sdio.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022-2024 Rabbit Hole Computing™
  3. * Copyright (c) 2024 Tech by Androda, LLC
  4. *
  5. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
  6. *
  7. * https://www.gnu.org/licenses/gpl-3.0.html
  8. * ----
  9. * This program is free software: you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation, either version 3 of the License, or
  12. * (at your option) any later version. 
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17. * GNU General Public License for more details. 
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  21. **/
  22. // Implementation of SDIO communication for RP2040
  23. //
  24. // The RP2040 official work-in-progress code at
  25. // https://github.com/raspberrypi/pico-extras/tree/master/src/rp2_common/pico_sd_card
  26. // may be useful reference, but this is independent implementation.
  27. //
  28. // For official SDIO specifications, refer to:
  29. // https://www.sdcard.org/downloads/pls/
  30. // "SDIO Physical Layer Simplified Specification Version 8.00"
  31. #include "sdio.h"
  32. #include <hardware/pio.h>
  33. #include <hardware/dma.h>
  34. #include <hardware/gpio.h>
  35. #include <ZuluSCSI_platform.h>
  36. #include <ZuluSCSI_log.h>
  37. #if defined(ZULUSCSI_PICO) || defined(ZULUSCSI_BS2)
  38. #include "sdio_Pico.pio.h"
  39. #else
  40. #include "sdio_RP2040.pio.h"
  41. #endif
  42. #define SDIO_PIO pio1
  43. #define SDIO_CMD_SM 0
  44. #define SDIO_DATA_SM 1
  45. #define SDIO_DMA_CH 4
  46. #define SDIO_DMA_CHB 5
  47. // Maximum number of 512 byte blocks to transfer in one request
  48. #define SDIO_MAX_BLOCKS 256
  49. enum sdio_transfer_state_t { SDIO_IDLE, SDIO_RX, SDIO_TX, SDIO_TX_WAIT_IDLE};
  50. static struct {
  51. uint32_t pio_cmd_clk_offset;
  52. uint32_t pio_data_rx_offset;
  53. pio_sm_config pio_cfg_data_rx;
  54. uint32_t pio_data_tx_offset;
  55. pio_sm_config pio_cfg_data_tx;
  56. sdio_transfer_state_t transfer_state;
  57. uint32_t transfer_start_time;
  58. uint32_t *data_buf;
  59. uint32_t blocks_done; // Number of blocks transferred so far
  60. uint32_t total_blocks; // Total number of blocks to transfer
  61. uint32_t blocks_checksumed; // Number of blocks that have had CRC calculated
  62. uint32_t checksum_errors; // Number of checksum errors detected
  63. // Variables for block writes
  64. uint64_t next_wr_block_checksum;
  65. uint32_t end_token_buf[3]; // CRC and end token for write block
  66. sdio_status_t wr_status;
  67. uint32_t card_response;
  68. // Variables for block reads
  69. // This is used to perform DMA into data buffers and checksum buffers separately.
  70. struct {
  71. void * write_addr;
  72. uint32_t transfer_count;
  73. } dma_blocks[SDIO_MAX_BLOCKS * 2];
  74. struct {
  75. uint32_t top;
  76. uint32_t bottom;
  77. } received_checksums[SDIO_MAX_BLOCKS];
  78. } g_sdio;
  79. void rp2040_sdio_dma_irq();
  80. /*******************************************************
  81. * Checksum algorithms
  82. *******************************************************/
  83. // Table lookup for calculating CRC-7 checksum that is used in SDIO command packets.
  84. // Usage:
  85. // uint8_t crc = 0;
  86. // crc = crc7_table[crc ^ byte];
  87. // .. repeat for every byte ..
  88. static const uint8_t crc7_table[256] = {
  89. 0x00, 0x12, 0x24, 0x36, 0x48, 0x5a, 0x6c, 0x7e, 0x90, 0x82, 0xb4, 0xa6, 0xd8, 0xca, 0xfc, 0xee,
  90. 0x32, 0x20, 0x16, 0x04, 0x7a, 0x68, 0x5e, 0x4c, 0xa2, 0xb0, 0x86, 0x94, 0xea, 0xf8, 0xce, 0xdc,
  91. 0x64, 0x76, 0x40, 0x52, 0x2c, 0x3e, 0x08, 0x1a, 0xf4, 0xe6, 0xd0, 0xc2, 0xbc, 0xae, 0x98, 0x8a,
  92. 0x56, 0x44, 0x72, 0x60, 0x1e, 0x0c, 0x3a, 0x28, 0xc6, 0xd4, 0xe2, 0xf0, 0x8e, 0x9c, 0xaa, 0xb8,
  93. 0xc8, 0xda, 0xec, 0xfe, 0x80, 0x92, 0xa4, 0xb6, 0x58, 0x4a, 0x7c, 0x6e, 0x10, 0x02, 0x34, 0x26,
  94. 0xfa, 0xe8, 0xde, 0xcc, 0xb2, 0xa0, 0x96, 0x84, 0x6a, 0x78, 0x4e, 0x5c, 0x22, 0x30, 0x06, 0x14,
  95. 0xac, 0xbe, 0x88, 0x9a, 0xe4, 0xf6, 0xc0, 0xd2, 0x3c, 0x2e, 0x18, 0x0a, 0x74, 0x66, 0x50, 0x42,
  96. 0x9e, 0x8c, 0xba, 0xa8, 0xd6, 0xc4, 0xf2, 0xe0, 0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62, 0x70,
  97. 0x82, 0x90, 0xa6, 0xb4, 0xca, 0xd8, 0xee, 0xfc, 0x12, 0x00, 0x36, 0x24, 0x5a, 0x48, 0x7e, 0x6c,
  98. 0xb0, 0xa2, 0x94, 0x86, 0xf8, 0xea, 0xdc, 0xce, 0x20, 0x32, 0x04, 0x16, 0x68, 0x7a, 0x4c, 0x5e,
  99. 0xe6, 0xf4, 0xc2, 0xd0, 0xae, 0xbc, 0x8a, 0x98, 0x76, 0x64, 0x52, 0x40, 0x3e, 0x2c, 0x1a, 0x08,
  100. 0xd4, 0xc6, 0xf0, 0xe2, 0x9c, 0x8e, 0xb8, 0xaa, 0x44, 0x56, 0x60, 0x72, 0x0c, 0x1e, 0x28, 0x3a,
  101. 0x4a, 0x58, 0x6e, 0x7c, 0x02, 0x10, 0x26, 0x34, 0xda, 0xc8, 0xfe, 0xec, 0x92, 0x80, 0xb6, 0xa4,
  102. 0x78, 0x6a, 0x5c, 0x4e, 0x30, 0x22, 0x14, 0x06, 0xe8, 0xfa, 0xcc, 0xde, 0xa0, 0xb2, 0x84, 0x96,
  103. 0x2e, 0x3c, 0x0a, 0x18, 0x66, 0x74, 0x42, 0x50, 0xbe, 0xac, 0x9a, 0x88, 0xf6, 0xe4, 0xd2, 0xc0,
  104. 0x1c, 0x0e, 0x38, 0x2a, 0x54, 0x46, 0x70, 0x62, 0x8c, 0x9e, 0xa8, 0xba, 0xc4, 0xd6, 0xe0, 0xf2
  105. };
  106. // Calculate the CRC16 checksum for parallel 4 bit lines separately.
  107. // When the SDIO bus operates in 4-bit mode, the CRC16 algorithm
  108. // is applied to each line separately and generates total of
  109. // 4 x 16 = 64 bits of checksum.
  110. __attribute__((optimize("O3")))
  111. uint64_t sdio_crc16_4bit_checksum(uint32_t *data, uint32_t num_words)
  112. {
  113. uint64_t crc = 0;
  114. uint32_t *end = data + num_words;
  115. while (data < end)
  116. {
  117. for (int unroll = 0; unroll < 4; unroll++)
  118. {
  119. // Each 32-bit word contains 8 bits per line.
  120. // Reverse the bytes because SDIO protocol is big-endian.
  121. uint32_t data_in = __builtin_bswap32(*data++);
  122. // Shift out 8 bits for each line
  123. uint32_t data_out = crc >> 32;
  124. crc <<= 32;
  125. // XOR outgoing data to itself with 4 bit delay
  126. data_out ^= (data_out >> 16);
  127. // XOR incoming data to outgoing data with 4 bit delay
  128. data_out ^= (data_in >> 16);
  129. // XOR outgoing and incoming data to accumulator at each tap
  130. uint64_t xorred = data_out ^ data_in;
  131. crc ^= xorred;
  132. crc ^= xorred << (5 * 4);
  133. crc ^= xorred << (12 * 4);
  134. }
  135. }
  136. return crc;
  137. }
  138. /*******************************************************
  139. * Status Register Receiver
  140. *******************************************************/
  141. sdio_status_t receive_status_register(uint8_t* sds) {
  142. rp2040_sdio_rx_start(sds, 1, 64);
  143. // Wait for the DMA operation to complete, or fail if it took too long
  144. waitagain:
  145. while (dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH))
  146. {
  147. if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 2)
  148. {
  149. // Reset the state machine program
  150. dma_channel_abort(SDIO_DMA_CHB);
  151. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  152. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  153. return SDIO_ERR_RESPONSE_TIMEOUT;
  154. }
  155. }
  156. // Assert that both DMA channels are complete
  157. if(dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH)) {
  158. // Wait failure, go back.
  159. goto waitagain;
  160. }
  161. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  162. g_sdio.transfer_state = SDIO_IDLE;
  163. return SDIO_OK;
  164. }
  165. /*******************************************************
  166. * Basic SDIO command execution
  167. *******************************************************/
  168. static void sdio_send_command(uint8_t command, uint32_t arg, uint8_t response_bits)
  169. {
  170. // dbgmsg("SDIO Command: ", (int)command, " arg ", arg);
  171. // Format the arguments in the way expected by the PIO code.
  172. uint32_t word0 =
  173. (47 << 24) | // Number of bits in command minus one
  174. ( 1 << 22) | // Transfer direction from host to card
  175. (command << 16) | // Command byte
  176. (((arg >> 24) & 0xFF) << 8) | // MSB byte of argument
  177. (((arg >> 16) & 0xFF) << 0);
  178. uint32_t word1 =
  179. (((arg >> 8) & 0xFF) << 24) |
  180. (((arg >> 0) & 0xFF) << 16) | // LSB byte of argument
  181. ( 1 << 8); // End bit
  182. // Set number of bits in response minus one, or leave at 0 if no response expected
  183. if (response_bits)
  184. {
  185. word1 |= ((response_bits - 1) << 0);
  186. }
  187. // Calculate checksum in the order that the bytes will be transmitted (big-endian)
  188. uint8_t crc = 0;
  189. crc = crc7_table[crc ^ ((word0 >> 16) & 0xFF)];
  190. crc = crc7_table[crc ^ ((word0 >> 8) & 0xFF)];
  191. crc = crc7_table[crc ^ ((word0 >> 0) & 0xFF)];
  192. crc = crc7_table[crc ^ ((word1 >> 24) & 0xFF)];
  193. crc = crc7_table[crc ^ ((word1 >> 16) & 0xFF)];
  194. word1 |= crc << 8;
  195. // Transmit command
  196. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  197. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word0);
  198. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word1);
  199. }
  200. sdio_status_t rp2040_sdio_command_R1(uint8_t command, uint32_t arg, uint32_t *response)
  201. {
  202. sdio_send_command(command, arg, response ? 48 : 0);
  203. // Wait for response
  204. uint32_t start = millis();
  205. uint32_t wait_words = response ? 2 : 1;
  206. while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < wait_words)
  207. {
  208. if ((uint32_t)(millis() - start) > 2)
  209. {
  210. if (command != 8) // Don't log for missing SD card
  211. {
  212. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R1(", (int)command, "), ",
  213. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  214. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  215. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  216. }
  217. // Reset the state machine program
  218. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  219. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  220. return SDIO_ERR_RESPONSE_TIMEOUT;
  221. }
  222. }
  223. if (response)
  224. {
  225. // Read out response packet
  226. uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  227. uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  228. // dbgmsg("SDIO R1 response: ", resp0, " ", resp1);
  229. // Calculate response checksum
  230. uint8_t crc = 0;
  231. crc = crc7_table[crc ^ ((resp0 >> 24) & 0xFF)];
  232. crc = crc7_table[crc ^ ((resp0 >> 16) & 0xFF)];
  233. crc = crc7_table[crc ^ ((resp0 >> 8) & 0xFF)];
  234. crc = crc7_table[crc ^ ((resp0 >> 0) & 0xFF)];
  235. crc = crc7_table[crc ^ ((resp1 >> 8) & 0xFF)];
  236. uint8_t actual_crc = ((resp1 >> 0) & 0xFE);
  237. if (crc != actual_crc)
  238. {
  239. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  240. return SDIO_ERR_RESPONSE_CRC;
  241. }
  242. uint8_t response_cmd = ((resp0 >> 24) & 0xFF);
  243. if (response_cmd != command && command != 41)
  244. {
  245. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): received reply for ", (int)response_cmd);
  246. return SDIO_ERR_RESPONSE_CODE;
  247. }
  248. *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
  249. }
  250. else
  251. {
  252. // Read out dummy marker
  253. pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  254. }
  255. return SDIO_OK;
  256. }
  257. sdio_status_t rp2040_sdio_command_R2(uint8_t command, uint32_t arg, uint8_t response[16])
  258. {
  259. // The response is too long to fit in the PIO FIFO, so use DMA to receive it.
  260. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  261. uint32_t response_buf[5];
  262. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  263. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  264. channel_config_set_read_increment(&dmacfg, false);
  265. channel_config_set_write_increment(&dmacfg, true);
  266. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false));
  267. dma_channel_configure(SDIO_DMA_CH, &dmacfg, &response_buf, &SDIO_PIO->rxf[SDIO_CMD_SM], 5, true);
  268. sdio_send_command(command, arg, 136);
  269. uint32_t start = millis();
  270. while (dma_channel_is_busy(SDIO_DMA_CH))
  271. {
  272. if ((uint32_t)(millis() - start) > 2)
  273. {
  274. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R2(", (int)command, "), ",
  275. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  276. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  277. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  278. // Reset the state machine program
  279. dma_channel_abort(SDIO_DMA_CH);
  280. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  281. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  282. return SDIO_ERR_RESPONSE_TIMEOUT;
  283. }
  284. }
  285. dma_channel_abort(SDIO_DMA_CH);
  286. // Copy the response payload to output buffer
  287. response[0] = ((response_buf[0] >> 16) & 0xFF);
  288. response[1] = ((response_buf[0] >> 8) & 0xFF);
  289. response[2] = ((response_buf[0] >> 0) & 0xFF);
  290. response[3] = ((response_buf[1] >> 24) & 0xFF);
  291. response[4] = ((response_buf[1] >> 16) & 0xFF);
  292. response[5] = ((response_buf[1] >> 8) & 0xFF);
  293. response[6] = ((response_buf[1] >> 0) & 0xFF);
  294. response[7] = ((response_buf[2] >> 24) & 0xFF);
  295. response[8] = ((response_buf[2] >> 16) & 0xFF);
  296. response[9] = ((response_buf[2] >> 8) & 0xFF);
  297. response[10] = ((response_buf[2] >> 0) & 0xFF);
  298. response[11] = ((response_buf[3] >> 24) & 0xFF);
  299. response[12] = ((response_buf[3] >> 16) & 0xFF);
  300. response[13] = ((response_buf[3] >> 8) & 0xFF);
  301. response[14] = ((response_buf[3] >> 0) & 0xFF);
  302. response[15] = ((response_buf[4] >> 0) & 0xFF);
  303. // Calculate checksum of the payload
  304. uint8_t crc = 0;
  305. for (int i = 0; i < 15; i++)
  306. {
  307. crc = crc7_table[crc ^ response[i]];
  308. }
  309. uint8_t actual_crc = response[15] & 0xFE;
  310. if (crc != actual_crc)
  311. {
  312. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  313. return SDIO_ERR_RESPONSE_CRC;
  314. }
  315. uint8_t response_cmd = ((response_buf[0] >> 24) & 0xFF);
  316. if (response_cmd != 0x3F)
  317. {
  318. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): Expected reply code 0x3F");
  319. return SDIO_ERR_RESPONSE_CODE;
  320. }
  321. return SDIO_OK;
  322. }
  323. sdio_status_t rp2040_sdio_command_R3(uint8_t command, uint32_t arg, uint32_t *response)
  324. {
  325. sdio_send_command(command, arg, 48);
  326. // Wait for response
  327. uint32_t start = millis();
  328. while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < 2)
  329. {
  330. if ((uint32_t)(millis() - start) > 2)
  331. {
  332. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R3(", (int)command, "), ",
  333. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  334. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  335. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  336. // Reset the state machine program
  337. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  338. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  339. return SDIO_ERR_RESPONSE_TIMEOUT;
  340. }
  341. }
  342. // Read out response packet
  343. uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  344. uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  345. *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
  346. // dbgmsg("SDIO R3 response: ", resp0, " ", resp1);
  347. return SDIO_OK;
  348. }
  349. /*******************************************************
  350. * Data reception from SD card
  351. *******************************************************/
  352. sdio_status_t rp2040_sdio_rx_start(uint8_t *buffer, uint32_t num_blocks, uint32_t block_size)
  353. {
  354. // Buffer must be aligned
  355. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  356. g_sdio.transfer_state = SDIO_RX;
  357. g_sdio.transfer_start_time = millis();
  358. g_sdio.data_buf = (uint32_t*)buffer;
  359. g_sdio.blocks_done = 0;
  360. g_sdio.total_blocks = num_blocks;
  361. g_sdio.blocks_checksumed = 0;
  362. g_sdio.checksum_errors = 0;
  363. // Create DMA block descriptors to store each block of block_size bytes of data to buffer
  364. // and then 8 bytes to g_sdio.received_checksums.
  365. for (int i = 0; i < num_blocks; i++)
  366. {
  367. g_sdio.dma_blocks[i * 2].write_addr = buffer + i * block_size;
  368. g_sdio.dma_blocks[i * 2].transfer_count = block_size / sizeof(uint32_t);
  369. g_sdio.dma_blocks[i * 2 + 1].write_addr = &g_sdio.received_checksums[i];
  370. g_sdio.dma_blocks[i * 2 + 1].transfer_count = 2;
  371. }
  372. g_sdio.dma_blocks[num_blocks * 2].write_addr = 0;
  373. g_sdio.dma_blocks[num_blocks * 2].transfer_count = 0;
  374. // Configure first DMA channel for reading from the PIO RX fifo
  375. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  376. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  377. channel_config_set_read_increment(&dmacfg, false);
  378. channel_config_set_write_increment(&dmacfg, true);
  379. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  380. channel_config_set_bswap(&dmacfg, true);
  381. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  382. dma_channel_configure(SDIO_DMA_CH, &dmacfg, 0, &SDIO_PIO->rxf[SDIO_DATA_SM], 0, false);
  383. // Configure second DMA channel for reconfiguring the first one
  384. dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  385. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  386. channel_config_set_read_increment(&dmacfg, true);
  387. channel_config_set_write_increment(&dmacfg, true);
  388. channel_config_set_ring(&dmacfg, true, 3);
  389. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &dma_hw->ch[SDIO_DMA_CH].al1_write_addr,
  390. g_sdio.dma_blocks, 2, false);
  391. // Initialize PIO state machine
  392. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_rx_offset, &g_sdio.pio_cfg_data_rx);
  393. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  394. // Write number of nibbles to receive to Y register
  395. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, block_size * 2 + 16 - 1);
  396. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  397. // Enable RX FIFO join because we don't need the TX FIFO during transfer.
  398. // This gives more leeway for the DMA block switching
  399. SDIO_PIO->sm[SDIO_DATA_SM].shiftctrl |= PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS;
  400. // Start PIO and DMA
  401. dma_channel_start(SDIO_DMA_CHB);
  402. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  403. return SDIO_OK;
  404. }
  405. // Check checksums for received blocks
  406. static void sdio_verify_rx_checksums(uint32_t maxcount)
  407. {
  408. while (g_sdio.blocks_checksumed < g_sdio.blocks_done && maxcount-- > 0)
  409. {
  410. // Calculate checksum from received data
  411. int blockidx = g_sdio.blocks_checksumed++;
  412. uint64_t checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  413. SDIO_WORDS_PER_BLOCK);
  414. // Convert received checksum to little-endian format
  415. uint32_t top = __builtin_bswap32(g_sdio.received_checksums[blockidx].top);
  416. uint32_t bottom = __builtin_bswap32(g_sdio.received_checksums[blockidx].bottom);
  417. uint64_t expected = ((uint64_t)top << 32) | bottom;
  418. if (checksum != expected)
  419. {
  420. g_sdio.checksum_errors++;
  421. if (g_sdio.checksum_errors == 1)
  422. {
  423. logmsg("SDIO checksum error in reception: block ", blockidx,
  424. " calculated ", checksum, " expected ", expected);
  425. }
  426. }
  427. }
  428. }
  429. sdio_status_t rp2040_sdio_rx_poll(uint32_t *bytes_complete)
  430. {
  431. // Was everything done when the previous rx_poll() finished?
  432. if (g_sdio.blocks_done >= g_sdio.total_blocks)
  433. {
  434. g_sdio.transfer_state = SDIO_IDLE;
  435. }
  436. else
  437. {
  438. // Use the idle time to calculate checksums
  439. sdio_verify_rx_checksums(4);
  440. // Check how many DMA control blocks have been consumed
  441. uint32_t dma_ctrl_block_count = (dma_hw->ch[SDIO_DMA_CHB].read_addr - (uint32_t)&g_sdio.dma_blocks);
  442. dma_ctrl_block_count /= sizeof(g_sdio.dma_blocks[0]);
  443. // Compute how many complete 512 byte SDIO blocks have been transferred
  444. // When transfer ends, dma_ctrl_block_count == g_sdio.total_blocks * 2 + 1
  445. g_sdio.blocks_done = (dma_ctrl_block_count - 1) / 2;
  446. // NOTE: When all blocks are done, rx_poll() still returns SDIO_BUSY once.
  447. // This provides a chance to start the SCSI transfer before the last checksums
  448. // are computed. Any checksum failures can be indicated in SCSI status after
  449. // the data transfer has finished.
  450. }
  451. if (bytes_complete)
  452. {
  453. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  454. }
  455. if (g_sdio.transfer_state == SDIO_IDLE)
  456. {
  457. // Verify all remaining checksums.
  458. sdio_verify_rx_checksums(g_sdio.total_blocks);
  459. if (g_sdio.checksum_errors == 0)
  460. return SDIO_OK;
  461. else
  462. return SDIO_ERR_DATA_CRC;
  463. }
  464. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  465. {
  466. dbgmsg("rp2040_sdio_rx_poll() timeout, "
  467. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_rx_offset,
  468. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  469. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  470. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  471. rp2040_sdio_stop();
  472. return SDIO_ERR_DATA_TIMEOUT;
  473. }
  474. return SDIO_BUSY;
  475. }
  476. /*******************************************************
  477. * Data transmission to SD card
  478. *******************************************************/
  479. static void sdio_start_next_block_tx()
  480. {
  481. // Initialize PIO
  482. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_tx_offset, &g_sdio.pio_cfg_data_tx);
  483. // Configure DMA to send the data block payload (512 bytes)
  484. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  485. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  486. channel_config_set_read_increment(&dmacfg, true);
  487. channel_config_set_write_increment(&dmacfg, false);
  488. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, true));
  489. channel_config_set_bswap(&dmacfg, true);
  490. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  491. dma_channel_configure(SDIO_DMA_CH, &dmacfg,
  492. &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.data_buf + g_sdio.blocks_done * SDIO_WORDS_PER_BLOCK,
  493. SDIO_WORDS_PER_BLOCK, false);
  494. // Prepare second DMA channel to send the CRC and block end marker
  495. uint64_t crc = g_sdio.next_wr_block_checksum;
  496. g_sdio.end_token_buf[0] = (uint32_t)(crc >> 32);
  497. g_sdio.end_token_buf[1] = (uint32_t)(crc >> 0);
  498. g_sdio.end_token_buf[2] = 0xFFFFFFFF;
  499. channel_config_set_bswap(&dmacfg, false);
  500. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  501. &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.end_token_buf, 3, false);
  502. // Enable IRQ to trigger when block is done
  503. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  504. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 1);
  505. // Initialize register X with nibble count and register Y with response bit count
  506. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 1048);
  507. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_x, 32));
  508. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 31);
  509. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  510. // Initialize pins to output and high
  511. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pins, 15));
  512. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pindirs, 15));
  513. // Write start token and start the DMA transfer.
  514. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 0xFFFFFFF0);
  515. dma_channel_start(SDIO_DMA_CH);
  516. // Start state machine
  517. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  518. }
  519. static void sdio_compute_next_tx_checksum()
  520. {
  521. assert (g_sdio.blocks_done < g_sdio.total_blocks && g_sdio.blocks_checksumed < g_sdio.total_blocks);
  522. int blockidx = g_sdio.blocks_checksumed++;
  523. g_sdio.next_wr_block_checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  524. SDIO_WORDS_PER_BLOCK);
  525. }
  526. // Start transferring data from memory to SD card
  527. sdio_status_t rp2040_sdio_tx_start(const uint8_t *buffer, uint32_t num_blocks)
  528. {
  529. // Buffer must be aligned
  530. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  531. g_sdio.transfer_state = SDIO_TX;
  532. g_sdio.transfer_start_time = millis();
  533. g_sdio.data_buf = (uint32_t*)buffer;
  534. g_sdio.blocks_done = 0;
  535. g_sdio.total_blocks = num_blocks;
  536. g_sdio.blocks_checksumed = 0;
  537. g_sdio.checksum_errors = 0;
  538. // Compute first block checksum
  539. sdio_compute_next_tx_checksum();
  540. // Start first DMA transfer and PIO
  541. sdio_start_next_block_tx();
  542. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  543. {
  544. // Precompute second block checksum
  545. sdio_compute_next_tx_checksum();
  546. }
  547. return SDIO_OK;
  548. }
  549. sdio_status_t check_sdio_write_response(uint32_t card_response)
  550. {
  551. // Shift card response until top bit is 0 (the start bit)
  552. // The format of response is poorly documented in SDIO spec but refer to e.g.
  553. // http://my-cool-projects.blogspot.com/2013/02/the-mysterious-sd-card-crc-status.html
  554. uint32_t resp = card_response;
  555. if (!(~resp & 0xFFFF0000)) resp <<= 16;
  556. if (!(~resp & 0xFF000000)) resp <<= 8;
  557. if (!(~resp & 0xF0000000)) resp <<= 4;
  558. if (!(~resp & 0xC0000000)) resp <<= 2;
  559. if (!(~resp & 0x80000000)) resp <<= 1;
  560. uint32_t wr_status = (resp >> 28) & 7;
  561. if (wr_status == 2)
  562. {
  563. return SDIO_OK;
  564. }
  565. else if (wr_status == 5)
  566. {
  567. logmsg("SDIO card reports write CRC error, status ", card_response);
  568. return SDIO_ERR_WRITE_CRC;
  569. }
  570. else if (wr_status == 6)
  571. {
  572. logmsg("SDIO card reports write failure, status ", card_response);
  573. return SDIO_ERR_WRITE_FAIL;
  574. }
  575. else
  576. {
  577. logmsg("SDIO card reports unknown write status ", card_response);
  578. return SDIO_ERR_WRITE_FAIL;
  579. }
  580. }
  581. // When a block finishes, this IRQ handler starts the next one
  582. static void rp2040_sdio_tx_irq()
  583. {
  584. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  585. if (g_sdio.transfer_state == SDIO_TX)
  586. {
  587. if (!dma_channel_is_busy(SDIO_DMA_CH) && !dma_channel_is_busy(SDIO_DMA_CHB))
  588. {
  589. // Main data transfer is finished now.
  590. // When card is ready, PIO will put card response on RX fifo
  591. g_sdio.transfer_state = SDIO_TX_WAIT_IDLE;
  592. if (!pio_sm_is_rx_fifo_empty(SDIO_PIO, SDIO_DATA_SM))
  593. {
  594. // Card is already idle
  595. g_sdio.card_response = pio_sm_get(SDIO_PIO, SDIO_DATA_SM);
  596. }
  597. else
  598. {
  599. // Use DMA to wait for the response
  600. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  601. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  602. channel_config_set_read_increment(&dmacfg, false);
  603. channel_config_set_write_increment(&dmacfg, false);
  604. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  605. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  606. &g_sdio.card_response, &SDIO_PIO->rxf[SDIO_DATA_SM], 1, true);
  607. }
  608. }
  609. }
  610. if (g_sdio.transfer_state == SDIO_TX_WAIT_IDLE)
  611. {
  612. if (!dma_channel_is_busy(SDIO_DMA_CHB))
  613. {
  614. g_sdio.wr_status = check_sdio_write_response(g_sdio.card_response);
  615. if (g_sdio.wr_status != SDIO_OK)
  616. {
  617. rp2040_sdio_stop();
  618. return;
  619. }
  620. g_sdio.blocks_done++;
  621. if (g_sdio.blocks_done < g_sdio.total_blocks)
  622. {
  623. sdio_start_next_block_tx();
  624. g_sdio.transfer_state = SDIO_TX;
  625. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  626. {
  627. // Precompute the CRC for next block so that it is ready when
  628. // we want to send it.
  629. sdio_compute_next_tx_checksum();
  630. }
  631. }
  632. else
  633. {
  634. rp2040_sdio_stop();
  635. }
  636. }
  637. }
  638. }
  639. // Check if transmission is complete
  640. sdio_status_t rp2040_sdio_tx_poll(uint32_t *bytes_complete)
  641. {
  642. if (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk)
  643. {
  644. // Verify that IRQ handler gets called even if we are in hardfault handler
  645. rp2040_sdio_tx_irq();
  646. }
  647. if (bytes_complete)
  648. {
  649. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  650. }
  651. if (g_sdio.transfer_state == SDIO_IDLE)
  652. {
  653. rp2040_sdio_stop();
  654. return g_sdio.wr_status;
  655. }
  656. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  657. {
  658. dbgmsg("rp2040_sdio_tx_poll() timeout, "
  659. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_tx_offset,
  660. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  661. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  662. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  663. rp2040_sdio_stop();
  664. return SDIO_ERR_DATA_TIMEOUT;
  665. }
  666. return SDIO_BUSY;
  667. }
  668. // Force everything to idle state
  669. sdio_status_t rp2040_sdio_stop()
  670. {
  671. dma_channel_abort(SDIO_DMA_CH);
  672. dma_channel_abort(SDIO_DMA_CHB);
  673. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 0);
  674. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  675. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  676. g_sdio.transfer_state = SDIO_IDLE;
  677. return SDIO_OK;
  678. }
  679. void rp2040_sdio_init(int clock_divider)
  680. {
  681. // Mark resources as being in use, unless it has been done already.
  682. static bool resources_claimed = false;
  683. if (!resources_claimed)
  684. {
  685. pio_sm_claim(SDIO_PIO, SDIO_CMD_SM);
  686. pio_sm_claim(SDIO_PIO, SDIO_DATA_SM);
  687. dma_channel_claim(SDIO_DMA_CH);
  688. dma_channel_claim(SDIO_DMA_CHB);
  689. resources_claimed = true;
  690. }
  691. memset(&g_sdio, 0, sizeof(g_sdio));
  692. dma_channel_abort(SDIO_DMA_CH);
  693. dma_channel_abort(SDIO_DMA_CHB);
  694. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  695. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  696. // Load PIO programs
  697. pio_clear_instruction_memory(SDIO_PIO);
  698. // Command & clock state machine
  699. g_sdio.pio_cmd_clk_offset = pio_add_program(SDIO_PIO, &sdio_cmd_clk_program);
  700. pio_sm_config cfg = sdio_cmd_clk_program_get_default_config(g_sdio.pio_cmd_clk_offset);
  701. sm_config_set_out_pins(&cfg, SDIO_CMD, 1);
  702. sm_config_set_in_pins(&cfg, SDIO_CMD);
  703. sm_config_set_set_pins(&cfg, SDIO_CMD, 1);
  704. sm_config_set_jmp_pin(&cfg, SDIO_CMD);
  705. sm_config_set_sideset_pins(&cfg, SDIO_CLK);
  706. sm_config_set_out_shift(&cfg, false, true, 32);
  707. sm_config_set_in_shift(&cfg, false, true, 32);
  708. sm_config_set_clkdiv_int_frac(&cfg, clock_divider, 0);
  709. sm_config_set_mov_status(&cfg, STATUS_TX_LESSTHAN, 2);
  710. pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_cmd_clk_offset, &cfg);
  711. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
  712. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, true);
  713. // Data reception program
  714. g_sdio.pio_data_rx_offset = pio_add_program(SDIO_PIO, &sdio_data_rx_program);
  715. g_sdio.pio_cfg_data_rx = sdio_data_rx_program_get_default_config(g_sdio.pio_data_rx_offset);
  716. sm_config_set_in_pins(&g_sdio.pio_cfg_data_rx, SDIO_D0);
  717. sm_config_set_in_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
  718. sm_config_set_out_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
  719. sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_rx, clock_divider, 0);
  720. // Data transmission program
  721. g_sdio.pio_data_tx_offset = pio_add_program(SDIO_PIO, &sdio_data_tx_program);
  722. g_sdio.pio_cfg_data_tx = sdio_data_tx_program_get_default_config(g_sdio.pio_data_tx_offset);
  723. sm_config_set_in_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0);
  724. sm_config_set_set_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
  725. sm_config_set_out_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
  726. sm_config_set_in_shift(&g_sdio.pio_cfg_data_tx, false, false, 32);
  727. sm_config_set_out_shift(&g_sdio.pio_cfg_data_tx, false, true, 32);
  728. sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_tx, clock_divider, 0);
  729. // Disable SDIO pins input synchronizer.
  730. // This reduces input delay.
  731. // Because the CLK is driven synchronously to CPU clock,
  732. // there should be no metastability problems.
  733. SDIO_PIO->input_sync_bypass |= (1 << SDIO_CLK) | (1 << SDIO_CMD)
  734. | (1 << SDIO_D0) | (1 << SDIO_D1) | (1 << SDIO_D2) | (1 << SDIO_D3);
  735. // Redirect GPIOs to PIO
  736. gpio_set_function(SDIO_CMD, GPIO_FUNC_PIO1);
  737. gpio_set_function(SDIO_CLK, GPIO_FUNC_PIO1);
  738. gpio_set_function(SDIO_D0, GPIO_FUNC_PIO1);
  739. gpio_set_function(SDIO_D1, GPIO_FUNC_PIO1);
  740. gpio_set_function(SDIO_D2, GPIO_FUNC_PIO1);
  741. gpio_set_function(SDIO_D3, GPIO_FUNC_PIO1);
  742. // Set up IRQ handler when DMA completes.
  743. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  744. irq_set_enabled(DMA_IRQ_1, true);
  745. #if 0
  746. #ifndef ENABLE_AUDIO_OUTPUT
  747. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  748. #else
  749. // seem to hit assertion in _exclusive_handler call due to DMA_IRQ_0 being shared?
  750. // slightly less efficient to do it this way, so investigate further at some point
  751. irq_add_shared_handler(DMA_IRQ_1, rp2040_sdio_tx_irq, 0xFF);
  752. #endif
  753. irq_set_enabled(DMA_IRQ_1, true);
  754. #endif
  755. }