BlueSCSI.cpp 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483
  1. /*
  2. * BlueSCSI
  3. * Copyright (c) 2021 Eric Helgeson, Androda
  4. *
  5. * This file is free software: you may copy, redistribute and/or modify it
  6. * under the terms of the GNU General Public License as published by the
  7. * Free Software Foundation, either version 2 of the License, or (at your
  8. * option) any later version.
  9. *
  10. * This file is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see https://github.com/erichelgeson/bluescsi.
  17. *
  18. * This file incorporates work covered by the following copyright and
  19. * permission notice:
  20. *
  21. * Copyright (c) 2019 komatsu
  22. *
  23. * Permission to use, copy, modify, and/or distribute this software
  24. * for any purpose with or without fee is hereby granted, provided
  25. * that the above copyright notice and this permission notice appear
  26. * in all copies.
  27. *
  28. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  29. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  30. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  31. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
  32. * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
  33. * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
  34. * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  35. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  36. */
  37. #include <Arduino.h> // For Platform.IO
  38. #include <SdFat.h>
  39. #include <setjmp.h>
  40. #ifdef USE_STM32_DMA
  41. #warning "warning USE_STM32_DMA"
  42. #endif
  43. #define DEBUG 0 // 0:No debug information output
  44. // 1: Debug information output to USB Serial
  45. // 2: Debug information output to LOG.txt (slow)
  46. #define SCSI_SELECT 0 // 0 for STANDARD
  47. // 1 for SHARP X1turbo
  48. // 2 for NEC PC98
  49. #define READ_SPEED_OPTIMIZE 1 // Faster reads
  50. #define WRITE_SPEED_OPTIMIZE 1 // Speeding up writes
  51. // SCSI config
  52. #define NUM_SCSIID 7 // Maximum number of supported SCSI-IDs (The minimum is 0)
  53. #define NUM_SCSILUN 2 // Maximum number of LUNs supported (The minimum is 0)
  54. #define READ_PARITY_CHECK 0 // Perform read parity check (unverified)
  55. // HDD format
  56. #define MAX_BLOCKSIZE 2048 // Maximum BLOCK size
  57. // SDFAT
  58. #define SD1_CONFIG SdSpiConfig(PA4, DEDICATED_SPI, SD_SCK_MHZ(SPI_FULL_SPEED), &SPI)
  59. SdFs SD;
  60. #if DEBUG == 1
  61. #define LOG(XX) Serial.print(XX)
  62. #define LOGHEX(XX) Serial.print(XX, HEX)
  63. #define LOGN(XX) Serial.println(XX)
  64. #define LOGHEXN(XX) Serial.println(XX, HEX)
  65. #elif DEBUG == 2
  66. #define LOG(XX) LOG_FILE.print(XX); LOG_FILE.sync();
  67. #define LOGHEX(XX) LOG_FILE.print(XX, HEX); LOG_FILE.sync();
  68. #define LOGN(XX) LOG_FILE.println(XX); LOG_FILE.sync();
  69. #define LOGHEXN(XX) LOG_FILE.println(XX, HEX); LOG_FILE.sync();
  70. #else
  71. #define LOG(XX) //Serial.print(XX)
  72. #define LOGHEX(XX) //Serial.print(XX, HEX)
  73. #define LOGN(XX) //Serial.println(XX)
  74. #define LOGHEXN(XX) //Serial.println(XX, HEX)
  75. #endif
  76. #define active 1
  77. #define inactive 0
  78. #define high 0
  79. #define low 1
  80. #define isHigh(XX) ((XX) == high)
  81. #define isLow(XX) ((XX) != high)
  82. #define gpio_mode(pin,val) gpio_set_mode(PIN_MAP[pin].gpio_device, PIN_MAP[pin].gpio_bit, val);
  83. #define gpio_write(pin,val) gpio_write_bit(PIN_MAP[pin].gpio_device, PIN_MAP[pin].gpio_bit, val)
  84. #define gpio_read(pin) gpio_read_bit(PIN_MAP[pin].gpio_device, PIN_MAP[pin].gpio_bit)
  85. //#define DB0 PB8 // SCSI:DB0
  86. //#define DB1 PB9 // SCSI:DB1
  87. //#define DB2 PB10 // SCSI:DB2
  88. //#define DB3 PB11 // SCSI:DB3
  89. //#define DB4 PB12 // SCSI:DB4
  90. //#define DB5 PB13 // SCSI:DB5
  91. //#define DB6 PB14 // SCSI:DB6
  92. //#define DB7 PB15 // SCSI:DB7
  93. //#define DBP PB0 // SCSI:DBP
  94. #define ATN PA8 // SCSI:ATN
  95. #define BSY PA9 // SCSI:BSY
  96. #define ACK PA10 // SCSI:ACK
  97. #define RST PA15 // SCSI:RST
  98. #define MSG PB3 // SCSI:MSG
  99. #define SEL PB4 // SCSI:SEL
  100. #define CD PB5 // SCSI:C/D
  101. #define REQ PB6 // SCSI:REQ
  102. #define IO PB7 // SCSI:I/O
  103. #define LED2 PA0 // External LED
  104. #define SD_CS PA4 // SDCARD:CS
  105. #define LED PC13 // LED
  106. // GPIO register port
  107. #define PAREG GPIOA->regs
  108. #define PBREG GPIOB->regs
  109. // LED control
  110. #define LED_ON() gpio_write(LED, high); gpio_write(LED2, low);
  111. #define LED_OFF() gpio_write(LED, low); gpio_write(LED2, high);
  112. // Virtual pin (Arduio compatibility is slow, so make it MCU-dependent)
  113. #define PA(BIT) (BIT)
  114. #define PB(BIT) (BIT+16)
  115. // Virtual pin decoding
  116. #define GPIOREG(VPIN) ((VPIN)>=16?PBREG:PAREG)
  117. #define BITMASK(VPIN) (1<<((VPIN)&15))
  118. #define vATN PA(8) // SCSI:ATN
  119. #define vBSY PA(9) // SCSI:BSY
  120. #define vACK PA(10) // SCSI:ACK
  121. #define vRST PA(15) // SCSI:RST
  122. #define vMSG PB(3) // SCSI:MSG
  123. #define vSEL PB(4) // SCSI:SEL
  124. #define vCD PB(5) // SCSI:C/D
  125. #define vREQ PB(6) // SCSI:REQ
  126. #define vIO PB(7) // SCSI:I/O
  127. #define vSD_CS PA(4) // SDCARD:CS
  128. // SCSI output pin control: opendrain active LOW (direct pin drive)
  129. #define SCSI_OUT(VPIN,ACTIVE) { GPIOREG(VPIN)->BSRR = BITMASK(VPIN)<<((ACTIVE)?16:0); }
  130. // SCSI input pin check (inactive=0,avtive=1)
  131. #define SCSI_IN(VPIN) ((~GPIOREG(VPIN)->IDR>>(VPIN&15))&1)
  132. // GPIO mode
  133. // IN , FLOAT : 4
  134. // IN , PU/PD : 8
  135. // OUT, PUSH/PULL : 3
  136. // OUT, OD : 7
  137. #define DB_MODE_OUT 3
  138. //#define DB_MODE_OUT 7
  139. #define DB_MODE_IN 8
  140. // Put DB and DP in output mode
  141. #define SCSI_DB_OUTPUT() { PBREG->CRL=(PBREG->CRL &0xfffffff0)|DB_MODE_OUT; PBREG->CRH = 0x11111111*DB_MODE_OUT; }
  142. // Put DB and DP in input mode
  143. #define SCSI_DB_INPUT() { PBREG->CRL=(PBREG->CRL &0xfffffff0)|DB_MODE_IN ; PBREG->CRH = 0x11111111*DB_MODE_IN; if (DB_MODE_IN == 8) PBREG->BSRR = 0xFF01;}
  144. // Turn on the output only for BSY
  145. #define SCSI_BSY_ACTIVE() { gpio_mode(BSY, GPIO_OUTPUT_OD); SCSI_OUT(vBSY, active) }
  146. // BSY,REQ,MSG,CD,IO Turn on the output (no change required for OD)
  147. #define SCSI_TARGET_ACTIVE() { if (DB_MODE_OUT != 7) gpio_mode(REQ, GPIO_OUTPUT_PP);}
  148. // BSY,REQ,MSG,CD,IO Turn off output, BSY is the last input
  149. #define SCSI_TARGET_INACTIVE() { if (DB_MODE_OUT == 7) SCSI_OUT(vREQ,inactive) else { if (DB_MODE_IN == 8) gpio_mode(REQ, GPIO_INPUT_PU) else gpio_mode(REQ, GPIO_INPUT_FLOATING)} SCSI_OUT(vMSG,inactive); SCSI_OUT(vCD,inactive);SCSI_OUT(vIO,inactive); gpio_mode(BSY, GPIO_INPUT_PU); }
  150. // HDDiamge file
  151. #define HDIMG_ID_POS 2 // Position to embed ID number
  152. #define HDIMG_LUN_POS 3 // Position to embed LUN numbers
  153. #define HDIMG_BLK_POS 5 // Position to embed block size numbers
  154. #define MAX_FILE_PATH 32 // Maximum file name length
  155. // HDD image
  156. typedef struct hddimg_struct
  157. {
  158. FsFile m_file; // File object
  159. uint64_t m_fileSize; // File size
  160. size_t m_blocksize; // SCSI BLOCK size
  161. }HDDIMG;
  162. HDDIMG img[NUM_SCSIID][NUM_SCSILUN]; // Maximum number
  163. uint8_t m_senseKey = 0; // Sense key
  164. unsigned m_addition_sense = 0; // Additional sense information
  165. volatile bool m_isBusReset = false; // Bus reset
  166. volatile bool m_resetJmp = false; // Call longjmp on reset
  167. jmp_buf m_resetJmpBuf;
  168. byte scsi_id_mask; // Mask list of responding SCSI IDs
  169. byte m_id; // Currently responding SCSI-ID
  170. byte m_lun; // Logical unit number currently responding
  171. byte m_sts; // Status byte
  172. byte m_msg; // Message bytes
  173. HDDIMG *m_img; // HDD image for current SCSI-ID, LUN
  174. byte m_buf[MAX_BLOCKSIZE]; // General purpose buffer
  175. int m_msc;
  176. byte m_msb[256]; // Command storage bytes
  177. /*
  178. * Data byte to BSRR register setting value and parity table
  179. */
  180. // Parity bit generation
  181. #define PTY(V) (1^((V)^((V)>>1)^((V)>>2)^((V)>>3)^((V)>>4)^((V)>>5)^((V)>>6)^((V)>>7))&1)
  182. // Data byte to BSRR register setting value conversion table
  183. // BSRR[31:24] = DB[7:0]
  184. // BSRR[ 16] = PTY(DB)
  185. // BSRR[15: 8] = ~DB[7:0]
  186. // BSRR[ 0] = ~PTY(DB)
  187. // Set DBP, set REQ = inactive
  188. #define DBP(D) ((((((uint32_t)(D)<<8)|PTY(D))*0x00010001)^0x0000ff01)|BITMASK(vREQ))
  189. // BSRR register control value that simultaneously performs DB set, DP set, and REQ = H (inactrive)
  190. uint32_t db_bsrr[256];
  191. // Parity bit acquisition
  192. #define PARITY(DB) (db_bsrr[DB]&1)
  193. // Macro cleaning
  194. #undef DBP32
  195. #undef DBP8
  196. //#undef DBP
  197. //#undef PTY
  198. // Log File
  199. #define VERSION "1.1-SNAPSHOT-20220107"
  200. #define LOG_FILENAME "LOG.txt"
  201. FsFile LOG_FILE;
  202. // SCSI Drive Vendor information
  203. byte SCSI_INFO_BUF[36] = {
  204. 0x00, //device type
  205. 0x00, //RMB = 0
  206. 0x01, //ISO, ECMA, ANSI version
  207. 0x01, //Response data format
  208. 35 - 4, //Additional data length
  209. 0, 0, //Reserve
  210. 0x00, //Support function
  211. 'Q', 'U', 'A', 'N', 'T', 'U', 'M', ' ', // vendor 8
  212. 'F', 'I', 'R', 'E', 'B', 'A', 'L', 'L', '1', ' ', ' ',' ', ' ', ' ', ' ', ' ', // product 16
  213. '1', '.', '0', ' ' // version 4
  214. };
  215. void onFalseInit(void);
  216. void noSDCardFound(void);
  217. void onBusReset(void);
  218. void initFileLog(void);
  219. void finalizeFileLog(void);
  220. /*
  221. * IO read.
  222. */
  223. inline byte readIO(void)
  224. {
  225. // Port input data register
  226. uint32_t ret = GPIOB->regs->IDR;
  227. byte bret = (byte)(~(ret>>8));
  228. #if READ_PARITY_CHECK
  229. if((db_bsrr[bret]^ret)&1)
  230. m_sts |= 0x01; // parity error
  231. #endif
  232. return bret;
  233. }
  234. // If config file exists, read the first three lines and copy the contents.
  235. // File must be well formed or you will get junk in the SCSI Vendor fields.
  236. void readSCSIDeviceConfig() {
  237. FsFile config_file = SD.open("scsi-config.txt", O_RDONLY);
  238. if (!config_file.isOpen()) {
  239. return;
  240. }
  241. char vendor[9];
  242. memset(vendor, 0, sizeof(vendor));
  243. config_file.readBytes(vendor, sizeof(vendor));
  244. LOG_FILE.print("SCSI VENDOR: ");
  245. LOG_FILE.println(vendor);
  246. memcpy(&(SCSI_INFO_BUF[8]), vendor, 8);
  247. char product[17];
  248. memset(product, 0, sizeof(product));
  249. config_file.readBytes(product, sizeof(product));
  250. LOG_FILE.print("SCSI PRODUCT: ");
  251. LOG_FILE.println(product);
  252. memcpy(&(SCSI_INFO_BUF[16]), product, 16);
  253. char version[5];
  254. memset(version, 0, sizeof(version));
  255. config_file.readBytes(version, sizeof(version));
  256. LOG_FILE.print("SCSI VERSION: ");
  257. LOG_FILE.println(version);
  258. memcpy(&(SCSI_INFO_BUF[32]), version, 4);
  259. config_file.close();
  260. }
  261. // read SD information and print to logfile
  262. void readSDCardInfo()
  263. {
  264. cid_t sd_cid;
  265. if(SD.card()->readCID(&sd_cid))
  266. {
  267. LOG_FILE.print("Sd MID:");
  268. LOG_FILE.print(sd_cid.mid, 16);
  269. LOG_FILE.print(" OID:");
  270. LOG_FILE.print(sd_cid.oid[0]);
  271. LOG_FILE.println(sd_cid.oid[1]);
  272. LOG_FILE.print("Sd Name:");
  273. LOG_FILE.print(sd_cid.pnm[0]);
  274. LOG_FILE.print(sd_cid.pnm[1]);
  275. LOG_FILE.print(sd_cid.pnm[2]);
  276. LOG_FILE.print(sd_cid.pnm[3]);
  277. LOG_FILE.println(sd_cid.pnm[4]);
  278. LOG_FILE.print("Sd Date:");
  279. LOG_FILE.print(sd_cid.mdt_month);
  280. LOG_FILE.print("/20"); // CID year is 2000 + high/low
  281. LOG_FILE.print(sd_cid.mdt_year_high);
  282. LOG_FILE.println(sd_cid.mdt_year_low);
  283. LOG_FILE.print("Sd Serial:");
  284. LOG_FILE.println(sd_cid.psn);
  285. LOG_FILE.sync();
  286. }
  287. }
  288. /*
  289. * Open HDD image file
  290. */
  291. bool hddimageOpen(HDDIMG *h,const char *image_name,int id,int lun,int blocksize)
  292. {
  293. h->m_fileSize = 0;
  294. h->m_blocksize = blocksize;
  295. h->m_file = SD.open(image_name, O_RDWR);
  296. if(h->m_file.isOpen())
  297. {
  298. h->m_fileSize = h->m_file.size();
  299. LOG_FILE.print("Imagefile: ");
  300. LOG_FILE.print(image_name);
  301. if(h->m_fileSize>0)
  302. {
  303. // check blocksize dummy file
  304. LOG_FILE.print(" / ");
  305. LOG_FILE.print(h->m_fileSize);
  306. LOG_FILE.print("bytes / ");
  307. LOG_FILE.print(h->m_fileSize / 1024);
  308. LOG_FILE.print("KiB / ");
  309. LOG_FILE.print(h->m_fileSize / 1024 / 1024);
  310. LOG_FILE.println("MiB");
  311. return true; // File opened
  312. }
  313. else
  314. {
  315. h->m_file.close();
  316. h->m_fileSize = h->m_blocksize = 0; // no file
  317. LOG_FILE.println("FileSizeError");
  318. }
  319. }
  320. return false;
  321. }
  322. /*
  323. * Initialization.
  324. * Initialize the bus and set the PIN orientation
  325. */
  326. void setup()
  327. {
  328. // PA15 / PB3 / PB4 Cannot be used
  329. // JTAG Because it is used for debugging.
  330. disableDebugPorts();
  331. // Setup BSRR table
  332. for (unsigned i = 0; i <= 255; i++) {
  333. db_bsrr[i] = DBP(i);
  334. }
  335. // Serial initialization
  336. #if DEBUG > 0
  337. Serial.begin(9600);
  338. // If using a USB->TTL monitor instead of USB serial monitor - you can uncomment this.
  339. //while (!Serial);
  340. #endif
  341. // PIN initialization
  342. gpio_mode(LED2, GPIO_OUTPUT_PP);
  343. gpio_mode(LED, GPIO_OUTPUT_OD);
  344. LED_OFF();
  345. //GPIO(SCSI BUS)Initialization
  346. //Port setting register (lower)
  347. // GPIOB->regs->CRL |= 0x000000008; // SET INPUT W/ PUPD on PAB-PB0
  348. //Port setting register (upper)
  349. //GPIOB->regs->CRH = 0x88888888; // SET INPUT W/ PUPD on PB15-PB8
  350. // GPIOB->regs->ODR = 0x0000FF00; // SET PULL-UPs on PB15-PB8
  351. // DB and DP are input modes
  352. SCSI_DB_INPUT()
  353. // Input port
  354. gpio_mode(ATN, GPIO_INPUT_PU);
  355. gpio_mode(BSY, GPIO_INPUT_PU);
  356. gpio_mode(ACK, GPIO_INPUT_PU);
  357. gpio_mode(RST, GPIO_INPUT_PU);
  358. gpio_mode(SEL, GPIO_INPUT_PU);
  359. // Output port
  360. gpio_mode(MSG, GPIO_OUTPUT_OD);
  361. gpio_mode(CD, GPIO_OUTPUT_OD);
  362. gpio_mode(REQ, GPIO_OUTPUT_OD);
  363. gpio_mode(IO, GPIO_OUTPUT_OD);
  364. // Turn off the output port
  365. SCSI_TARGET_INACTIVE()
  366. //Occurs when the RST pin state changes from HIGH to LOW
  367. //attachInterrupt(RST, onBusReset, FALLING);
  368. LED_ON();
  369. // clock = 36MHz , about 4Mbytes/sec
  370. if(!SD.begin(SD1_CONFIG)) {
  371. #if DEBUG > 0
  372. Serial.println("SD initialization failed!");
  373. #endif
  374. noSDCardFound();
  375. }
  376. initFileLog();
  377. readSCSIDeviceConfig();
  378. readSDCardInfo();
  379. //Sector data overrun byte setting
  380. m_buf[MAX_BLOCKSIZE] = 0xff; // DB0 all off,DBP off
  381. //HD image file open
  382. scsi_id_mask = 0x00;
  383. // Iterate over the root path in the SD card looking for candidate image files.
  384. SdFile root;
  385. root.open("/");
  386. SdFile file;
  387. bool imageReady;
  388. int usedDefaultId = 0;
  389. while (1) {
  390. if (!file.openNext(&root, O_READ)) break;
  391. char name[MAX_FILE_PATH+1];
  392. if(!file.isDir()) {
  393. file.getName(name, MAX_FILE_PATH+1);
  394. file.close();
  395. String file_name = String(name);
  396. file_name.toLowerCase();
  397. if(file_name.startsWith("hd")) {
  398. // Defaults for Hard Disks
  399. int id = 1; // 0 and 3 are common in Macs for physical HD and CD, so avoid them.
  400. int lun = 0;
  401. int blk = 512;
  402. // Positionally read in and coerase the chars to integers.
  403. // We only require the minimum and read in the next if provided.
  404. int file_name_length = file_name.length();
  405. if(file_name_length > 2) { // HD[N]
  406. int tmp_id = name[HDIMG_ID_POS] - '0';
  407. // If valid id, set it, else use default
  408. if(tmp_id > -1 && tmp_id < 8) {
  409. id = tmp_id;
  410. } else {
  411. usedDefaultId++;
  412. }
  413. }
  414. int blk1, blk2, blk3, blk4 = 0;
  415. if(file_name_length > 8) { // HD00_[111]
  416. blk1 = name[HDIMG_BLK_POS] - '0';
  417. blk2 = name[HDIMG_BLK_POS+1] - '0';
  418. blk3 = name[HDIMG_BLK_POS+2] - '0';
  419. if(file_name_length > 9) // HD00_NNN[1]
  420. blk4 = name[HDIMG_BLK_POS+3] - '0';
  421. }
  422. if(blk1 == 2 && blk2 == 5 && blk3 == 6) {
  423. blk = 256;
  424. } else if(blk1 == 1 && blk2 == 0 && blk3 == 2 && blk4 == 4) {
  425. blk = 1024;
  426. } else if(blk1 == 2 && blk2 == 0 && blk3 == 4 && blk4 == 8) {
  427. blk = 2048;
  428. }
  429. if(id < NUM_SCSIID && lun < NUM_SCSILUN) {
  430. HDDIMG *h = &img[id][lun];
  431. imageReady = hddimageOpen(h,name,id,lun,blk);
  432. if(imageReady) { // Marked as a responsive ID
  433. scsi_id_mask |= 1<<id;
  434. }
  435. } else {
  436. LOG_FILE.print("Bad LUN or SCSI id for image: ");
  437. LOG_FILE.println(name);
  438. LOG_FILE.sync();
  439. }
  440. } else {
  441. LOG_FILE.print("Not an image: ");
  442. LOG_FILE.println(name);
  443. LOG_FILE.sync();
  444. }
  445. }
  446. }
  447. if(usedDefaultId > 1) {
  448. LOG_FILE.println("!! More than one image did not specify a SCSI ID. Last file will be used at ID 1 !!");
  449. LOG_FILE.sync();
  450. }
  451. root.close();
  452. // Error if there are 0 image files
  453. if(scsi_id_mask==0) {
  454. LOG_FILE.println("ERROR: No valid images found!");
  455. onFalseInit();
  456. }
  457. finalizeFileLog();
  458. LED_OFF();
  459. //Occurs when the RST pin state changes from HIGH to LOW
  460. attachInterrupt(RST, onBusReset, FALLING);
  461. }
  462. /*
  463. * Setup initialization logfile
  464. */
  465. void initFileLog() {
  466. LOG_FILE = SD.open(LOG_FILENAME, O_WRONLY | O_CREAT | O_TRUNC);
  467. LOG_FILE.println("BlueSCSI <-> SD - https://github.com/erichelgeson/BlueSCSI");
  468. LOG_FILE.print("VERSION: ");
  469. LOG_FILE.println(VERSION);
  470. LOG_FILE.print("DEBUG:");
  471. LOG_FILE.print(DEBUG);
  472. LOG_FILE.print(" SCSI_SELECT:");
  473. LOG_FILE.print(SCSI_SELECT);
  474. LOG_FILE.print(" SDFAT_FILE_TYPE:");
  475. LOG_FILE.println(SDFAT_FILE_TYPE);
  476. LOG_FILE.print("SdFat version: ");
  477. LOG_FILE.println(SD_FAT_VERSION_STR);
  478. LOG_FILE.print("SdFat Max FileName Length: ");
  479. LOG_FILE.println(MAX_FILE_PATH);
  480. LOG_FILE.println("Initialized SD Card - lets go!");
  481. LOG_FILE.sync();
  482. }
  483. /*
  484. * Finalize initialization logfile
  485. */
  486. void finalizeFileLog() {
  487. // View support drive map
  488. LOG_FILE.print("ID");
  489. for(int lun=0;lun<NUM_SCSILUN;lun++)
  490. {
  491. LOG_FILE.print(":LUN");
  492. LOG_FILE.print(lun);
  493. }
  494. LOG_FILE.println(":");
  495. //
  496. for(int id=0;id<NUM_SCSIID;id++)
  497. {
  498. LOG_FILE.print(" ");
  499. LOG_FILE.print(id);
  500. for(int lun=0;lun<NUM_SCSILUN;lun++)
  501. {
  502. HDDIMG *h = &img[id][lun];
  503. if( (lun<NUM_SCSILUN) && (h->m_file))
  504. {
  505. LOG_FILE.print((h->m_blocksize<1000) ? ": " : ":");
  506. LOG_FILE.print(h->m_blocksize);
  507. }
  508. else
  509. LOG_FILE.print(":----");
  510. }
  511. LOG_FILE.println(":");
  512. }
  513. LOG_FILE.println("Finished initialization of SCSI Devices - Entering main loop.");
  514. LOG_FILE.sync();
  515. LOG_FILE.close();
  516. }
  517. /*
  518. * Initialization failed, blink 3x fast
  519. */
  520. void onFalseInit(void)
  521. {
  522. LOG_FILE.sync();
  523. while(true) {
  524. for(int i = 0; i < 3; i++) {
  525. LED_ON();
  526. delay(250);
  527. LED_OFF();
  528. delay(250);
  529. }
  530. delay(3000);
  531. }
  532. }
  533. /*
  534. * No SC Card found, blink 5x fast
  535. */
  536. void noSDCardFound(void)
  537. {
  538. while(true) {
  539. for(int i = 0; i < 5; i++) {
  540. LED_ON();
  541. delay(250);
  542. LED_OFF();
  543. delay(250);
  544. }
  545. delay(3000);
  546. }
  547. }
  548. /*
  549. * Return from exception and call longjmp
  550. */
  551. void __attribute__ ((noinline)) longjmpFromInterrupt(jmp_buf jmpb, int retval) __attribute__ ((noreturn));
  552. void longjmpFromInterrupt(jmp_buf jmpb, int retval) {
  553. // Address of longjmp with the thumb bit cleared
  554. const uint32_t longjmpaddr = ((uint32_t)longjmp) & 0xfffffffe;
  555. const uint32_t zero = 0;
  556. // Default PSR value, function calls don't require any particular value
  557. const uint32_t PSR = 0x01000000;
  558. // For documentation on what this is doing, see:
  559. // https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/exception-model/exception-entry-and-return
  560. // Stack frame needs to have R0-R3, R12, LR, PC, PSR (from bottom to top)
  561. // This is being set up to have R0 and R1 contain the parameters passed to longjmp, and PC is the address of the longjmp function.
  562. // This is using existing stack space, rather than allocating more, as longjmp is just going to unroll the stack even further.
  563. // 0xfffffff9 is the EXC_RETURN value to return to thread mode.
  564. asm (
  565. "str %0, [sp];\
  566. str %1, [sp, #4];\
  567. str %2, [sp, #8];\
  568. str %2, [sp, #12];\
  569. str %2, [sp, #16];\
  570. str %2, [sp, #20];\
  571. str %3, [sp, #24];\
  572. str %4, [sp, #28];\
  573. ldr lr, =0xfffffff9;\
  574. bx lr"
  575. :: "r"(jmpb),"r"(retval),"r"(zero), "r"(longjmpaddr), "r"(PSR)
  576. );
  577. }
  578. /*
  579. * Bus reset interrupt.
  580. */
  581. void onBusReset(void)
  582. {
  583. #if SCSI_SELECT == 1
  584. // SASI I / F for X1 turbo has RST pulse write cycle +2 clock ==
  585. // I can't filter because it only activates about 1.25us
  586. {{
  587. #else
  588. if(isHigh(gpio_read(RST))) {
  589. delayMicroseconds(20);
  590. if(isHigh(gpio_read(RST))) {
  591. #endif
  592. // BUS FREE is done in the main process
  593. // gpio_mode(MSG, GPIO_OUTPUT_OD);
  594. // gpio_mode(CD, GPIO_OUTPUT_OD);
  595. // gpio_mode(REQ, GPIO_OUTPUT_OD);
  596. // gpio_mode(IO, GPIO_OUTPUT_OD);
  597. // Should I enter DB and DBP once?
  598. SCSI_DB_INPUT()
  599. LOGN("BusReset!");
  600. if (m_resetJmp) {
  601. m_resetJmp = false;
  602. // Jumping out of the interrupt handler, so need to clear the interupt source.
  603. uint8 exti = PIN_MAP[RST].gpio_bit;
  604. EXTI_BASE->PR = (1U << exti);
  605. longjmpFromInterrupt(m_resetJmpBuf, 1);
  606. } else {
  607. m_isBusReset = true;
  608. }
  609. }
  610. }
  611. }
  612. /*
  613. * Enable the reset longjmp, and check if reset fired while it was disabled.
  614. */
  615. void enableResetJmp(void) {
  616. m_resetJmp = true;
  617. if (m_isBusReset) {
  618. longjmp(m_resetJmpBuf, 1);
  619. }
  620. }
  621. /*
  622. * Read by handshake.
  623. */
  624. inline byte readHandshake(void)
  625. {
  626. SCSI_OUT(vREQ,active)
  627. //SCSI_DB_INPUT()
  628. while( ! SCSI_IN(vACK));
  629. byte r = readIO();
  630. SCSI_OUT(vREQ,inactive)
  631. while( SCSI_IN(vACK));
  632. return r;
  633. }
  634. /*
  635. * Write with a handshake.
  636. */
  637. inline void writeHandshake(byte d)
  638. {
  639. GPIOB->regs->BSRR = db_bsrr[d]; // setup DB,DBP (160ns)
  640. SCSI_DB_OUTPUT() // (180ns)
  641. // ACK.Fall to DB output delay 100ns(MAX) (DTC-510B)
  642. SCSI_OUT(vREQ,inactive) // setup wait (30ns)
  643. SCSI_OUT(vREQ,inactive) // setup wait (30ns)
  644. SCSI_OUT(vREQ,inactive) // setup wait (30ns)
  645. SCSI_OUT(vREQ,active) // (30ns)
  646. //while(!SCSI_IN(vACK)) { if(m_isBusReset){ SCSI_DB_INPUT() return; }}
  647. while(!SCSI_IN(vACK));
  648. // ACK.Fall to REQ.Raise delay 500ns(typ.) (DTC-510B)
  649. GPIOB->regs->BSRR = DBP(0xff); // DB=0xFF , SCSI_OUT(vREQ,inactive)
  650. // REQ.Raise to DB hold time 0ns
  651. SCSI_DB_INPUT() // (150ns)
  652. while( SCSI_IN(vACK));
  653. }
  654. /*
  655. * Data in phase.
  656. * Send len bytes of data array p.
  657. */
  658. void writeDataPhase(int len, const byte* p)
  659. {
  660. LOGN("DATAIN PHASE");
  661. SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
  662. SCSI_OUT(vCD ,inactive) // gpio_write(CD, low);
  663. SCSI_OUT(vIO , active) // gpio_write(IO, high);
  664. for (int i = 0; i < len; i++) {
  665. writeHandshake(p[i]);
  666. }
  667. }
  668. #if READ_SPEED_OPTIMIZE
  669. /*
  670. * This loop is tuned to repeat the following pattern:
  671. * 1) Set REQ
  672. * 2) 5-6 cycles of work/delay
  673. * 3) Wait for ACK
  674. * Cycle time tunings are for 72MHz STM32F103
  675. */
  676. void writeDataLoop(uint32_t blocksize)
  677. {
  678. #define REQ_ON() (*db_dst = BITMASK(vREQ)<<16);
  679. #define FETCH_BSRR_DB() (bsrr_val = bsrr_tbl[*srcptr++])
  680. #define REQ_OFF_DB_SET(BSRR_VAL) *db_dst = BSRR_VAL;
  681. #define WAIT_ACK_ACTIVE() while(!SCSI_IN(vACK))
  682. #define WAIT_ACK_INACTIVE() while(SCSI_IN(vACK))
  683. register byte *srcptr= m_buf; // Source buffer
  684. register byte *endptr= m_buf + blocksize; // End pointer
  685. register const uint32_t *bsrr_tbl = db_bsrr; // Table to convert to BSRR
  686. register uint32_t bsrr_val; // BSRR value to output (DB, DBP, REQ = ACTIVE)
  687. register volatile uint32_t *db_dst = &(GPIOB->regs->BSRR); // Output port
  688. // Start the first bus cycle.
  689. FETCH_BSRR_DB();
  690. REQ_OFF_DB_SET(bsrr_val);
  691. REQ_ON();
  692. FETCH_BSRR_DB();
  693. WAIT_ACK_ACTIVE();
  694. REQ_OFF_DB_SET(bsrr_val);
  695. do{
  696. WAIT_ACK_INACTIVE();
  697. REQ_ON();
  698. // 6 cycle delay before reading ACK.
  699. // Store plus 2 loads is 6 cycles.
  700. REQ_ON();
  701. FETCH_BSRR_DB();
  702. WAIT_ACK_ACTIVE();
  703. REQ_OFF_DB_SET(bsrr_val);
  704. // 5 cycle delay before reading ACK.
  705. // Branch taken is 2-4, seems to be taking 3. A second write is 2 more cycles.
  706. // cmp is being pipelined in to a store so doesn't add any time.
  707. REQ_OFF_DB_SET(bsrr_val);
  708. }while(srcptr < endptr);
  709. WAIT_ACK_INACTIVE();
  710. // Finish the last bus cycle, byte is already on DB.
  711. REQ_ON();
  712. WAIT_ACK_ACTIVE();
  713. REQ_OFF_DB_SET(bsrr_val);
  714. WAIT_ACK_INACTIVE();
  715. }
  716. #endif
  717. /*
  718. * Data in phase.
  719. * Send len block while reading from SD card.
  720. */
  721. void writeDataPhaseSD(uint32_t adds, uint32_t len)
  722. {
  723. LOGN("DATAIN PHASE(SD)");
  724. uint32_t pos = adds * m_img->m_blocksize;
  725. m_img->m_file.seek(pos);
  726. SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
  727. SCSI_OUT(vCD ,inactive) // gpio_write(CD, low);
  728. SCSI_OUT(vIO , active) // gpio_write(IO, high);
  729. SCSI_DB_OUTPUT()
  730. for(uint32_t i = 0; i < len; i++) {
  731. // Asynchronous reads will make it faster ...
  732. m_resetJmp = false;
  733. m_img->m_file.read(m_buf, m_img->m_blocksize);
  734. enableResetJmp();
  735. #if READ_SPEED_OPTIMIZE
  736. writeDataLoop(m_img->m_blocksize);
  737. #else
  738. for(int j = 0; j < m_img->m_blocksize; j++) {
  739. writeHandshake(m_buf[j]);
  740. }
  741. #endif
  742. }
  743. SCSI_DB_INPUT()
  744. }
  745. /*
  746. * Data out phase.
  747. * len block read
  748. */
  749. void readDataPhase(int len, byte* p)
  750. {
  751. LOGN("DATAOUT PHASE");
  752. SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
  753. SCSI_OUT(vCD ,inactive) // gpio_write(CD, low);
  754. SCSI_OUT(vIO ,inactive) // gpio_write(IO, low);
  755. for(uint32_t i = 0; i < len; i++)
  756. p[i] = readHandshake();
  757. }
  758. void readDataLoop(uint32_t blockSize)
  759. {
  760. register byte *dstptr= m_buf;
  761. register byte *endptr= m_buf + blockSize - 1;
  762. #define REQ_ON() (port_b->BSRR = BITMASK(vREQ)<<16);
  763. #define REQ_OFF() (port_b->BSRR = BITMASK(vREQ));
  764. #define WAIT_ACK_ACTIVE() while((*ack_src>>(vACK&15)&1))
  765. #define WAIT_ACK_INACTIVE() while(!(*ack_src>>(vACK&15)&1))
  766. register gpio_reg_map *port_b = PBREG;
  767. register volatile uint32_t *ack_src = &(GPIOA->regs->IDR);
  768. REQ_ON();
  769. do {
  770. WAIT_ACK_ACTIVE();
  771. uint32_t ret = GPIOB->regs->IDR;
  772. REQ_OFF();
  773. *dstptr++ = ~(ret >> 8);
  774. WAIT_ACK_INACTIVE();
  775. REQ_ON();
  776. } while(dstptr<endptr);
  777. WAIT_ACK_ACTIVE();
  778. uint32_t ret = GPIOB->regs->IDR;
  779. REQ_OFF();
  780. *dstptr++ = ~(ret >> 8);
  781. WAIT_ACK_INACTIVE();
  782. }
  783. /*
  784. * Data out phase.
  785. * Write to SD card while reading len block.
  786. */
  787. void readDataPhaseSD(uint32_t adds, uint32_t len)
  788. {
  789. LOGN("DATAOUT PHASE(SD)");
  790. uint32_t pos = adds * m_img->m_blocksize;
  791. m_img->m_file.seek(pos);
  792. SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
  793. SCSI_OUT(vCD ,inactive) // gpio_write(CD, low);
  794. SCSI_OUT(vIO ,inactive) // gpio_write(IO, low);
  795. for(uint32_t i = 0; i < len; i++) {
  796. m_resetJmp = true;
  797. #if WRITE_SPEED_OPTIMIZE
  798. readDataLoop(m_img->m_blocksize);
  799. #else
  800. for(int j = 0; j < m_img->m_blocksize; j++) {
  801. m_buf[j] = readHandshake();
  802. }
  803. #endif
  804. m_resetJmp = false;
  805. m_img->m_file.write(m_buf, m_img->m_blocksize);
  806. // If a reset happened while writing, break and let the flush happen before it is handled.
  807. if (m_isBusReset) {
  808. break;
  809. }
  810. }
  811. m_img->m_file.flush();
  812. enableResetJmp();
  813. }
  814. /*
  815. * INQUIRY command processing.
  816. */
  817. #if SCSI_SELECT == 2
  818. byte onInquiryCommand(byte len)
  819. {
  820. byte buf[36] = {
  821. 0x00, //Device type
  822. 0x00, //RMB = 0
  823. 0x01, //ISO,ECMA,ANSI version
  824. 0x01, //Response data format
  825. 35 - 4, //Additional data length
  826. 0, 0, //Reserve
  827. 0x00, //Support function
  828. 'N', 'E', 'C', 'I', 'T', 'S', 'U', ' ',
  829. 'A', 'r', 'd', 'S', 'C', 'S', 'i', 'n', 'o', ' ', ' ',' ', ' ', ' ', ' ', ' ',
  830. '0', '0', '1', '0',
  831. };
  832. writeDataPhase(len < 36 ? len : 36, buf);
  833. return 0x00;
  834. }
  835. #else
  836. byte onInquiryCommand(byte len)
  837. {
  838. writeDataPhase(len < 36 ? len : 36, SCSI_INFO_BUF);
  839. return 0x00;
  840. }
  841. #endif
  842. /*
  843. * REQUEST SENSE command processing.
  844. */
  845. void onRequestSenseCommand(byte len)
  846. {
  847. byte buf[18] = {
  848. 0x70, //CheckCondition
  849. 0, //Segment number
  850. m_senseKey, //Sense key
  851. 0, 0, 0, 0, //information
  852. 10, //Additional data length
  853. 0, 0, 0, 0, // command specific information bytes
  854. (byte)(m_addition_sense >> 8),
  855. (byte)m_addition_sense,
  856. 0, 0, 0, 0,
  857. };
  858. m_senseKey = 0;
  859. m_addition_sense = 0;
  860. writeDataPhase(len < 18 ? len : 18, buf);
  861. }
  862. /*
  863. * READ CAPACITY command processing.
  864. */
  865. byte onReadCapacityCommand(byte pmi)
  866. {
  867. if(!m_img) return 0x02; // Image file absent
  868. uint32_t bl = m_img->m_blocksize;
  869. uint32_t bc = m_img->m_fileSize / bl - 1; // Points to last LBA
  870. uint8_t buf[8] = {
  871. bc >> 24, bc >> 16, bc >> 8, bc,
  872. bl >> 24, bl >> 16, bl >> 8, bl
  873. };
  874. writeDataPhase(8, buf);
  875. return 0x00;
  876. }
  877. /*
  878. * READ6 / 10 Command processing.
  879. */
  880. byte onReadCommand(uint32_t adds, uint32_t len)
  881. {
  882. LOGN("-R");
  883. LOGHEXN(adds);
  884. LOGHEXN(len);
  885. if(!m_img) return 0x02; // Image file absent
  886. LED_ON();
  887. writeDataPhaseSD(adds, len);
  888. LED_OFF();
  889. return 0x00; //sts
  890. }
  891. /*
  892. * WRITE6 / 10 Command processing.
  893. */
  894. byte onWriteCommand(uint32_t adds, uint32_t len)
  895. {
  896. LOGN("-W");
  897. LOGHEXN(adds);
  898. LOGHEXN(len);
  899. if(!m_img) return 0x02; // Image file absent
  900. LED_ON();
  901. readDataPhaseSD(adds, len);
  902. LED_OFF();
  903. return 0; //sts
  904. }
  905. /*
  906. * MODE SENSE command processing.
  907. */
  908. #if SCSI_SELECT == 2
  909. byte onModeSenseCommand(byte scsi_cmd, byte dbd, int cmd2, uint32_t len)
  910. {
  911. if(!m_img) return 0x02; // Image file absent
  912. int pageCode = cmd2 & 0x3F;
  913. // Assuming sector size 512, number of sectors 25, number of heads 8 as default settings
  914. int size = m_img->m_fileSize;
  915. int cylinders = (int)(size >> 9);
  916. cylinders >>= 3;
  917. cylinders /= 25;
  918. int sectorsize = 512;
  919. int sectors = 25;
  920. int heads = 8;
  921. // Sector size
  922. int disksize = 0;
  923. for(disksize = 16; disksize > 0; --(disksize)) {
  924. if ((1 << disksize) == sectorsize)
  925. break;
  926. }
  927. // Number of blocks
  928. uint32_t diskblocks = (uint32_t)(size >> disksize);
  929. memset(m_buf, 0, sizeof(m_buf));
  930. int a = 4;
  931. if(dbd == 0) {
  932. uint32_t bl = m_img->m_blocksize;
  933. uint32_t bc = m_img->m_fileSize / bl;
  934. byte c[8] = {
  935. 0,// Density code
  936. bc >> 16, bc >> 8, bc,
  937. 0, //Reserve
  938. bl >> 16, bl >> 8, bl
  939. };
  940. memcpy(&m_buf[4], c, 8);
  941. a += 8;
  942. m_buf[3] = 0x08;
  943. }
  944. switch(pageCode) {
  945. case 0x3F:
  946. {
  947. m_buf[a + 0] = 0x01;
  948. m_buf[a + 1] = 0x06;
  949. a += 8;
  950. }
  951. case 0x03: // drive parameters
  952. {
  953. m_buf[a + 0] = 0x80 | 0x03; // Page code
  954. m_buf[a + 1] = 0x16; // Page length
  955. m_buf[a + 2] = (byte)(heads >> 8);// number of sectors / track
  956. m_buf[a + 3] = (byte)(heads);// number of sectors / track
  957. m_buf[a + 10] = (byte)(sectors >> 8);// number of sectors / track
  958. m_buf[a + 11] = (byte)(sectors);// number of sectors / track
  959. int size = 1 << disksize;
  960. m_buf[a + 12] = (byte)(size >> 8);// number of sectors / track
  961. m_buf[a + 13] = (byte)(size);// number of sectors / track
  962. a += 24;
  963. if(pageCode != 0x3F) {
  964. break;
  965. }
  966. }
  967. case 0x04: // drive parameters
  968. {
  969. LOGN("AddDrive");
  970. m_buf[a + 0] = 0x04; // Page code
  971. m_buf[a + 1] = 0x12; // Page length
  972. m_buf[a + 2] = (cylinders >> 16);// Cylinder length
  973. m_buf[a + 3] = (cylinders >> 8);
  974. m_buf[a + 4] = cylinders;
  975. m_buf[a + 5] = heads; // Number of heads
  976. a += 20;
  977. if(pageCode != 0x3F) {
  978. break;
  979. }
  980. }
  981. default:
  982. break;
  983. }
  984. m_buf[0] = a - 1;
  985. writeDataPhase(len < a ? len : a, m_buf);
  986. return 0x00;
  987. }
  988. #else
  989. byte onModeSenseCommand(byte scsi_cmd, byte dbd, int cmd2, uint32_t len)
  990. {
  991. if(!m_img) return 0x02; // No image file
  992. uint32_t bl = m_img->m_blocksize;
  993. uint32_t bc = m_img->m_fileSize / bl;
  994. memset(m_buf, 0, sizeof(m_buf));
  995. int pageCode = cmd2 & 0x3F;
  996. int a = 4;
  997. if(scsi_cmd == 0x5A) a = 8;
  998. if(dbd == 0) {
  999. byte c[8] = {
  1000. 0,//Density code
  1001. bc >> 16, bc >> 8, bc,
  1002. 0, //Reserve
  1003. bl >> 16, bl >> 8, bl
  1004. };
  1005. memcpy(&m_buf[a], c, 8);
  1006. a += 8;
  1007. }
  1008. switch(pageCode) {
  1009. case 0x3F:
  1010. case 0x01: // Read/Write Error Recovery
  1011. m_buf[a + 0] = 0x01;
  1012. m_buf[a + 1] = 0x0A;
  1013. a += 0x0C;
  1014. if(pageCode != 0x3F) break;
  1015. case 0x02: // Disconnect-Reconnect page
  1016. m_buf[a + 0] = 0x02;
  1017. m_buf[a + 1] = 0x0A;
  1018. a += 0x0C;
  1019. if(pageCode != 0x3f) break;
  1020. case 0x03: //Drive parameters
  1021. m_buf[a + 0] = 0x03; //Page code
  1022. m_buf[a + 1] = 0x16; // Page length
  1023. m_buf[a + 11] = 0x3F;//Number of sectors / track
  1024. m_buf[a + 12] = (byte)(m_img->m_blocksize >> 8);
  1025. m_buf[a + 13] = (byte)m_img->m_blocksize;
  1026. m_buf[a + 15] = 0x1; // Interleave
  1027. a += 0x18;
  1028. if(pageCode != 0x3F) break;
  1029. case 0x04: //Drive parameters
  1030. {
  1031. unsigned cylinders = bc / (16 * 63);
  1032. m_buf[a + 0] = 0x04; //Page code
  1033. m_buf[a + 1] = 0x16; // Page length
  1034. m_buf[a + 2] = (byte)(cylinders >> 16); // Cylinders
  1035. m_buf[a + 3] = (byte)(cylinders >> 8);
  1036. m_buf[a + 4] = (byte)cylinders;
  1037. m_buf[a + 5] = 16; //Number of heads
  1038. a += 0x18;
  1039. if(pageCode != 0x3F) break;
  1040. }
  1041. break; // Don't want 0x3F falling through to error condition
  1042. default:
  1043. m_senseKey = 5; // Illegal request
  1044. m_addition_sense = 0x2400; // Invalid field in CDB
  1045. return 0x02;
  1046. break;
  1047. }
  1048. if(scsi_cmd == 0x5A) // MODE SENSE 10
  1049. {
  1050. m_buf[1] = a - 2;
  1051. m_buf[7] = 0x08;
  1052. }
  1053. else
  1054. {
  1055. m_buf[0] = a - 1;
  1056. m_buf[3] = 0x08;
  1057. }
  1058. writeDataPhase(len < a ? len : a, m_buf);
  1059. return 0x00;
  1060. }
  1061. #endif
  1062. #if SCSI_SELECT == 1
  1063. /*
  1064. * dtc510b_setDriveparameter
  1065. */
  1066. #define PACKED __attribute__((packed))
  1067. typedef struct PACKED dtc500_cmd_c2_param_struct
  1068. {
  1069. uint8_t StepPlusWidth; // Default is 13.6usec (11)
  1070. uint8_t StepPeriod; // Default is 3 msec.(60)
  1071. uint8_t StepMode; // Default is Bufferd (0)
  1072. uint8_t MaximumHeadAdress; // Default is 4 heads (3)
  1073. uint8_t HighCylinderAddressByte; // Default set to 0 (0)
  1074. uint8_t LowCylinderAddressByte; // Default is 153 cylinders (152)
  1075. uint8_t ReduceWrietCurrent; // Default is above Cylinder 128 (127)
  1076. uint8_t DriveType_SeekCompleteOption;// (0)
  1077. uint8_t Reserved8; // (0)
  1078. uint8_t Reserved9; // (0)
  1079. } DTC510_CMD_C2_PARAM;
  1080. static void logStrHex(const char *msg,uint32_t num)
  1081. {
  1082. LOG(msg);
  1083. LOGHEXN(num);
  1084. }
  1085. static byte dtc510b_setDriveparameter(void)
  1086. {
  1087. DTC510_CMD_C2_PARAM DriveParameter;
  1088. uint16_t maxCylinder;
  1089. uint16_t numLAD;
  1090. //uint32_t stepPulseUsec;
  1091. int StepPeriodMsec;
  1092. // receive paramter
  1093. writeDataPhase(sizeof(DriveParameter),(byte *)(&DriveParameter));
  1094. maxCylinder =
  1095. (((uint16_t)DriveParameter.HighCylinderAddressByte)<<8) |
  1096. (DriveParameter.LowCylinderAddressByte);
  1097. numLAD = maxCylinder * (DriveParameter.MaximumHeadAdress+1);
  1098. //stepPulseUsec = calcStepPulseUsec(DriveParameter.StepPlusWidth);
  1099. StepPeriodMsec = DriveParameter.StepPeriod*50;
  1100. logStrHex (" StepPlusWidth : ",DriveParameter.StepPlusWidth);
  1101. logStrHex (" StepPeriod : ",DriveParameter.StepPeriod );
  1102. logStrHex (" StepMode : ",DriveParameter.StepMode );
  1103. logStrHex (" MaximumHeadAdress : ",DriveParameter.MaximumHeadAdress);
  1104. logStrHex (" CylinderAddress : ",maxCylinder);
  1105. logStrHex (" ReduceWrietCurrent : ",DriveParameter.ReduceWrietCurrent);
  1106. logStrHex (" DriveType/SeekCompleteOption : ",DriveParameter.DriveType_SeekCompleteOption);
  1107. logStrHex (" Maximum LAD : ",numLAD-1);
  1108. return 0; // error result
  1109. }
  1110. #endif
  1111. /*
  1112. * MsgIn2.
  1113. */
  1114. void MsgIn2(int msg)
  1115. {
  1116. LOGN("MsgIn2");
  1117. SCSI_OUT(vMSG, active) // gpio_write(MSG, high);
  1118. SCSI_OUT(vCD , active) // gpio_write(CD, high);
  1119. SCSI_OUT(vIO , active) // gpio_write(IO, high);
  1120. writeHandshake(msg);
  1121. }
  1122. /*
  1123. * MsgOut2.
  1124. */
  1125. void MsgOut2()
  1126. {
  1127. LOGN("MsgOut2");
  1128. SCSI_OUT(vMSG, active) // gpio_write(MSG, high);
  1129. SCSI_OUT(vCD , active) // gpio_write(CD, high);
  1130. SCSI_OUT(vIO ,inactive) // gpio_write(IO, low);
  1131. m_msb[m_msc] = readHandshake();
  1132. m_msc++;
  1133. m_msc %= 256;
  1134. }
  1135. /*
  1136. * Main loop.
  1137. */
  1138. void loop()
  1139. {
  1140. //int msg = 0;
  1141. m_msg = 0;
  1142. // Wait until RST = H, BSY = H, SEL = L
  1143. do {} while( SCSI_IN(vBSY) || !SCSI_IN(vSEL) || SCSI_IN(vRST));
  1144. // BSY+ SEL-
  1145. // If the ID to respond is not driven, wait for the next
  1146. //byte db = readIO();
  1147. //byte scsiid = db & scsi_id_mask;
  1148. byte scsiid = readIO() & scsi_id_mask;
  1149. if((scsiid) == 0) {
  1150. delayMicroseconds(1);
  1151. return;
  1152. }
  1153. LOGN("Selection");
  1154. m_isBusReset = false;
  1155. if (setjmp(m_resetJmpBuf) == 1) {
  1156. LOGN("Reset, going to BusFree");
  1157. goto BusFree;
  1158. }
  1159. enableResetJmp();
  1160. // Set BSY to-when selected
  1161. SCSI_BSY_ACTIVE(); // Turn only BSY output ON, ACTIVE
  1162. // Ask for a TARGET-ID to respond
  1163. m_id = 31 - __builtin_clz(scsiid);
  1164. // Wait until SEL becomes inactive
  1165. while(isHigh(gpio_read(SEL)) && isLow(gpio_read(BSY))) {
  1166. }
  1167. SCSI_TARGET_ACTIVE() // (BSY), REQ, MSG, CD, IO output turned on
  1168. //
  1169. if(isHigh(gpio_read(ATN))) {
  1170. bool syncenable = false;
  1171. int syncperiod = 50;
  1172. int syncoffset = 0;
  1173. int loopWait = 0;
  1174. m_msc = 0;
  1175. memset(m_msb, 0x00, sizeof(m_msb));
  1176. while(isHigh(gpio_read(ATN)) && loopWait < 255) {
  1177. MsgOut2();
  1178. loopWait++;
  1179. }
  1180. for(int i = 0; i < m_msc; i++) {
  1181. // ABORT
  1182. if (m_msb[i] == 0x06) {
  1183. goto BusFree;
  1184. }
  1185. // BUS DEVICE RESET
  1186. if (m_msb[i] == 0x0C) {
  1187. syncoffset = 0;
  1188. goto BusFree;
  1189. }
  1190. // IDENTIFY
  1191. if (m_msb[i] >= 0x80) {
  1192. }
  1193. // Extended message
  1194. if (m_msb[i] == 0x01) {
  1195. // Check only when synchronous transfer is possible
  1196. if (!syncenable || m_msb[i + 2] != 0x01) {
  1197. MsgIn2(0x07);
  1198. break;
  1199. }
  1200. // Transfer period factor(50 x 4 = Limited to 200ns)
  1201. syncperiod = m_msb[i + 3];
  1202. if (syncperiod > 50) {
  1203. syncperiod = 50;
  1204. }
  1205. // REQ/ACK offset(Limited to 16)
  1206. syncoffset = m_msb[i + 4];
  1207. if (syncoffset > 16) {
  1208. syncoffset = 16;
  1209. }
  1210. // STDR response message generation
  1211. MsgIn2(0x01);
  1212. MsgIn2(0x03);
  1213. MsgIn2(0x01);
  1214. MsgIn2(syncperiod);
  1215. MsgIn2(syncoffset);
  1216. break;
  1217. }
  1218. }
  1219. }
  1220. LOG("Command:");
  1221. SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
  1222. SCSI_OUT(vCD , active) // gpio_write(CD, high);
  1223. SCSI_OUT(vIO ,inactive) // gpio_write(IO, low);
  1224. int len;
  1225. byte cmd[12];
  1226. cmd[0] = readHandshake();
  1227. LOGHEX(cmd[0]);
  1228. // Command length selection, reception
  1229. static const int cmd_class_len[8]={6,10,10,6,6,12,6,6};
  1230. len = cmd_class_len[cmd[0] >> 5];
  1231. cmd[1] = readHandshake(); LOG(":");LOGHEX(cmd[1]);
  1232. cmd[2] = readHandshake(); LOG(":");LOGHEX(cmd[2]);
  1233. cmd[3] = readHandshake(); LOG(":");LOGHEX(cmd[3]);
  1234. cmd[4] = readHandshake(); LOG(":");LOGHEX(cmd[4]);
  1235. cmd[5] = readHandshake(); LOG(":");LOGHEX(cmd[5]);
  1236. // Receive the remaining commands
  1237. for(int i = 6; i < len; i++ ) {
  1238. cmd[i] = readHandshake();
  1239. LOG(":");
  1240. LOGHEX(cmd[i]);
  1241. }
  1242. // LUN confirmation
  1243. m_sts = cmd[1]&0xe0; // Preset LUN in status byte
  1244. m_lun = m_sts>>5;
  1245. // HDD Image selection
  1246. m_img = (HDDIMG *)0; // None
  1247. if( (m_lun <= NUM_SCSILUN) )
  1248. {
  1249. m_img = &(img[m_id][m_lun]); // There is an image
  1250. if(!(m_img->m_file.isOpen()))
  1251. m_img = (HDDIMG *)0; // Image absent
  1252. }
  1253. // if(!m_img) m_sts |= 0x02; // Missing image file for LUN
  1254. //LOGHEX(((uint32_t)m_img));
  1255. LOG(":ID ");
  1256. LOG(m_id);
  1257. LOG(":LUN ");
  1258. LOG(m_lun);
  1259. LOGN("");
  1260. switch(cmd[0]) {
  1261. case 0x00:
  1262. LOGN("[Test Unit]");
  1263. break;
  1264. case 0x01:
  1265. LOGN("[Rezero Unit]");
  1266. break;
  1267. case 0x03:
  1268. LOGN("[RequestSense]");
  1269. onRequestSenseCommand(cmd[4]);
  1270. break;
  1271. case 0x04:
  1272. LOGN("[FormatUnit]");
  1273. break;
  1274. case 0x06:
  1275. LOGN("[FormatUnit]");
  1276. break;
  1277. case 0x07:
  1278. LOGN("[ReassignBlocks]");
  1279. break;
  1280. case 0x08:
  1281. LOGN("[Read6]");
  1282. m_sts |= onReadCommand((((uint32_t)cmd[1] & 0x1F) << 16) | ((uint32_t)cmd[2] << 8) | cmd[3], (cmd[4] == 0) ? 0x100 : cmd[4]);
  1283. break;
  1284. case 0x0A:
  1285. LOGN("[Write6]");
  1286. m_sts |= onWriteCommand((((uint32_t)cmd[1] & 0x1F) << 16) | ((uint32_t)cmd[2] << 8) | cmd[3], (cmd[4] == 0) ? 0x100 : cmd[4]);
  1287. break;
  1288. case 0x0B:
  1289. LOGN("[Seek6]");
  1290. break;
  1291. case 0x12:
  1292. LOGN("[Inquiry]");
  1293. m_sts |= onInquiryCommand(cmd[4]);
  1294. break;
  1295. case 0x1A:
  1296. LOGN("[ModeSense6]");
  1297. m_sts |= onModeSenseCommand(cmd[0], cmd[1]&0x80, cmd[2], cmd[4]);
  1298. break;
  1299. case 0x1B:
  1300. LOGN("[StartStopUnit]");
  1301. break;
  1302. case 0x1E:
  1303. LOGN("[PreAllowMed.Removal]");
  1304. break;
  1305. case 0x25:
  1306. LOGN("[ReadCapacity]");
  1307. m_sts |= onReadCapacityCommand(cmd[8]);
  1308. break;
  1309. case 0x28:
  1310. LOGN("[Read10]");
  1311. m_sts |= onReadCommand(((uint32_t)cmd[2] << 24) | ((uint32_t)cmd[3] << 16) | ((uint32_t)cmd[4] << 8) | cmd[5], ((uint32_t)cmd[7] << 8) | cmd[8]);
  1312. break;
  1313. case 0x2A:
  1314. LOGN("[Write10]");
  1315. m_sts |= onWriteCommand(((uint32_t)cmd[2] << 24) | ((uint32_t)cmd[3] << 16) | ((uint32_t)cmd[4] << 8) | cmd[5], ((uint32_t)cmd[7] << 8) | cmd[8]);
  1316. break;
  1317. case 0x2B:
  1318. LOGN("[Seek10]");
  1319. break;
  1320. case 0x5A:
  1321. LOGN("[ModeSense10]");
  1322. m_sts |= onModeSenseCommand(cmd[0], cmd[1] & 0x80, cmd[2], ((uint32_t)cmd[7] << 8) | cmd[8]);
  1323. break;
  1324. #if SCSI_SELECT == 1
  1325. case 0xc2:
  1326. LOGN("[DTC510B setDriveParameter]");
  1327. m_sts |= dtc510b_setDriveparameter();
  1328. break;
  1329. #endif
  1330. default:
  1331. LOGN("[*Unknown]");
  1332. m_sts |= 0x02;
  1333. m_senseKey = 5; // Illegal request
  1334. m_addition_sense = 0x2000; // Invalid Command Operation Code
  1335. break;
  1336. }
  1337. LOGN("Sts");
  1338. SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
  1339. SCSI_OUT(vCD , active) // gpio_write(CD, high);
  1340. SCSI_OUT(vIO , active) // gpio_write(IO, high);
  1341. writeHandshake(m_sts);
  1342. LOGN("MsgIn");
  1343. SCSI_OUT(vMSG, active) // gpio_write(MSG, high);
  1344. SCSI_OUT(vCD , active) // gpio_write(CD, high);
  1345. SCSI_OUT(vIO , active) // gpio_write(IO, high);
  1346. writeHandshake(m_msg);
  1347. BusFree:
  1348. LOGN("BusFree");
  1349. m_isBusReset = false;
  1350. //SCSI_OUT(vREQ,inactive) // gpio_write(REQ, low);
  1351. //SCSI_OUT(vMSG,inactive) // gpio_write(MSG, low);
  1352. //SCSI_OUT(vCD ,inactive) // gpio_write(CD, low);
  1353. //SCSI_OUT(vIO ,inactive) // gpio_write(IO, low);
  1354. //SCSI_OUT(vBSY,inactive)
  1355. SCSI_TARGET_INACTIVE() // Turn off BSY, REQ, MSG, CD, IO output
  1356. }