phase
  640. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  641. }
  642. else
  643. {
  644. // Use READ10 command for larger number of blocks
  645. uint8_t command[10] = {0x28, 0x00,
  646. (uint8_t)(start_sector >> 24), (uint8_t)(start_sector >> 16),
  647. (uint8_t)(start_sector >> 8), (uint8_t)start_sector,
  648. 0x00,
  649. (uint8_t)(sectorcount >> 8), (uint8_t)(sectorcount),
  650. 0x00
  651. };
  652. // Start executing command, return in data phase
  653. status = scsiInitiatorRunCommand(target_id, command, sizeof(command), NULL, 0, NULL, 0, true);
  654. }
  655. if (status != 0)
  656. {
  657. uint8_t sense_key;
  658. scsiRequestSense(target_id, &sense_key);
  659. log("scsiInitiatorReadDataToFile: READ failed: ", status, " sense key ", sense_key);
  660. scsiHostPhyRelease();
  661. return false;
  662. }
  663. SCSI_PHASE phase;
  664. g_initiator_transfer.bytes_scsi = sectorcount * sectorsize;
  665. g_initiator_transfer.bytes_per_sector = sectorsize;
  666. g_initiator_transfer.bytes_sd = 0;
  667. g_initiator_transfer.bytes_sd_scheduled = 0;
  668. g_initiator_transfer.bytes_scsi_done = 0;
  669. g_initiator_transfer.all_ok = true;
  670. while (true)
  671. {
  672. platform_poll();
  673. phase = (SCSI_PHASE)scsiHostPhyGetPhase();
  674. if (phase != DATA_IN && phase != BUS_BUSY)
  675. {
  676. break;
  677. }
  678. // Read next block from SCSI bus if buffer empty
  679. if (g_initiator_transfer.bytes_sd == g_initiator_transfer.bytes_scsi_done)
  680. {
  681. initiatorReadSDCallback(0);
  682. }
  683. else
  684. {
  685. // Write data to SD card and simultaneously read more from SCSI
  686. scsiInitiatorUpdateLed();
  687. scsiInitiatorWriteDataToSd(file, true);
  688. }
  689. }
  690. // Write any remaining buffered data
  691. while (g_initiator_transfer.bytes_sd < g_initiator_transfer.bytes_scsi_done)
  692. {
  693. platform_poll();
  694. scsiInitiatorWriteDataToSd(file, false);
  695. }
  696. if (g_initiator_transfer.bytes_sd != g_initiator_transfer.bytes_scsi)
  697. {
  698. log("SCSI read from sector ", (int)start_sector, " was incomplete: expected ",
  699. (int)g_initiator_transfer.bytes_scsi, " got ", (int)g_initiator_transfer.bytes_sd, " bytes");
  700. g_initiator_transfer.all_ok = false;
  701. }
  702. while ((phase = (SCSI_PHASE)scsiHostPhyGetPhase()) != BUS_FREE)
  703. {
  704. platform_poll();
  705. if (phase == MESSAGE_IN)
  706. {
  707. uint8_t dummy = 0;
  708. scsiHostRead(&dummy, 1);
  709. }
  710. else if (phase == MESSAGE_OUT)
  711. {
  712. uint8_t identify_msg = 0x80;
  713. scsiHostWrite(&identify_msg, 1);
  714. }
  715. else if (phase == STATUS)
  716. {
  717. uint8_t tmp = 0;
  718. scsiHostRead(&tmp, 1);
  719. status = tmp;
  720. debuglog("------ STATUS: ", tmp);
  721. }
  722. }
  723. scsiHostPhyRelease();
  724. return status == 0 && g_initiator_transfer.all_ok;
  725. }
  726. #endif