BlueSCSI.cpp 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691
  1. /*
  2. * BlueSCSI
  3. * Copyright (c) 2021 Eric Helgeson, Androda
  4. *
  5. * This file is free software: you may copy, redistribute and/or modify it
  6. * under the terms of the GNU General Public License as published by the
  7. * Free Software Foundation, either version 2 of the License, or (at your
  8. * option) any later version.
  9. *
  10. * This file is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see https://github.com/erichelgeson/bluescsi.
  17. *
  18. * This file incorporates work covered by the following copyright and
  19. * permission notice:
  20. *
  21. * Copyright (c) 2019 komatsu
  22. *
  23. * Permission to use, copy, modify, and/or distribute this software
  24. * for any purpose with or without fee is hereby granted, provided
  25. * that the above copyright notice and this permission notice appear
  26. * in all copies.
  27. *
  28. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  29. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  30. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  31. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
  32. * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
  33. * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
  34. * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  35. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  36. */
  37. #include <Arduino.h> // For Platform.IO
  38. #include <SdFat.h>
  39. #include <setjmp.h>
  40. #define DEBUG 0 // 0:No debug information output
  41. // 1: Debug information output to USB Serial
  42. // 2: Debug information output to LOG.txt (slow)
  43. // Log File
  44. #define VERSION "1.1-SNAPSHOT-20220622"
  45. #define LOG_FILENAME "LOG.txt"
  46. #include "BlueSCSI.h"
  47. #include "scsi_cmds.h"
  48. #include "scsi_sense.h"
  49. #include "scsi_status.h"
  50. #include "scsi_mode.h"
  51. #ifdef USE_STM32_DMA
  52. #warning "warning USE_STM32_DMA"
  53. #endif
  54. // SDFAT
  55. SdFs SD;
  56. FsFile LOG_FILE;
  57. volatile bool m_isBusReset = false; // Bus reset
  58. volatile bool m_resetJmp = false; // Call longjmp on reset
  59. jmp_buf m_resetJmpBuf;
  60. byte scsi_id_mask; // Mask list of responding SCSI IDs
  61. byte m_id; // Currently responding SCSI-ID
  62. byte m_lun; // Logical unit number currently responding
  63. byte m_sts; // Status byte
  64. byte m_msg; // Message bytes
  65. byte m_buf[MAX_BLOCKSIZE]; // General purpose buffer
  66. byte m_scsi_buf[SCSI_BUF_SIZE]; // Buffer for SCSI READ/WRITE Buffer
  67. byte m_msb[256]; // Command storage bytes
  68. SCSI_DEVICE scsi_device_list[NUM_SCSIID][MAX_SCSILUN]; // Maximum number
  69. static byte onUnimplemented(SCSI_DEVICE *dev, const byte *cdb)
  70. {
  71. // does nothing!
  72. if(Serial)
  73. {
  74. Serial.print("Unimplemented SCSI command: ");
  75. Serial.println(cdb[0], 16);
  76. }
  77. dev->m_senseKey = SCSI_SENSE_ILLEGAL_REQUEST;
  78. dev->m_additional_sense_code = SCSI_ASC_INVALID_OPERATION_CODE;
  79. return SCSI_STATUS_CHECK_CONDITION;
  80. }
  81. static byte onNOP(SCSI_DEVICE *dev, const byte *cdb)
  82. {
  83. dev->m_senseKey = 0;
  84. dev->m_additional_sense_code = 0;
  85. return SCSI_STATUS_GOOD;
  86. }
  87. #define MAX_SCSI_COMMAND 0xff
  88. // function table
  89. byte (*scsi_command_table[MAX_SCSI_COMMAND])(SCSI_DEVICE *dev, const byte *cdb);
  90. #define SCSI_COMMAND_HANDLER(x) static byte x(SCSI_DEVICE *dev, const byte *cdb)
  91. // scsi command functions
  92. SCSI_COMMAND_HANDLER(onRequestSense);
  93. SCSI_COMMAND_HANDLER(onRead6);
  94. SCSI_COMMAND_HANDLER(onRead10);
  95. SCSI_COMMAND_HANDLER(onWrite6);
  96. SCSI_COMMAND_HANDLER(onWrite10);
  97. SCSI_COMMAND_HANDLER(onInquiry);
  98. SCSI_COMMAND_HANDLER(onReadCapacity);
  99. SCSI_COMMAND_HANDLER(onModeSense);
  100. SCSI_COMMAND_HANDLER(onModeSelect);
  101. SCSI_COMMAND_HANDLER(onVerify);
  102. SCSI_COMMAND_HANDLER(onReadBuffer);
  103. SCSI_COMMAND_HANDLER(onWriteBuffer);
  104. SCSI_COMMAND_HANDLER(onTestUnitReady);
  105. SCSI_COMMAND_HANDLER(onReZeroUnit);
  106. SCSI_COMMAND_HANDLER(onSendDiagnostic);
  107. SCSI_COMMAND_HANDLER(onReadDefectData);
  108. static void flashError(const unsigned error);
  109. void onBusReset(void);
  110. void initFileLog(int);
  111. void finalizeFileLog(void);
  112. void findDriveImages(FsFile root);
  113. /*
  114. * IO read.
  115. */
  116. inline byte readIO(void)
  117. {
  118. // Port input data register
  119. uint32_t ret = GPIOB->regs->IDR;
  120. byte bret = (byte)(~(ret>>8));
  121. #if READ_PARITY_CHECK
  122. if((db_bsrr[bret]^ret)&1)
  123. m_sts |= 0x01; // parity error
  124. #endif
  125. return bret;
  126. }
  127. // If config file exists, read the first three lines and copy the contents.
  128. // File must be well formed or you will get junk in the SCSI Vendor fields.
  129. void readSCSIDeviceConfig(SCSI_DEVICE *dev) {
  130. FsFile config_file = SD.open("scsi-config.txt", O_RDONLY);
  131. if (!config_file.isOpen()) {
  132. return;
  133. }
  134. SCSI_INQUIRY_DATA *iq = &dev->inquiry_block;
  135. char vendor[9];
  136. memset(vendor, 0, sizeof(vendor));
  137. config_file.readBytes(vendor, sizeof(vendor));
  138. LOG_FILE.print("SCSI VENDOR: ");
  139. LOG_FILE.println(vendor);
  140. memcpy(&iq->vendor, vendor, 8);
  141. char product[17];
  142. memset(product, 0, sizeof(product));
  143. config_file.readBytes(product, sizeof(product));
  144. LOG_FILE.print("SCSI PRODUCT: ");
  145. LOG_FILE.println(product);
  146. memcpy(&iq->product, product, 16);
  147. char version[5];
  148. memset(version, 0, sizeof(version));
  149. config_file.readBytes(version, sizeof(version));
  150. LOG_FILE.print("SCSI VERSION: ");
  151. LOG_FILE.println(version);
  152. memcpy(&iq->revision, version, 4);
  153. config_file.close();
  154. }
  155. // read SD information and print to logfile
  156. void readSDCardInfo()
  157. {
  158. cid_t sd_cid;
  159. if(SD.card()->readCID(&sd_cid))
  160. {
  161. LOG_FILE.print("Sd MID:");
  162. LOG_FILE.print(sd_cid.mid, 16);
  163. LOG_FILE.print(" OID:");
  164. LOG_FILE.print(sd_cid.oid[0]);
  165. LOG_FILE.println(sd_cid.oid[1]);
  166. LOG_FILE.print("Sd Name:");
  167. LOG_FILE.print(sd_cid.pnm[0]);
  168. LOG_FILE.print(sd_cid.pnm[1]);
  169. LOG_FILE.print(sd_cid.pnm[2]);
  170. LOG_FILE.print(sd_cid.pnm[3]);
  171. LOG_FILE.println(sd_cid.pnm[4]);
  172. LOG_FILE.print("Sd Date:");
  173. LOG_FILE.print(sd_cid.mdt_month);
  174. LOG_FILE.print("/20"); // CID year is 2000 + high/low
  175. LOG_FILE.print(sd_cid.mdt_year_high);
  176. LOG_FILE.println(sd_cid.mdt_year_low);
  177. LOG_FILE.print("Sd Serial:");
  178. LOG_FILE.println(sd_cid.psn);
  179. LOG_FILE.sync();
  180. }
  181. }
  182. /*
  183. * Open HDD image file
  184. */
  185. bool hddimageOpen(SCSI_DEVICE *dev, FsFile *file,int id,int lun,int blocksize)
  186. {
  187. dev->m_fileSize= 0;
  188. dev->m_blocksize = blocksize;
  189. dev->m_file = file;
  190. dev->m_type = SCSI_DEVICE_HDD;
  191. if(dev->m_file->isOpen())
  192. {
  193. dev->m_fileSize = dev->m_file->size();
  194. dev->m_blockcount = dev->m_fileSize / dev->m_blocksize;
  195. if(dev->m_fileSize>0)
  196. {
  197. // check blocksize dummy file
  198. LOG_FILE.print(" / ");
  199. LOG_FILE.print(dev->m_fileSize);
  200. LOG_FILE.print("bytes / ");
  201. LOG_FILE.print(dev->m_fileSize / 1024);
  202. LOG_FILE.print("KiB / ");
  203. LOG_FILE.print(dev->m_fileSize / 1024 / 1024);
  204. LOG_FILE.println("MiB");
  205. return true; // File opened
  206. }
  207. else
  208. {
  209. LOG_FILE.println(" - file is 0 bytes, can not use.");
  210. dev->m_file->close();
  211. dev->m_fileSize = dev->m_blocksize = 0; // no file
  212. }
  213. }
  214. return false;
  215. }
  216. /*
  217. * Initialization.
  218. * Initialize the bus and set the PIN orientation
  219. */
  220. void setup()
  221. {
  222. // PA15 / PB3 / PB4 Cannot be used
  223. // JTAG Because it is used for debugging.
  224. enableDebugPorts();
  225. // Setup BSRR table
  226. for (unsigned i = 0; i <= 255; i++) {
  227. db_bsrr[i] = DBP(i);
  228. }
  229. // Default all SCSI command handlers to onUnimplemented
  230. for(unsigned i = 0; i < MAX_SCSI_COMMAND; i++)
  231. {
  232. scsi_command_table[i] = onUnimplemented;
  233. }
  234. // SCSI commands that just need to return ok
  235. scsi_command_table[SCSI_FORMAT_UNIT4] = onNOP;
  236. scsi_command_table[SCSI_FORMAT_UNIT6] = onNOP;
  237. scsi_command_table[SCSI_REASSIGN_BLOCKS] = onNOP;
  238. scsi_command_table[SCSI_SEEK6] = onNOP;
  239. scsi_command_table[SCSI_SEEK10] = onNOP;
  240. scsi_command_table[SCSI_START_STOP_UNIT] = onNOP;
  241. scsi_command_table[SCSI_PREVENT_ALLOW_REMOVAL] = onNOP;
  242. scsi_command_table[SCSI_RELEASE] = onNOP;
  243. scsi_command_table[SCSI_RESERVE] = onNOP;
  244. scsi_command_table[SCSI_TEST_UNIT_READY] = onNOP;
  245. // SCSI commands that have handlers
  246. scsi_command_table[SCSI_REZERO_UNIT] = onReZeroUnit;
  247. scsi_command_table[SCSI_REQUEST_SENSE] = onRequestSense;
  248. scsi_command_table[SCSI_READ6] = onRead6;
  249. scsi_command_table[SCSI_READ10] = onRead10;
  250. scsi_command_table[SCSI_WRITE6] = onWrite6;
  251. scsi_command_table[SCSI_WRITE10] = onWrite10;
  252. scsi_command_table[SCSI_INQUIRY] = onInquiry;
  253. scsi_command_table[SCSI_READ_CAPACITY] = onReadCapacity;
  254. scsi_command_table[SCSI_MODE_SENSE6] = onModeSense;
  255. scsi_command_table[SCSI_MODE_SENSE10] = onModeSense;
  256. scsi_command_table[SCSI_MODE_SELECT6] = onModeSelect;
  257. scsi_command_table[SCSI_MODE_SELECT10] = onModeSelect;
  258. scsi_command_table[SCSI_VERIFY10] = onVerify;
  259. scsi_command_table[SCSI_READ_BUFFER] = onReadBuffer;
  260. scsi_command_table[SCSI_WRITE_BUFFER] = onWriteBuffer;
  261. scsi_command_table[SCSI_SEND_DIAG] = onSendDiagnostic;
  262. scsi_command_table[SCSI_READ_DEFECT_DATA] = onReadDefectData;
  263. // Serial initialization
  264. #if DEBUG > 0
  265. Serial.begin(9600);
  266. // If using a USB->TTL monitor instead of USB serial monitor - you can uncomment this.
  267. //while (!Serial);
  268. #endif
  269. // PIN initialization
  270. gpio_mode(LED2, GPIO_OUTPUT_PP);
  271. gpio_mode(LED, GPIO_OUTPUT_OD);
  272. // Image Set Select Init
  273. gpio_mode(IMAGE_SELECT1, GPIO_INPUT_PU);
  274. gpio_mode(IMAGE_SELECT2, GPIO_INPUT_PU);
  275. pinMode(IMAGE_SELECT1, INPUT);
  276. pinMode(IMAGE_SELECT2, INPUT);
  277. int image_file_set = ((digitalRead(IMAGE_SELECT1) == LOW) ? 1 : 0) | ((digitalRead(IMAGE_SELECT2) == LOW) ? 2 : 0);
  278. LED_OFF();
  279. #ifdef XCVR
  280. // Transceiver Pin Initialization
  281. pinMode(TR_TARGET, OUTPUT);
  282. pinMode(TR_INITIATOR, OUTPUT);
  283. pinMode(TR_DBP, OUTPUT);
  284. TRANSCEIVER_IO_SET(vTR_INITIATOR,TR_INPUT);
  285. #endif
  286. //GPIO(SCSI BUS)Initialization
  287. //Port setting register (lower)
  288. // GPIOB->regs->CRL |= 0x000000008; // SET INPUT W/ PUPD on PAB-PB0
  289. //Port setting register (upper)
  290. //GPIOB->regs->CRH = 0x88888888; // SET INPUT W/ PUPD on PB15-PB8
  291. // GPIOB->regs->ODR = 0x0000FF00; // SET PULL-UPs on PB15-PB8
  292. // DB and DP are input modes
  293. SCSI_DB_INPUT()
  294. #ifdef XCVR
  295. TRANSCEIVER_IO_SET(vTR_DBP,TR_INPUT);
  296. // Initiator port
  297. pinMode(ATN, INPUT);
  298. pinMode(BSY, INPUT);
  299. pinMode(ACK, INPUT);
  300. pinMode(RST, INPUT);
  301. pinMode(SEL, INPUT);
  302. TRANSCEIVER_IO_SET(vTR_INITIATOR,TR_INPUT);
  303. // Target port
  304. pinMode(MSG, INPUT);
  305. pinMode(CD, INPUT);
  306. pinMode(REQ, INPUT);
  307. pinMode(IO, INPUT);
  308. TRANSCEIVER_IO_SET(vTR_TARGET,TR_INPUT);
  309. #else
  310. // Input port
  311. gpio_mode(ATN, GPIO_INPUT_PU);
  312. gpio_mode(BSY, GPIO_INPUT_PU);
  313. gpio_mode(ACK, GPIO_INPUT_PU);
  314. gpio_mode(RST, GPIO_INPUT_PU);
  315. gpio_mode(SEL, GPIO_INPUT_PU);
  316. // Output port
  317. gpio_mode(MSG, GPIO_OUTPUT_OD);
  318. gpio_mode(CD, GPIO_OUTPUT_OD);
  319. gpio_mode(REQ, GPIO_OUTPUT_OD);
  320. gpio_mode(IO, GPIO_OUTPUT_OD);
  321. // Turn off the output port
  322. SCSI_TARGET_INACTIVE()
  323. #endif
  324. //Occurs when the RST pin state changes from HIGH to LOW
  325. //attachInterrupt(RST, onBusReset, FALLING);
  326. // Try Full and half clock speeds.
  327. LED_ON();
  328. int mhz = 0;
  329. if (SD.begin(SdSpiConfig(PA4, DEDICATED_SPI, SD_SCK_MHZ(50), &SPI)))
  330. {
  331. mhz = 50;
  332. }
  333. else if (SD.begin(SdSpiConfig(PA4, DEDICATED_SPI, SD_SCK_MHZ(25), &SPI)))
  334. {
  335. mhz = 25;
  336. }
  337. LED_OFF();
  338. if(mhz == 0) {
  339. #if DEBUG > 0
  340. Serial.println("SD initialization failed!");
  341. #endif
  342. flashError(ERROR_NO_SDCARD);
  343. }
  344. initFileLog(mhz);
  345. readSDCardInfo();
  346. //HD image file open
  347. scsi_id_mask = 0x00;
  348. // Iterate over the root path in the SD card looking for candidate image files.
  349. FsFile root;
  350. char image_set_dir_name[] = "/ImageSetX/";
  351. image_set_dir_name[9] = char(image_file_set) + 0x30;
  352. root.open(image_set_dir_name);
  353. if (root.isDirectory()) {
  354. LOG_FILE.print("Looking for images in: ");
  355. LOG_FILE.println(image_set_dir_name);
  356. LOG_FILE.sync();
  357. } else {
  358. root.close();
  359. root.open("/");
  360. }
  361. findDriveImages(root);
  362. root.close();
  363. FsFile images_all_dir;
  364. images_all_dir.open("/ImageSetAll/");
  365. if (images_all_dir.isDirectory()) {
  366. LOG_FILE.println("Looking for images in: /ImageSetAll/");
  367. LOG_FILE.sync();
  368. findDriveImages(images_all_dir);
  369. }
  370. images_all_dir.close();
  371. // Error if there are 0 image files
  372. if(scsi_id_mask==0) {
  373. LOG_FILE.println("ERROR: No valid images found!");
  374. flashError(ERROR_FALSE_INIT);
  375. }
  376. finalizeFileLog();
  377. LED_OFF();
  378. //Occurs when the RST pin state changes from HIGH to LOW
  379. attachInterrupt(RST, onBusReset, FALLING);
  380. }
  381. void findDriveImages(FsFile root) {
  382. bool image_ready;
  383. FsFile *file = NULL;
  384. char path_name[MAX_FILE_PATH+1];
  385. root.getName(path_name, sizeof(path_name));
  386. SD.chdir(path_name);
  387. SCSI_DEVICE *dev = NULL;
  388. while (1) {
  389. // Directories can not be opened RDWR, so it will fail, but fails the same way with no file/dir, so we need to peek at the file first.
  390. FsFile file_test = root.openNextFile(O_RDONLY);
  391. char name[MAX_FILE_PATH+1];
  392. file_test.getName(name, MAX_FILE_PATH+1);
  393. // Skip directories and already open files.
  394. if(file_test.isDir() || strncmp(name, "LOG.txt", 7) == 0) {
  395. file_test.close();
  396. continue;
  397. }
  398. // If error there is no next file to open.
  399. if(file_test.getError() > 0) {
  400. file_test.close();
  401. break;
  402. }
  403. // Valid file, open for reading/writing.
  404. file = new FsFile(SD.open(name, O_RDWR));
  405. if(file && file->isFile()) {
  406. if(tolower(name[0]) == 'h' && tolower(name[1]) == 'd') {
  407. // Defaults for Hard Disks
  408. int id = 1; // 0 and 3 are common in Macs for physical HD and CD, so avoid them.
  409. int lun = 0;
  410. int blk = 512;
  411. // Positionally read in and coerase the chars to integers.
  412. // We only require the minimum and read in the next if provided.
  413. int file_name_length = strlen(name);
  414. if(file_name_length > 2) { // HD[N]
  415. int tmp_id = name[HDIMG_ID_POS] - '0';
  416. // If valid id, set it, else use default
  417. if(tmp_id > -1 && tmp_id < 8) {
  418. id = tmp_id;
  419. } else {
  420. LOG_FILE.print(name);
  421. LOG_FILE.println(" - bad SCSI id in filename, Using default ID 1");
  422. }
  423. }
  424. if(file_name_length > 3) { // HDN[N]
  425. int tmp_lun = name[HDIMG_LUN_POS] - '0';
  426. // If valid lun, set it, else use default
  427. if(tmp_lun == 0 || tmp_lun == 1) {
  428. lun = tmp_lun;
  429. } else {
  430. LOG_FILE.print(name);
  431. LOG_FILE.println(" - bad SCSI LUN in filename, Using default LUN ID 0");
  432. }
  433. }
  434. int blk1 = 0, blk2, blk3, blk4 = 0;
  435. if(file_name_length > 8) { // HD00_[111]
  436. blk1 = name[HDIMG_BLK_POS] - '0';
  437. blk2 = name[HDIMG_BLK_POS+1] - '0';
  438. blk3 = name[HDIMG_BLK_POS+2] - '0';
  439. if(file_name_length > 9) // HD00_NNN[1]
  440. blk4 = name[HDIMG_BLK_POS+3] - '0';
  441. }
  442. if(blk1 == 2 && blk2 == 5 && blk3 == 6) {
  443. blk = 256;
  444. } else if(blk1 == 1 && blk2 == 0 && blk3 == 2 && blk4 == 4) {
  445. blk = 1024;
  446. } else if(blk1 == 2 && blk2 == 0 && blk3 == 4 && blk4 == 8) {
  447. blk = 2048;
  448. }
  449. if(id < NUM_SCSIID && lun < NUM_SCSILUN) {
  450. dev = &scsi_device_list[id][lun];
  451. LOG_FILE.print(" - ");
  452. LOG_FILE.print(name);
  453. image_ready = hddimageOpen(dev, file, id, lun, blk);
  454. if(image_ready) { // Marked as a responsive ID
  455. scsi_id_mask |= 1<<id;
  456. switch(dev->m_type)
  457. {
  458. case SCSI_DEVICE_HDD:
  459. // default SCSI HDD
  460. dev->inquiry_block.ansi_version = 1;
  461. dev->inquiry_block.response_format = 1;
  462. dev->inquiry_block.additional_length = 31;
  463. memcpy(dev->inquiry_block.vendor, "QUANTUM", 7);
  464. memcpy(dev->inquiry_block.product, "FIREBALL1", 9);
  465. memcpy(dev->inquiry_block.revision, "1.0", 3);
  466. break;
  467. case SCSI_DEVICE_OPTICAL:
  468. // default SCSI CDROM
  469. dev->inquiry_block.peripheral_device_type = 5;
  470. dev->inquiry_block.rmb = 1;
  471. dev->inquiry_block.ansi_version = 1;
  472. dev->inquiry_block.response_format = 1;
  473. dev->inquiry_block.additional_length = 42;
  474. dev->inquiry_block.sync = 1;
  475. memcpy(dev->inquiry_block.vendor, "BLUESCSI", 8);
  476. memcpy(dev->inquiry_block.product, "CD-ROM CDU-55S", 14);
  477. memcpy(dev->inquiry_block.revision, "1.9a", 4);
  478. dev->inquiry_block.release = 0x20;
  479. memcpy(dev->inquiry_block.revision_date, "1995", 4);
  480. break;
  481. }
  482. readSCSIDeviceConfig(dev);
  483. }
  484. }
  485. }
  486. } else {
  487. file->close();
  488. delete file;
  489. LOG_FILE.print("Not an image: ");
  490. LOG_FILE.println(name);
  491. }
  492. LOG_FILE.sync();
  493. }
  494. // cd .. before going back.
  495. SD.chdir("/");
  496. }
  497. /*
  498. * Setup initialization logfile
  499. */
  500. void initFileLog(int success_mhz) {
  501. LOG_FILE = SD.open(LOG_FILENAME, O_WRONLY | O_CREAT | O_TRUNC);
  502. LOG_FILE.println("BlueSCSI <-> SD - https://github.com/erichelgeson/BlueSCSI");
  503. LOG_FILE.print("VERSION: ");
  504. LOG_FILE.print(VERSION);
  505. LOG_FILE.println(BUILD_TAGS);
  506. LOG_FILE.print("DEBUG:");
  507. LOG_FILE.print(DEBUG);
  508. LOG_FILE.print(" SDFAT_FILE_TYPE:");
  509. LOG_FILE.println(SDFAT_FILE_TYPE);
  510. LOG_FILE.print("SdFat version: ");
  511. LOG_FILE.println(SD_FAT_VERSION_STR);
  512. LOG_FILE.print("Sd Format: ");
  513. switch(SD.vol()->fatType()) {
  514. case FAT_TYPE_EXFAT:
  515. LOG_FILE.println("exFAT");
  516. break;
  517. case FAT_TYPE_FAT32:
  518. LOG_FILE.print("FAT32");
  519. case FAT_TYPE_FAT16:
  520. LOG_FILE.print("FAT16");
  521. default:
  522. LOG_FILE.println(" - Consider formatting the SD Card with exFAT for improved performance.");
  523. }
  524. LOG_FILE.print("SPI speed: ");
  525. LOG_FILE.print(success_mhz);
  526. LOG_FILE.println("Mhz");
  527. if(success_mhz == 25) {
  528. LOG_FILE.println("SPI running at half speed - read https://github.com/erichelgeson/BlueSCSI/wiki/Slow-SPI");
  529. }
  530. LOG_FILE.print("SdFat Max FileName Length: ");
  531. LOG_FILE.println(MAX_FILE_PATH);
  532. LOG_FILE.println("Initialized SD Card - lets go!");
  533. LOG_FILE.sync();
  534. }
  535. /*
  536. * Finalize initialization logfile
  537. */
  538. void finalizeFileLog() {
  539. // View support drive map
  540. LOG_FILE.print("ID");
  541. for(int lun=0;lun<NUM_SCSILUN;lun++)
  542. {
  543. LOG_FILE.print(":LUN");
  544. LOG_FILE.print(lun);
  545. }
  546. LOG_FILE.println(":");
  547. //
  548. for(int id=0;id<NUM_SCSIID;id++)
  549. {
  550. LOG_FILE.print(" ");
  551. LOG_FILE.print(id);
  552. for(int lun=0;lun<NUM_SCSILUN;lun++)
  553. {
  554. SCSI_DEVICE *dev = &scsi_device_list[id][lun];
  555. if( (lun<NUM_SCSILUN) && (dev->m_file))
  556. {
  557. LOG_FILE.print((dev->m_blocksize<1000) ? ": " : ":");
  558. LOG_FILE.print(dev->m_blocksize);
  559. }
  560. else
  561. LOG_FILE.print(":----");
  562. }
  563. LOG_FILE.println(":");
  564. }
  565. LOG_FILE.println("Finished initialization of SCSI Devices - Entering main loop.");
  566. LOG_FILE.sync();
  567. #if DEBUG < 2
  568. LOG_FILE.close();
  569. #endif
  570. }
  571. static void flashError(const unsigned error)
  572. {
  573. while(true) {
  574. for(uint8_t i = 0; i < error; i++) {
  575. LED_ON();
  576. delay(250);
  577. LED_OFF();
  578. delay(250);
  579. }
  580. delay(3000);
  581. }
  582. }
  583. /*
  584. * Return from exception and call longjmp
  585. */
  586. void __attribute__ ((noinline)) longjmpFromInterrupt(jmp_buf jmpb, int retval) __attribute__ ((noreturn));
  587. void longjmpFromInterrupt(jmp_buf jmpb, int retval) {
  588. // Address of longjmp with the thumb bit cleared
  589. const uint32_t longjmpaddr = ((uint32_t)longjmp) & 0xfffffffe;
  590. const uint32_t zero = 0;
  591. // Default PSR value, function calls don't require any particular value
  592. const uint32_t PSR = 0x01000000;
  593. // For documentation on what this is doing, see:
  594. // https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/exception-model/exception-entry-and-return
  595. // Stack frame needs to have R0-R3, R12, LR, PC, PSR (from bottom to top)
  596. // This is being set up to have R0 and R1 contain the parameters passed to longjmp, and PC is the address of the longjmp function.
  597. // This is using existing stack space, rather than allocating more, as longjmp is just going to unroll the stack even further.
  598. // 0xfffffff9 is the EXC_RETURN value to return to thread mode.
  599. asm (
  600. "str %0, [sp];\
  601. str %1, [sp, #4];\
  602. str %2, [sp, #8];\
  603. str %2, [sp, #12];\
  604. str %2, [sp, #16];\
  605. str %2, [sp, #20];\
  606. str %3, [sp, #24];\
  607. str %4, [sp, #28];\
  608. ldr lr, =0xfffffff9;\
  609. bx lr"
  610. :: "r"(jmpb),"r"(retval),"r"(zero), "r"(longjmpaddr), "r"(PSR)
  611. );
  612. }
  613. /*
  614. * Bus reset interrupt.
  615. */
  616. void onBusReset(void)
  617. {
  618. if(isHigh(gpio_read(RST))) {
  619. delayMicroseconds(20);
  620. if(isHigh(gpio_read(RST))) {
  621. // BUS FREE is done in the main process
  622. // gpio_mode(MSG, GPIO_OUTPUT_OD);
  623. // gpio_mode(CD, GPIO_OUTPUT_OD);
  624. // gpio_mode(REQ, GPIO_OUTPUT_OD);
  625. // gpio_mode(IO, GPIO_OUTPUT_OD);
  626. // Should I enter DB and DBP once?
  627. SCSI_DB_INPUT()
  628. LOGN("BusReset!");
  629. if (m_resetJmp) {
  630. m_resetJmp = false;
  631. // Jumping out of the interrupt handler, so need to clear the interupt source.
  632. uint8 exti = PIN_MAP[RST].gpio_bit;
  633. EXTI_BASE->PR = (1U << exti);
  634. longjmpFromInterrupt(m_resetJmpBuf, 1);
  635. } else {
  636. m_isBusReset = true;
  637. }
  638. }
  639. }
  640. }
  641. /*
  642. * Enable the reset longjmp, and check if reset fired while it was disabled.
  643. */
  644. void enableResetJmp(void) {
  645. m_resetJmp = true;
  646. if (m_isBusReset) {
  647. longjmp(m_resetJmpBuf, 1);
  648. }
  649. }
  650. /*
  651. * Read by handshake.
  652. */
  653. inline byte readHandshake(void)
  654. {
  655. SCSI_OUT(vREQ,active)
  656. //SCSI_DB_INPUT()
  657. while( ! SCSI_IN(vACK));
  658. byte r = readIO();
  659. SCSI_OUT(vREQ,inactive)
  660. while( SCSI_IN(vACK));
  661. return r;
  662. }
  663. /*
  664. * Write with a handshake.
  665. */
  666. inline void writeHandshake(byte d)
  667. {
  668. // This has a 400ns bus settle delay built in. Not optimal for multi-byte transfers.
  669. GPIOB->regs->BSRR = db_bsrr[d]; // setup DB,DBP (160ns)
  670. #ifdef XCVR
  671. TRANSCEIVER_IO_SET(vTR_DBP,TR_OUTPUT)
  672. #endif
  673. SCSI_DB_OUTPUT() // (180ns)
  674. // ACK.Fall to DB output delay 100ns(MAX) (DTC-510B)
  675. SCSI_OUT(vREQ,inactive) // setup wait (30ns)
  676. SCSI_OUT(vREQ,inactive) // setup wait (30ns)
  677. SCSI_OUT(vREQ,inactive) // setup wait (30ns)
  678. SCSI_OUT(vREQ,active) // (30ns)
  679. //while(!SCSI_IN(vACK)) { if(m_isBusReset){ SCSI_DB_INPUT() return; }}
  680. while(!SCSI_IN(vACK));
  681. // ACK.Fall to REQ.Raise delay 500ns(typ.) (DTC-510B)
  682. GPIOB->regs->BSRR = DBP(0xff); // DB=0xFF , SCSI_OUT(vREQ,inactive)
  683. // REQ.Raise to DB hold time 0ns
  684. SCSI_DB_INPUT() // (150ns)
  685. #ifdef XCVR
  686. TRANSCEIVER_IO_SET(vTR_DBP,TR_INPUT)
  687. #endif
  688. while( SCSI_IN(vACK));
  689. }
  690. #pragma GCC push_options
  691. #pragma GCC optimize ("-Os")
  692. /*
  693. * This loop is tuned to repeat the following pattern:
  694. * 1) Set REQ
  695. * 2) 5 cycles of work/delay
  696. * 3) Wait for ACK
  697. * Cycle time tunings are for 72MHz STM32F103
  698. * Alignment matters. For the 3 instruction wait loops,it looks like crossing
  699. * an 8 byte prefetch buffer can add 2 cycles of wait every branch taken.
  700. */
  701. void writeDataLoop(uint32_t blocksize, const byte* srcptr) __attribute__ ((aligned(8)));
  702. void writeDataLoop(uint32_t blocksize, const byte* srcptr)
  703. {
  704. #define REQ_ON() (port_b->BRR = req_bit);
  705. #define FETCH_BSRR_DB() (bsrr_val = bsrr_tbl[*srcptr++])
  706. #define REQ_OFF_DB_SET(BSRR_VAL) port_b->BSRR = BSRR_VAL;
  707. #define WAIT_ACK_ACTIVE() while((*port_a_idr>>(vACK&15)&1))
  708. #define WAIT_ACK_INACTIVE() while(!(*port_a_idr>>(vACK&15)&1))
  709. register const byte *endptr= srcptr + blocksize; // End pointer
  710. register const uint32_t *bsrr_tbl = db_bsrr; // Table to convert to BSRR
  711. register uint32_t bsrr_val; // BSRR value to output (DB, DBP, REQ = ACTIVE)
  712. register uint32_t req_bit = BITMASK(vREQ);
  713. register gpio_reg_map *port_b = PBREG;
  714. register volatile uint32_t *port_a_idr = &(GPIOA->regs->IDR);
  715. // Start the first bus cycle.
  716. FETCH_BSRR_DB();
  717. REQ_OFF_DB_SET(bsrr_val);
  718. REQ_ON();
  719. FETCH_BSRR_DB();
  720. WAIT_ACK_ACTIVE();
  721. REQ_OFF_DB_SET(bsrr_val);
  722. // Align the starts of the do/while and WAIT loops to an 8 byte prefetch.
  723. asm("nop.w;nop");
  724. do{
  725. WAIT_ACK_INACTIVE();
  726. REQ_ON();
  727. // 4 cycles of work
  728. FETCH_BSRR_DB();
  729. // Extra 1 cycle delay while keeping the loop within an 8 byte prefetch.
  730. asm("nop");
  731. WAIT_ACK_ACTIVE();
  732. REQ_OFF_DB_SET(bsrr_val);
  733. // Extra 1 cycle delay, plus 4 cycles for the branch taken with prefetch.
  734. asm("nop");
  735. }while(srcptr < endptr);
  736. WAIT_ACK_INACTIVE();
  737. // Finish the last bus cycle, byte is already on DB.
  738. REQ_ON();
  739. WAIT_ACK_ACTIVE();
  740. REQ_OFF_DB_SET(bsrr_val);
  741. WAIT_ACK_INACTIVE();
  742. }
  743. #pragma GCC pop_options
  744. /*
  745. * Data in phase.
  746. * Send len bytes of data array p.
  747. */
  748. void writeDataPhase(int len, const byte* p)
  749. {
  750. LOGN("DATAIN PHASE");
  751. SCSI_PHASE_CHANGE(SCSI_PHASE_DATAIN);
  752. // Bus settle delay 400ns. Following code was measured at 800ns before REQ asserted. STM32F103.
  753. #ifdef XCVR
  754. TRANSCEIVER_IO_SET(vTR_DBP,TR_OUTPUT)
  755. #endif
  756. SCSI_DB_OUTPUT()
  757. writeDataLoop(len, p);
  758. }
  759. /*
  760. * Data in phase.
  761. * Send len block while reading from SD card.
  762. */
  763. void writeDataPhaseSD(SCSI_DEVICE *dev, uint32_t adds, uint32_t len)
  764. {
  765. LOGN("DATAIN PHASE(SD)");
  766. SCSI_PHASE_CHANGE(SCSI_PHASE_DATAIN);
  767. //Bus settle delay 400ns, file.seek() measured at over 1000ns.
  768. uint64_t pos = (uint64_t)adds * dev->m_blocksize;
  769. dev->m_file->seekSet(pos);
  770. #ifdef XCVR
  771. TRANSCEIVER_IO_SET(vTR_DBP,TR_OUTPUT)
  772. #endif
  773. SCSI_DB_OUTPUT()
  774. for(uint32_t i = 0; i < len; i++) {
  775. // Asynchronous reads will make it faster ...
  776. m_resetJmp = false;
  777. dev->m_file->read(m_buf, dev->m_blocksize);
  778. enableResetJmp();
  779. writeDataLoop(dev->m_blocksize, m_buf);
  780. }
  781. }
  782. #pragma GCC push_options
  783. #pragma GCC optimize ("-Os")
  784. /*
  785. * See writeDataLoop for optimization info.
  786. */
  787. void readDataLoop(uint32_t blockSize, byte* dstptr) __attribute__ ((aligned(16)));
  788. void readDataLoop(uint32_t blockSize, byte* dstptr)
  789. {
  790. register byte *endptr= dstptr + blockSize - 1;
  791. #define REQ_ON() (port_b->BRR = req_bit);
  792. #define REQ_OFF() (port_b->BSRR = req_bit);
  793. #define WAIT_ACK_ACTIVE() while((*port_a_idr>>(vACK&15)&1))
  794. #define WAIT_ACK_INACTIVE() while(!(*port_a_idr>>(vACK&15)&1))
  795. register uint32_t req_bit = BITMASK(vREQ);
  796. register gpio_reg_map *port_b = PBREG;
  797. register volatile uint32_t *port_a_idr = &(GPIOA->regs->IDR);
  798. REQ_ON();
  799. // Fastest alignment obtained by trial and error.
  800. // Wait loop is within an 8 byte prefetch buffer.
  801. asm("nop");
  802. do {
  803. WAIT_ACK_ACTIVE();
  804. uint32_t ret = port_b->IDR;
  805. REQ_OFF();
  806. *dstptr++ = ~(ret >> 8);
  807. // Move wait loop in to a single 8 byte prefetch buffer
  808. asm("nop;nop;nop");
  809. WAIT_ACK_INACTIVE();
  810. REQ_ON();
  811. // Extra 1 cycle delay
  812. asm("nop");
  813. } while(dstptr<endptr);
  814. WAIT_ACK_ACTIVE();
  815. uint32_t ret = GPIOB->regs->IDR;
  816. REQ_OFF();
  817. *dstptr = ~(ret >> 8);
  818. WAIT_ACK_INACTIVE();
  819. }
  820. #pragma GCC pop_options
  821. /*
  822. * Data out phase.
  823. * len block read
  824. */
  825. void readDataPhase(int len, byte* p)
  826. {
  827. LOGN("DATAOUT PHASE");
  828. SCSI_PHASE_CHANGE(SCSI_PHASE_DATAOUT);
  829. // Bus settle delay 400ns. The following code was measured at 450ns before REQ asserted. STM32F103.
  830. readDataLoop(len, p);
  831. }
  832. /*
  833. * Data out phase.
  834. * Write to SD card while reading len block.
  835. */
  836. void readDataPhaseSD(SCSI_DEVICE *dev, uint32_t adds, uint32_t len)
  837. {
  838. LOGN("DATAOUT PHASE(SD)");
  839. SCSI_PHASE_CHANGE(SCSI_PHASE_DATAOUT);
  840. //Bus settle delay 400ns, file.seek() measured at over 1000ns.
  841. uint64_t pos = (uint64_t)adds * dev->m_blocksize;
  842. dev->m_file->seekSet(pos);
  843. for(uint32_t i = 0; i < len; i++) {
  844. m_resetJmp = true;
  845. readDataLoop(dev->m_blocksize, m_buf);
  846. m_resetJmp = false;
  847. dev->m_file->write(m_buf, dev->m_blocksize);
  848. // If a reset happened while writing, break and let the flush happen before it is handled.
  849. if (m_isBusReset) {
  850. break;
  851. }
  852. }
  853. dev->m_file->flush();
  854. enableResetJmp();
  855. }
  856. /*
  857. * Data out phase.
  858. * Compare to SD card while reading len block.
  859. */
  860. void verifyDataPhaseSD(SCSI_DEVICE *dev, uint32_t adds, uint32_t len)
  861. {
  862. LOGN("DATAOUT PHASE(SD)");
  863. SCSI_PHASE_CHANGE(SCSI_PHASE_DATAOUT);
  864. //Bus settle delay 400ns, file.seek() measured at over 1000ns.
  865. uint64_t pos = (uint64_t)adds * dev->m_blocksize;
  866. dev->m_file->seekSet(pos);
  867. for(uint32_t i = 0; i < len; i++) {
  868. readDataLoop(dev->m_blocksize, m_buf);
  869. // This has just gone through the transfer to make things work, a compare would go here.
  870. }
  871. }
  872. /*
  873. * INQUIRY command processing.
  874. */
  875. byte onInquiry(SCSI_DEVICE *dev, const byte *cdb)
  876. {
  877. writeDataPhase(cdb[4] < 36 ? cdb[4] : 36, dev->inquiry_block.raw);
  878. return SCSI_STATUS_GOOD;
  879. }
  880. /*
  881. * REQUEST SENSE command processing.
  882. */
  883. byte onRequestSense(SCSI_DEVICE *dev, const byte *cdb)
  884. {
  885. byte buf[18] = {
  886. 0x70, //CheckCondition
  887. 0, //Segment number
  888. dev->m_senseKey, //Sense key
  889. 0, 0, 0, 0, //information
  890. 10, //Additional data length
  891. 0, 0, 0, 0, // command specific information bytes
  892. (byte)(dev->m_additional_sense_code >> 8),
  893. (byte)dev->m_additional_sense_code,
  894. 0, 0, 0, 0,
  895. };
  896. dev->m_senseKey = 0;
  897. dev->m_additional_sense_code = 0;
  898. writeDataPhase(cdb[4] < 18 ? cdb[4] : 18, buf);
  899. return SCSI_STATUS_GOOD;
  900. }
  901. /*
  902. * READ CAPACITY command processing.
  903. */
  904. byte onReadCapacity(SCSI_DEVICE *dev, const byte *cdb)
  905. {
  906. uint32_t lastlba = dev->m_blockcount - 1; // Points to last LBA
  907. uint8_t buf[8] = {
  908. lastlba >> 24,
  909. lastlba >> 16,
  910. lastlba >> 8,
  911. lastlba,
  912. dev->m_blocksize >> 24,
  913. dev->m_blocksize >> 16,
  914. dev->m_blocksize >> 8,
  915. dev->m_blocksize
  916. };
  917. writeDataPhase(sizeof(buf), buf);
  918. return SCSI_STATUS_GOOD;
  919. }
  920. /*
  921. * Check that the image file is present and the block range is valid.
  922. */
  923. byte checkBlockCommand(SCSI_DEVICE *dev, uint32_t adds, uint32_t len)
  924. {
  925. // Check block range is valid
  926. if (adds >= dev->m_blockcount || (adds + len) > dev->m_blockcount) {
  927. dev->m_senseKey = SCSI_SENSE_ILLEGAL_REQUEST;
  928. dev->m_additional_sense_code = SCSI_ASC_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
  929. return SCSI_STATUS_CHECK_CONDITION;
  930. }
  931. return SCSI_STATUS_GOOD;
  932. }
  933. /*
  934. * READ6 / 10 Command processing.
  935. */
  936. static byte onRead6(SCSI_DEVICE *dev, const byte *cdb)
  937. {
  938. unsigned adds = (((uint32_t)cdb[1] & 0x1F) << 16) | ((uint32_t)cdb[2] << 8) | cdb[3];
  939. unsigned len = (cdb[4] == 0) ? 0x100 : cdb[4];
  940. /*
  941. LOGN("onRead6");
  942. LOG("-R ");
  943. LOGHEX(adds);
  944. LOG(":");
  945. LOGHEXN(len);
  946. */
  947. byte sts = checkBlockCommand(dev, adds, len);
  948. if (sts) {
  949. return sts;
  950. }
  951. writeDataPhaseSD(dev, adds, len);
  952. return SCSI_STATUS_GOOD;
  953. }
  954. static byte onRead10(SCSI_DEVICE *dev, const byte *cdb)
  955. {
  956. unsigned adds = ((uint32_t)cdb[2] << 24) | ((uint32_t)cdb[3] << 16) | ((uint32_t)cdb[4] << 8) | cdb[5];
  957. unsigned len = ((uint32_t)cdb[7] << 8) | cdb[8];
  958. /*
  959. LOGN("onRead10");
  960. LOG("-R ");
  961. LOGHEX(adds);
  962. LOG(":");
  963. LOGHEXN(len);
  964. */
  965. byte sts = checkBlockCommand(dev, adds, len);
  966. if (sts) {
  967. return sts;
  968. }
  969. writeDataPhaseSD(dev, adds, len);
  970. return SCSI_STATUS_GOOD;
  971. }
  972. /*
  973. * WRITE6 / 10 Command processing.
  974. */
  975. static byte onWrite6(SCSI_DEVICE *dev, const byte *cdb)
  976. {
  977. unsigned adds = (((uint32_t)cdb[1] & 0x1F) << 16) | ((uint32_t)cdb[2] << 8) | cdb[3];
  978. unsigned len = (cdb[4] == 0) ? 0x100 : cdb[4];
  979. /*
  980. LOGN("onWrite6");
  981. LOG("-W ");
  982. LOGHEX(adds);
  983. LOG(":");
  984. LOGHEXN(len);
  985. */
  986. if(dev->m_type == SCSI_DEVICE_OPTICAL)
  987. {
  988. dev->m_senseKey = SCSI_SENSE_HARDWARE_ERROR;
  989. dev->m_additional_sense_code = SCSI_ASC_WRITE_PROTECTED; // Write Protect
  990. return SCSI_STATUS_CHECK_CONDITION;
  991. }
  992. byte sts = checkBlockCommand(dev, adds, len);
  993. if (sts) {
  994. return sts;
  995. }
  996. readDataPhaseSD(dev, adds, len);
  997. return SCSI_STATUS_GOOD;
  998. }
  999. static byte onWrite10(SCSI_DEVICE *dev, const byte *cdb)
  1000. {
  1001. unsigned adds = ((uint32_t)cdb[2] << 24) | ((uint32_t)cdb[3] << 16) | ((uint32_t)cdb[4] << 8) | cdb[5];
  1002. unsigned len = ((uint32_t)cdb[7] << 8) | cdb[8];
  1003. /*
  1004. LOGN("onWrite10");
  1005. LOG("-W ");
  1006. LOGHEX(adds);
  1007. LOG(":");
  1008. LOGHEXN(len);
  1009. */
  1010. if(dev->m_type == SCSI_DEVICE_OPTICAL)
  1011. {
  1012. dev->m_senseKey = SCSI_SENSE_HARDWARE_ERROR;
  1013. dev->m_additional_sense_code = SCSI_ASC_WRITE_PROTECTED; // Write Protect
  1014. return SCSI_STATUS_CHECK_CONDITION;
  1015. }
  1016. byte sts = checkBlockCommand(dev, adds, len);
  1017. if (sts) {
  1018. return sts;
  1019. }
  1020. readDataPhaseSD(dev, adds, len);
  1021. return SCSI_STATUS_GOOD;
  1022. }
  1023. /*
  1024. * VERIFY10 Command processing.
  1025. */
  1026. byte onVerify(SCSI_DEVICE *dev, const byte *cdb)
  1027. {
  1028. unsigned adds = ((uint32_t)cdb[2] << 24) | ((uint32_t)cdb[3] << 16) | ((uint32_t)cdb[4] << 8) | cdb[5];
  1029. unsigned len = ((uint32_t)cdb[7] << 8) | cdb[8];
  1030. byte sts = checkBlockCommand(dev, adds, len);
  1031. if (sts) {
  1032. return sts;
  1033. }
  1034. int bytchk = (cdb[1] >> 1) & 0x03;
  1035. if (bytchk != 0) {
  1036. if (bytchk == 3) {
  1037. // Data-Out buffer is single logical block for repeated verification.
  1038. len = dev->m_blocksize;
  1039. }
  1040. LED_ON();
  1041. verifyDataPhaseSD(dev, adds, len);
  1042. LED_OFF();
  1043. }
  1044. return SCSI_STATUS_GOOD;
  1045. }
  1046. /*
  1047. * MODE SENSE command processing.
  1048. */
  1049. byte onModeSense(SCSI_DEVICE *dev, const byte *cdb)
  1050. {
  1051. memset(m_buf, 0, sizeof(m_buf));
  1052. int pageCode = cdb[2] & 0x3F;
  1053. int pageControl = cdb[2] >> 6;
  1054. int a = 4;
  1055. byte dbd = cdb[1] & 0x08;
  1056. if(cdb[0] == SCSI_MODE_SENSE10) a = 8;
  1057. if(dbd == 0) {
  1058. byte c[8] = {
  1059. 0,//Density code
  1060. dev->m_blockcount >> 16,
  1061. dev->m_blockcount >> 8,
  1062. dev->m_blockcount,
  1063. 0, //Reserve
  1064. dev->m_blocksize >> 16,
  1065. dev->m_blocksize >> 8,
  1066. dev->m_blocksize,
  1067. };
  1068. memcpy(&m_buf[a], c, 8);
  1069. a += 8;
  1070. }
  1071. switch(pageCode) {
  1072. case SCSI_SENSE_MODE_ALL:
  1073. case SCSI_SENSE_MODE_READ_WRITE_ERROR_RECOVERY:
  1074. m_buf[a + 0] = SCSI_SENSE_MODE_READ_WRITE_ERROR_RECOVERY;
  1075. m_buf[a + 1] = 0x0A;
  1076. a += 0x0C;
  1077. if(pageCode != SCSI_SENSE_MODE_ALL) break;
  1078. case SCSI_SENSE_MODE_DISCONNECT_RECONNECT:
  1079. m_buf[a + 0] = SCSI_SENSE_MODE_DISCONNECT_RECONNECT;
  1080. m_buf[a + 1] = 0x0A;
  1081. a += 0x0C;
  1082. if(pageCode != SCSI_SENSE_MODE_ALL) break;
  1083. case SCSI_SENSE_MODE_FORMAT_DEVICE: //Drive parameters
  1084. m_buf[a + 0] = SCSI_SENSE_MODE_FORMAT_DEVICE; //Page code
  1085. m_buf[a + 1] = 0x16; // Page length
  1086. if(pageControl != 1) {
  1087. m_buf[a + 11] = 0x3F;//Number of sectors / track
  1088. m_buf[a + 12] = (byte)(dev->m_blocksize >> 8);
  1089. m_buf[a + 13] = (byte)dev->m_blocksize;
  1090. m_buf[a + 15] = 0x1; // Interleave
  1091. }
  1092. a += 0x18;
  1093. if(pageCode != SCSI_SENSE_MODE_ALL) break;
  1094. case SCSI_SENSE_MODE_DISK_GEOMETRY: //Drive parameters
  1095. m_buf[a + 0] = SCSI_SENSE_MODE_DISK_GEOMETRY; //Page code
  1096. m_buf[a + 1] = 0x16; // Page length
  1097. if(pageControl != 1) {
  1098. unsigned cylinders = dev->m_blockcount / (16 * 63);
  1099. m_buf[a + 2] = (byte)(cylinders >> 16); // Cylinders
  1100. m_buf[a + 3] = (byte)(cylinders >> 8);
  1101. m_buf[a + 4] = (byte)cylinders;
  1102. m_buf[a + 5] = 16; //Number of heads
  1103. }
  1104. a += 0x18;
  1105. if(pageCode != SCSI_SENSE_MODE_ALL) break;
  1106. case SCSI_SENSE_MODE_FLEXABLE_GEOMETRY:
  1107. m_buf[a + 0] = SCSI_SENSE_MODE_FLEXABLE_GEOMETRY;
  1108. m_buf[a + 1] = 0x1E; // Page length
  1109. if(pageControl != 1) {
  1110. m_buf[a + 2] = 0x03;
  1111. m_buf[a + 3] = 0xE8; // Transfer rate 1 mbit/s
  1112. m_buf[a + 4] = 16; // Number of heads
  1113. m_buf[a + 5] = 18; // Sectors per track
  1114. m_buf[a + 6] = (byte)dev->m_blocksize >> 8;
  1115. m_buf[a + 7] = (byte)dev->m_blocksize & 0xff; // Data bytes per sector
  1116. }
  1117. a += 0x20;
  1118. if(pageCode != SCSI_SENSE_MODE_ALL) break;
  1119. case SCSI_SENSE_MODE_CACHING:
  1120. m_buf[a + 0] = SCSI_SENSE_MODE_CACHING;
  1121. m_buf[a + 1] = 0x0A; // Page length
  1122. if(pageControl != 1) {
  1123. m_buf[a + 2] = 0x01; // Disalbe Read Cache so no one asks for Cache Stats page.
  1124. }
  1125. a += 0x08;
  1126. if(pageCode != SCSI_SENSE_MODE_ALL) break;
  1127. case SCSI_SENSE_MODE_VENDOR_APPLE:
  1128. {
  1129. const byte page30[0x14] = {0x41, 0x50, 0x50, 0x4C, 0x45, 0x20, 0x43, 0x4F, 0x4D, 0x50, 0x55, 0x54, 0x45, 0x52, 0x2C, 0x20, 0x49, 0x4E, 0x43, 0x20};
  1130. m_buf[a + 0] = SCSI_SENSE_MODE_VENDOR_APPLE; // Page code
  1131. m_buf[a + 1] = sizeof(page30); // Page length
  1132. if(pageControl != 1) {
  1133. memcpy(&m_buf[a + 2], page30, sizeof(page30));
  1134. }
  1135. a += 2 + sizeof(page30);
  1136. if(pageCode != SCSI_SENSE_MODE_ALL) break;
  1137. }
  1138. break; // Don't want SCSI_SENSE_MODE_ALL falling through to error condition
  1139. default:
  1140. dev->m_senseKey = SCSI_SENSE_ILLEGAL_REQUEST;
  1141. dev->m_additional_sense_code = SCSI_ASC_INVALID_FIELD_IN_CDB;
  1142. return SCSI_STATUS_CHECK_CONDITION;
  1143. break;
  1144. }
  1145. if(cdb[0] == SCSI_MODE_SENSE10)
  1146. {
  1147. m_buf[1] = a - 2;
  1148. m_buf[7] = 0x08;
  1149. }
  1150. else
  1151. {
  1152. m_buf[0] = a - 1;
  1153. m_buf[3] = 0x08;
  1154. }
  1155. writeDataPhase(cdb[4] < a ? cdb[4] : a, m_buf);
  1156. return SCSI_STATUS_GOOD;
  1157. }
  1158. byte onModeSelect(SCSI_DEVICE *dev, const byte *cdb)
  1159. {
  1160. unsigned length = 0;
  1161. LOGN("onModeSelect");
  1162. if(dev->m_type != SCSI_DEVICE_HDD && (cdb[1] & 0x01))
  1163. {
  1164. dev->m_senseKey = SCSI_SENSE_ILLEGAL_REQUEST;
  1165. dev->m_additional_sense_code = SCSI_ASC_INVALID_FIELD_IN_CDB;
  1166. return SCSI_STATUS_CHECK_CONDITION;
  1167. }
  1168. if(cdb[0] == SCSI_MODE_SELECT6)
  1169. {
  1170. length = cdb[4];
  1171. }
  1172. else /* SCSI_MODE_SELECT10 */
  1173. {
  1174. length = cdb[7] << 8;
  1175. length |= cdb[8];
  1176. if(length > 0x800) { length = 0x800; }
  1177. }
  1178. readDataPhase(length, m_buf);
  1179. //Apple HD SC Setup sends:
  1180. //0 0 0 8 0 0 0 0 0 0 2 0 0 2 10 0 1 6 24 10 8 0 0 0
  1181. //I believe mode page 0 set to 10 00 is Disable Unit Attention
  1182. //Mode page 1 set to 24 10 08 00 00 00 is TB and PER set, read retry count 16, correction span 8
  1183. #if DEBUG > 0
  1184. for (unsigned i = 0; i < length; i++) {
  1185. LOGHEX(m_buf[i]);LOG(" ");
  1186. }
  1187. LOGN("");
  1188. #endif
  1189. return SCSI_STATUS_GOOD;
  1190. }
  1191. /*
  1192. * ReZero Unit - Move to Logical Block Zero in file.
  1193. */
  1194. byte onReZeroUnit(SCSI_DEVICE *dev, const byte *cdb) {
  1195. LOGN("-ReZeroUnit");
  1196. // Make sure we have an image with atleast a first byte.
  1197. // Actually seeking to the position wont do anything, so dont.
  1198. return checkBlockCommand(dev, 0, 0);
  1199. }
  1200. /*
  1201. * WriteBuffer - Used for testing buffer, no change to medium
  1202. */
  1203. byte onWriteBuffer(SCSI_DEVICE *dev, const byte *cdb)
  1204. {
  1205. byte mode = cdb[1] & 7;
  1206. uint32_t allocLength = ((uint32_t)cdb[6] << 16) | ((uint32_t)cdb[7] << 8) | cdb[8];
  1207. LOGN("-WriteBuffer");
  1208. LOGHEXN(mode);
  1209. LOGHEXN(allocLength);
  1210. if (mode == MODE_COMBINED_HEADER_DATA && (allocLength - 4) <= SCSI_BUF_SIZE)
  1211. {
  1212. byte tmp[allocLength];
  1213. readDataPhase(allocLength, tmp);
  1214. // Drop header
  1215. memcpy(m_scsi_buf, (&tmp[4]), allocLength - 4);
  1216. #if DEBUG > 0
  1217. for (unsigned i = 0; i < allocLength; i++) {
  1218. LOGHEX(tmp[i]);LOG(" ");
  1219. }
  1220. LOGN("");
  1221. #endif
  1222. return SCSI_STATUS_GOOD;
  1223. }
  1224. else if ( mode == MODE_DATA && allocLength <= SCSI_BUF_SIZE)
  1225. {
  1226. readDataPhase(allocLength, m_scsi_buf);
  1227. #if DEBUG > 0
  1228. for (unsigned i = 0; i < allocLength; i++) {
  1229. LOGHEX(m_scsi_buf[i]);LOG(" ");
  1230. }
  1231. LOGN("");
  1232. #endif
  1233. return SCSI_STATUS_GOOD;
  1234. }
  1235. else
  1236. {
  1237. dev->m_senseKey = SCSI_SENSE_ILLEGAL_REQUEST;
  1238. dev->m_additional_sense_code = SCSI_ASC_INVALID_FIELD_IN_CDB;
  1239. return SCSI_STATUS_CHECK_CONDITION;
  1240. }
  1241. }
  1242. /*
  1243. * ReadBuffer - Used for testing buffer, no change to medium
  1244. */
  1245. byte onReadBuffer(SCSI_DEVICE *dev, const byte *cdb)
  1246. {
  1247. byte mode = cdb[1] & 7;
  1248. uint32_t allocLength = ((uint32_t)cdb[6] << 16) | ((uint32_t)cdb[7] << 8) | cdb[8];
  1249. LOGN("-ReadBuffer");
  1250. LOGHEXN(mode);
  1251. LOGHEXN(allocLength);
  1252. if (mode == MODE_COMBINED_HEADER_DATA)
  1253. {
  1254. byte scsi_buf_response[SCSI_BUF_SIZE + 4];
  1255. // four byte read buffer header
  1256. scsi_buf_response[0] = 0;
  1257. scsi_buf_response[1] = (SCSI_BUF_SIZE >> 16) & 0xff;
  1258. scsi_buf_response[2] = (SCSI_BUF_SIZE >> 8) & 0xff;
  1259. scsi_buf_response[3] = SCSI_BUF_SIZE & 0xff;
  1260. // actual data
  1261. memcpy((&scsi_buf_response[4]), m_scsi_buf, SCSI_BUF_SIZE);
  1262. writeDataPhase(SCSI_BUF_SIZE + 4, scsi_buf_response);
  1263. #if DEBUG > 0
  1264. for (unsigned i = 0; i < allocLength; i++) {
  1265. LOGHEX(m_scsi_buf[i]);LOG(" ");
  1266. }
  1267. LOGN("");
  1268. #endif
  1269. return SCSI_STATUS_GOOD;
  1270. }
  1271. else if (mode == MODE_DATA)
  1272. {
  1273. writeDataPhase(allocLength, m_scsi_buf);
  1274. #if DEBUG > 0
  1275. for (unsigned i = 0; i < allocLength; i++) {
  1276. LOGHEX(m_scsi_buf[i]);LOG(" ");
  1277. }
  1278. LOGN("");
  1279. #endif
  1280. return SCSI_STATUS_GOOD;
  1281. }
  1282. else
  1283. {
  1284. dev->m_senseKey = SCSI_SENSE_ILLEGAL_REQUEST;
  1285. dev->m_additional_sense_code = SCSI_ASC_INVALID_FIELD_IN_CDB;
  1286. return SCSI_STATUS_CHECK_CONDITION;
  1287. }
  1288. }
  1289. /*
  1290. * On Send Diagnostic
  1291. */
  1292. byte onSendDiagnostic(SCSI_DEVICE *dev, const byte *cdb)
  1293. {
  1294. int self_test = cdb[1] & 0x4;
  1295. LOGN("-SendDiagnostic");
  1296. LOGHEXN(cdb[1]);
  1297. if(self_test)
  1298. {
  1299. // Don't actually do a test, we're good.
  1300. return SCSI_STATUS_GOOD;
  1301. }
  1302. else
  1303. {
  1304. dev->m_senseKey = SCSI_SENSE_ILLEGAL_REQUEST;
  1305. dev->m_additional_sense_code = SCSI_ASC_INVALID_FIELD_IN_CDB;
  1306. return SCSI_STATUS_CHECK_CONDITION;
  1307. }
  1308. }
  1309. /*
  1310. * Read Defect Data
  1311. */
  1312. byte onReadDefectData(SCSI_DEVICE *dev, const byte *cdb)
  1313. {
  1314. byte response[4] = {
  1315. 0x0, // Reserved
  1316. cdb[2], // echo back Reserved, Plist, Glist, Defect list format
  1317. cdb[7], cdb[8] // echo back defect list length
  1318. };
  1319. writeDataPhase(4, response);
  1320. return SCSI_STATUS_GOOD;
  1321. }
  1322. /*
  1323. * MsgIn2.
  1324. */
  1325. void MsgIn2(int msg)
  1326. {
  1327. LOGN("MsgIn2");
  1328. SCSI_PHASE_CHANGE(SCSI_PHASE_MESSAGEIN);
  1329. // Bus settle delay 400ns built in to writeHandshake
  1330. writeHandshake(msg);
  1331. }
  1332. /*
  1333. * Main loop.
  1334. */
  1335. void loop()
  1336. {
  1337. #ifdef XCVR
  1338. // Reset all DB and Target pins, switch transceivers to input
  1339. // Precaution against bugs or jumps which don't clean up properly
  1340. SCSI_DB_INPUT();
  1341. TRANSCEIVER_IO_SET(vTR_DBP,TR_INPUT)
  1342. SCSI_TARGET_INACTIVE();
  1343. TRANSCEIVER_IO_SET(vTR_INITIATOR,TR_INPUT)
  1344. #endif
  1345. //int msg = 0;
  1346. m_msg = 0;
  1347. m_lun = 0xff;
  1348. SCSI_DEVICE *dev = (SCSI_DEVICE *)0; // HDD image for current SCSI-ID, LUN
  1349. // Wait until RST = H, BSY = H, SEL = L
  1350. do {} while( SCSI_IN(vBSY) || !SCSI_IN(vSEL) || SCSI_IN(vRST));
  1351. // BSY+ SEL-
  1352. // If the ID to respond is not driven, wait for the next
  1353. //byte db = readIO();
  1354. //byte scsiid = db & scsi_id_mask;
  1355. byte scsiid = readIO() & scsi_id_mask;
  1356. if((scsiid) == 0) {
  1357. delayMicroseconds(1);
  1358. return;
  1359. }
  1360. LOGN("Selection");
  1361. m_isBusReset = false;
  1362. if (setjmp(m_resetJmpBuf) == 1) {
  1363. LOGN("Reset, going to BusFree");
  1364. goto BusFree;
  1365. }
  1366. enableResetJmp();
  1367. // Set BSY to-when selected
  1368. SCSI_BSY_ACTIVE(); // Turn only BSY output ON, ACTIVE
  1369. // Ask for a TARGET-ID to respond
  1370. m_id = 31 - __builtin_clz(scsiid);
  1371. // Wait until SEL becomes inactive
  1372. while(isHigh(gpio_read(SEL)) && isLow(gpio_read(BSY))) {
  1373. }
  1374. #ifdef XCVR
  1375. // Reconfigure target pins to output mode, after resetting their values
  1376. GPIOB->regs->BSRR = 0x000000E8; // MSG, CD, REQ, IO
  1377. // GPIOA->regs->BSRR = 0x00000200; // BSY
  1378. #endif
  1379. SCSI_TARGET_ACTIVE() // (BSY), REQ, MSG, CD, IO output turned on
  1380. //
  1381. if(isHigh(gpio_read(ATN))) {
  1382. SCSI_PHASE_CHANGE(SCSI_PHASE_MESSAGEOUT);
  1383. // Bus settle delay 400ns. Following code was measured at 350ns before REQ asserted. Added another 50ns. STM32F103.
  1384. SCSI_PHASE_CHANGE(SCSI_PHASE_MESSAGEOUT);// 28ns delay STM32F103
  1385. SCSI_PHASE_CHANGE(SCSI_PHASE_MESSAGEOUT);// 28ns delay STM32F103
  1386. bool syncenable = false;
  1387. int syncperiod = 50;
  1388. int syncoffset = 0;
  1389. int msc = 0;
  1390. while(isHigh(gpio_read(ATN)) && msc < 255) {
  1391. m_msb[msc++] = readHandshake();
  1392. }
  1393. for(int i = 0; i < msc; i++) {
  1394. // ABORT
  1395. if (m_msb[i] == 0x06) {
  1396. goto BusFree;
  1397. }
  1398. // BUS DEVICE RESET
  1399. if (m_msb[i] == 0x0C) {
  1400. syncoffset = 0;
  1401. goto BusFree;
  1402. }
  1403. // IDENTIFY
  1404. if (m_msb[i] >= 0x80) {
  1405. m_lun = m_msb[i] & 0x1f;
  1406. if(m_lun >= NUM_SCSILUN)
  1407. {
  1408. SCSI_DEVICE *d = &scsi_device_list[m_id][m_lun];
  1409. d->m_senseKey = SCSI_SENSE_ILLEGAL_REQUEST;
  1410. d->m_additional_sense_code = SCSI_ASC_LOGICAL_UNIT_NOT_SUPPORTED;
  1411. m_sts |= SCSI_STATUS_CHECK_CONDITION;
  1412. goto Status;
  1413. }
  1414. }
  1415. // Extended message
  1416. if (m_msb[i] == 0x01) {
  1417. // Check only when synchronous transfer is possible
  1418. if (!syncenable || m_msb[i + 2] != 0x01) {
  1419. MsgIn2(0x07);
  1420. break;
  1421. }
  1422. // Transfer period factor(50 x 4 = Limited to 200ns)
  1423. syncperiod = m_msb[i + 3];
  1424. if (syncperiod > 50) {
  1425. syncperiod = 50;
  1426. }
  1427. // REQ/ACK offset(Limited to 16)
  1428. syncoffset = m_msb[i + 4];
  1429. if (syncoffset > 16) {
  1430. syncoffset = 16;
  1431. }
  1432. // STDR response message generation
  1433. MsgIn2(0x01);
  1434. MsgIn2(0x03);
  1435. MsgIn2(0x01);
  1436. MsgIn2(syncperiod);
  1437. MsgIn2(syncoffset);
  1438. break;
  1439. }
  1440. }
  1441. }
  1442. LOG("Command:");
  1443. SCSI_PHASE_CHANGE(SCSI_PHASE_COMMAND);
  1444. // Bus settle delay 400ns. The following code was measured at 20ns before REQ asserted. Added another 380ns. STM32F103.
  1445. asm("nop;nop;nop;nop;nop;nop;nop;nop");// This asm causes some code reodering, which adds 270ns, plus 8 nop cycles for an additional 110ns. STM32F103
  1446. int len;
  1447. byte cmd[12];
  1448. cmd[0] = readHandshake();
  1449. LOGHEX(cmd[0]);
  1450. // Command length selection, reception
  1451. static const int cmd_class_len[8]={6,10,10,6,6,12,6,6};
  1452. len = cmd_class_len[cmd[0] >> 5];
  1453. cmd[1] = readHandshake(); LOG(":");LOGHEX(cmd[1]);
  1454. cmd[2] = readHandshake(); LOG(":");LOGHEX(cmd[2]);
  1455. cmd[3] = readHandshake(); LOG(":");LOGHEX(cmd[3]);
  1456. cmd[4] = readHandshake(); LOG(":");LOGHEX(cmd[4]);
  1457. cmd[5] = readHandshake(); LOG(":");LOGHEX(cmd[5]);
  1458. // Receive the remaining commands
  1459. for(int i = 6; i < len; i++ ) {
  1460. cmd[i] = readHandshake();
  1461. LOG(":");
  1462. LOGHEX(cmd[i]);
  1463. }
  1464. // LUN confirmation
  1465. m_sts = cmd[1]&0xe0; // Preset LUN in status byte
  1466. // if it wasn't set in the IDENTIFY then grab it from the CDB
  1467. if(m_lun > NUM_SCSILUN)
  1468. {
  1469. m_lun = m_sts>>5;
  1470. }
  1471. LOG(":ID ");
  1472. LOG(m_id);
  1473. LOG(":LUN ");
  1474. LOG(m_lun);
  1475. LOGN("");
  1476. dev = &(scsi_device_list[m_id][m_lun]);
  1477. // HDD Image selection
  1478. if(m_lun >= NUM_SCSILUN || !dev->m_file)
  1479. {
  1480. // REQUEST SENSE and INQUIRY are handled different with invalid LUNs
  1481. if(cmd[0] != SCSI_REQUEST_SENSE || cmd[0] != SCSI_INQUIRY)
  1482. {
  1483. dev->m_senseKey = SCSI_SENSE_ILLEGAL_REQUEST;
  1484. dev->m_additional_sense_code = SCSI_ASC_LOGICAL_UNIT_NOT_SUPPORTED;
  1485. m_sts = SCSI_STATUS_CHECK_CONDITION;
  1486. goto Status;
  1487. }
  1488. if(cmd[0] == SCSI_INQUIRY)
  1489. {
  1490. // Special INQUIRY handling for invalid LUNs
  1491. LOGN("onInquiry - InvalidLUN");
  1492. dev = &(scsi_device_list[m_id][0]);
  1493. byte temp = dev->inquiry_block.raw[0];
  1494. // If the LUN is invalid byte 0 of inquiry block needs to be 7fh
  1495. dev->inquiry_block.raw[0] = 0x7f;
  1496. // only write back what was asked for
  1497. writeDataPhase(cmd[4], dev->inquiry_block.raw);
  1498. // return it back to normal if it was altered
  1499. dev->inquiry_block.raw[0] = temp;
  1500. m_sts = SCSI_STATUS_GOOD;
  1501. goto Status;
  1502. }
  1503. }
  1504. LED_ON();
  1505. m_sts = scsi_command_table[cmd[0]](dev, cmd);
  1506. LED_OFF();
  1507. Status:
  1508. LOGN("Sts");
  1509. SCSI_PHASE_CHANGE(SCSI_PHASE_STATUS);
  1510. // Bus settle delay 400ns built in to writeHandshake
  1511. writeHandshake(m_sts);
  1512. LOGN("MsgIn");
  1513. SCSI_PHASE_CHANGE(SCSI_PHASE_MESSAGEIN);
  1514. // Bus settle delay 400ns built in to writeHandshake
  1515. writeHandshake(m_msg);
  1516. BusFree:
  1517. LOGN("BusFree");
  1518. m_isBusReset = false;
  1519. //SCSI_OUT(vREQ,inactive) // gpio_write(REQ, low);
  1520. //SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
  1521. //SCSI_OUT(vCD ,inactive) // gpio_write(CD, low);
  1522. //SCSI_OUT(vIO ,inactive) // gpio_write(IO, low);
  1523. //SCSI_OUT(vBSY,inactive)
  1524. SCSI_TARGET_INACTIVE() // Turn off BSY, REQ, MSG, CD, IO output
  1525. #ifdef XCVR
  1526. TRANSCEIVER_IO_SET(vTR_TARGET,TR_INPUT);
  1527. // Something in code linked after this function is performing better with a +4 alignment.
  1528. // Adding this nop is causing the next function (_GLOBAL__sub_I_SD) to have an address with a last digit of 0x4.
  1529. // Last digit of 0xc also works.
  1530. // This affects both with and without XCVR, currently without XCVR doesn't need any padding.
  1531. // Until the culprit can be tracked down and fixed, it may be necessary to do manual adjustment.
  1532. asm("nop.w");
  1533. #endif
  1534. }