rp2040_sdio.cpp 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
  1. // Implementation of SDIO communication for RP2040
  2. // Copyright (c) 2022 Rabbit Hole Computing™
  3. // Copyright (c) 2024 Tech by Androda, LLC
  4. //
  5. // The RP2040 official work-in-progress code at
  6. // https://github.com/raspberrypi/pico-extras/tree/master/src/rp2_common/pico_sd_card
  7. // may be useful reference, but this is independent implementation.
  8. //
  9. // For official SDIO specifications, refer to:
  10. // https://www.sdcard.org/downloads/pls/
  11. // "SDIO Physical Layer Simplified Specification Version 8.00"
  12. #include "rp2040_sdio.h"
  13. #include "rp2040_sdio.pio.h"
  14. #include <hardware/pio.h>
  15. #include <hardware/dma.h>
  16. //#include <hardware/gpio.h>
  17. #include <BlueSCSI_platform.h>
  18. #include <BlueSCSI_log.h>
  19. #define SDIO_PIO pio1
  20. #define SDIO_CMD_SM 0
  21. #define SDIO_DATA_SM 1
  22. #define SDIO_DMA_CH 4
  23. #define SDIO_DMA_CHB 5
  24. // Maximum number of 512 byte blocks to transfer in one request
  25. #define SDIO_MAX_BLOCKS 256
  26. enum sdio_transfer_state_t { SDIO_IDLE, SDIO_RX, SDIO_TX, SDIO_TX_WAIT_IDLE};
  27. static struct {
  28. uint32_t pio_cmd_rsp_clk_offset;
  29. pio_sm_config pio_cfg_cmd_rsp;
  30. uint32_t pio_data_rx_offset;
  31. pio_sm_config pio_cfg_data_rx;
  32. uint32_t pio_data_tx_offset;
  33. pio_sm_config pio_cfg_data_tx;
  34. sdio_transfer_state_t transfer_state;
  35. uint32_t transfer_start_time;
  36. uint32_t *data_buf;
  37. uint32_t blocks_done; // Number of blocks transferred so far
  38. uint32_t total_blocks; // Total number of blocks to transfer
  39. uint32_t blocks_checksumed; // Number of blocks that have had CRC calculated
  40. uint32_t checksum_errors; // Number of checksum errors detected
  41. uint8_t cmdBuf[6];
  42. // Variables for block writes
  43. uint64_t next_wr_block_checksum;
  44. uint32_t end_token_buf[3]; // CRC and end token for write block
  45. sdio_status_t wr_status;
  46. uint32_t card_response;
  47. // Variables for block reads
  48. // This is used to perform DMA into data buffers and checksum buffers separately.
  49. struct {
  50. void * write_addr;
  51. uint32_t transfer_count;
  52. } dma_blocks[SDIO_MAX_BLOCKS * 2];
  53. struct {
  54. uint32_t top;
  55. uint32_t bottom;
  56. } received_checksums[SDIO_MAX_BLOCKS];
  57. } g_sdio;
  58. void rp2040_sdio_dma_irq();
  59. /*******************************************************
  60. * Checksum algorithms
  61. *******************************************************/
  62. // Table lookup for calculating CRC-7 checksum that is used in SDIO command packets.
  63. // Usage:
  64. // uint8_t crc = 0;
  65. // crc = crc7_table[crc ^ byte];
  66. // .. repeat for every byte ..
  67. static const uint8_t crc7_table[256] = {
  68. 0x00, 0x12, 0x24, 0x36, 0x48, 0x5a, 0x6c, 0x7e,
  69. 0x90, 0x82, 0xb4, 0xa6, 0xd8, 0xca, 0xfc, 0xee,
  70. 0x32, 0x20, 0x16, 0x04, 0x7a, 0x68, 0x5e, 0x4c,
  71. 0xa2, 0xb0, 0x86, 0x94, 0xea, 0xf8, 0xce, 0xdc,
  72. 0x64, 0x76, 0x40, 0x52, 0x2c, 0x3e, 0x08, 0x1a,
  73. 0xf4, 0xe6, 0xd0, 0xc2, 0xbc, 0xae, 0x98, 0x8a,
  74. 0x56, 0x44, 0x72, 0x60, 0x1e, 0x0c, 0x3a, 0x28,
  75. 0xc6, 0xd4, 0xe2, 0xf0, 0x8e, 0x9c, 0xaa, 0xb8,
  76. 0xc8, 0xda, 0xec, 0xfe, 0x80, 0x92, 0xa4, 0xb6,
  77. 0x58, 0x4a, 0x7c, 0x6e, 0x10, 0x02, 0x34, 0x26,
  78. 0xfa, 0xe8, 0xde, 0xcc, 0xb2, 0xa0, 0x96, 0x84,
  79. 0x6a, 0x78, 0x4e, 0x5c, 0x22, 0x30, 0x06, 0x14,
  80. 0xac, 0xbe, 0x88, 0x9a, 0xe4, 0xf6, 0xc0, 0xd2,
  81. 0x3c, 0x2e, 0x18, 0x0a, 0x74, 0x66, 0x50, 0x42,
  82. 0x9e, 0x8c, 0xba, 0xa8, 0xd6, 0xc4, 0xf2, 0xe0,
  83. 0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62, 0x70,
  84. 0x82, 0x90, 0xa6, 0xb4, 0xca, 0xd8, 0xee, 0xfc,
  85. 0x12, 0x00, 0x36, 0x24, 0x5a, 0x48, 0x7e, 0x6c,
  86. 0xb0, 0xa2, 0x94, 0x86, 0xf8, 0xea, 0xdc, 0xce,
  87. 0x20, 0x32, 0x04, 0x16, 0x68, 0x7a, 0x4c, 0x5e,
  88. 0xe6, 0xf4, 0xc2, 0xd0, 0xae, 0xbc, 0x8a, 0x98,
  89. 0x76, 0x64, 0x52, 0x40, 0x3e, 0x2c, 0x1a, 0x08,
  90. 0xd4, 0xc6, 0xf0, 0xe2, 0x9c, 0x8e, 0xb8, 0xaa,
  91. 0x44, 0x56, 0x60, 0x72, 0x0c, 0x1e, 0x28, 0x3a,
  92. 0x4a, 0x58, 0x6e, 0x7c, 0x02, 0x10, 0x26, 0x34,
  93. 0xda, 0xc8, 0xfe, 0xec, 0x92, 0x80, 0xb6, 0xa4,
  94. 0x78, 0x6a, 0x5c, 0x4e, 0x30, 0x22, 0x14, 0x06,
  95. 0xe8, 0xfa, 0xcc, 0xde, 0xa0, 0xb2, 0x84, 0x96,
  96. 0x2e, 0x3c, 0x0a, 0x18, 0x66, 0x74, 0x42, 0x50,
  97. 0xbe, 0xac, 0x9a, 0x88, 0xf6, 0xe4, 0xd2, 0xc0,
  98. 0x1c, 0x0e, 0x38, 0x2a, 0x54, 0x46, 0x70, 0x62,
  99. 0x8c, 0x9e, 0xa8, 0xba, 0xc4, 0xd6, 0xe0, 0xf2
  100. };
  101. // Calculate the CRC16 checksum for parallel 4 bit lines separately.
  102. // When the SDIO bus operates in 4-bit mode, the CRC16 algorithm
  103. // is applied to each line separately and generates total of
  104. // 4 x 16 = 64 bits of checksum.
  105. __attribute__((optimize("O3")))
  106. uint64_t sdio_crc16_4bit_checksum(uint32_t *data, uint32_t num_words)
  107. {
  108. uint64_t crc = 0;
  109. uint32_t *end = data + num_words;
  110. while (data < end)
  111. {
  112. for (int unroll = 0; unroll < 4; unroll++)
  113. {
  114. // Each 32-bit word contains 8 bits per line.
  115. // Reverse the bytes because SDIO protocol is big-endian.
  116. uint32_t data_in = __builtin_bswap32(*data++);
  117. // Shift out 8 bits for each line
  118. uint32_t data_out = crc >> 32;
  119. crc <<= 32;
  120. // XOR outgoing data to itself with 4 bit delay
  121. data_out ^= (data_out >> 16);
  122. // XOR incoming data to outgoing data with 4 bit delay
  123. data_out ^= (data_in >> 16);
  124. // XOR outgoing and incoming data to accumulator at each tap
  125. uint64_t xorred = data_out ^ data_in;
  126. crc ^= xorred;
  127. crc ^= xorred << (5 * 4);
  128. crc ^= xorred << (12 * 4);
  129. }
  130. }
  131. return crc;
  132. }
  133. /*******************************************************
  134. * Clock Runner
  135. *******************************************************/
  136. void cycleSdClock() {
  137. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_nop() | pio_encode_sideset_opt(1, 1) | pio_encode_delay(1));
  138. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_nop() | pio_encode_sideset_opt(1, 0) | pio_encode_delay(1));
  139. }
  140. /*******************************************************
  141. * Status Register Receiver
  142. *******************************************************/
  143. sdio_status_t receive_status_register(uint8_t* sds) {
  144. rp2040_sdio_rx_start(sds, 1, 64);
  145. // Wait for the DMA operation to complete, or fail if it took too long
  146. waitagain:
  147. while (dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH))
  148. {
  149. if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 2)
  150. {
  151. // Reset the state machine program
  152. dma_channel_abort(SDIO_DMA_CHB);
  153. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  154. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  155. return SDIO_ERR_RESPONSE_TIMEOUT;
  156. }
  157. }
  158. // Assert that both DMA channels are complete
  159. if(dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH)) {
  160. // Wait failure, go back.
  161. goto waitagain;
  162. }
  163. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  164. g_sdio.transfer_state = SDIO_IDLE;
  165. return SDIO_OK;
  166. }
  167. /*******************************************************
  168. * Basic SDIO command execution
  169. *******************************************************/
  170. static void sdio_send_command(uint8_t command, uint32_t arg, uint8_t response_bits)
  171. {
  172. // if (command != 41 && command != 55) {
  173. // log("C: ", (int)command, " A: ", arg);
  174. // }
  175. io_wo_8* txFifo = reinterpret_cast<io_wo_8*>(&SDIO_PIO->txf[SDIO_CMD_SM]);
  176. // Reinitialize the CMD SM
  177. pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_cmd_rsp_clk_offset, &g_sdio.pio_cfg_cmd_rsp);
  178. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
  179. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CMD, 1, true);
  180. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_D0, 4, false);
  181. // Pin direction: output, initial state should be high
  182. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_set(pio_pins, 1));
  183. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_set(pio_pindirs, 1));
  184. // Write the number of tx / rx bits to the SM
  185. *txFifo = 55; // Write 56 bits total
  186. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_out(pio_x, 8));
  187. *txFifo = response_bits ? response_bits - 1 : 0; // Bit count to receive
  188. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_out(pio_y, 8));
  189. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, true);
  190. // Build the command bytes (commands are 48 bits long)
  191. g_sdio.cmdBuf[0] = command | 0x40;
  192. g_sdio.cmdBuf[1] = (uint8_t)(arg >> 24U);
  193. g_sdio.cmdBuf[2] = (uint8_t)(arg >> 16U);
  194. g_sdio.cmdBuf[3] = (uint8_t)(arg >> 8U);
  195. g_sdio.cmdBuf[4] = (uint8_t)arg;
  196. // Get the SM clocking while we calculate CRCs
  197. *txFifo = 0XFF;
  198. // CRC calculation
  199. uint8_t crc = 0;
  200. for(uint8_t i = 0; i < 5; i++) {
  201. crc = crc7_table[crc ^ g_sdio.cmdBuf[i]];
  202. }
  203. crc = crc | 0x1;
  204. g_sdio.cmdBuf[5] = crc;
  205. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  206. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_8);
  207. channel_config_set_read_increment(&dmacfg, true);
  208. channel_config_set_write_increment(&dmacfg, false);
  209. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, true));
  210. dma_channel_configure(SDIO_DMA_CH, &dmacfg, &SDIO_PIO->txf[SDIO_CMD_SM], &g_sdio.cmdBuf, 6, true);
  211. }
  212. sdio_status_t rp2040_sdio_command_R1(uint8_t command, uint32_t arg, uint32_t *response)
  213. {
  214. uint32_t resp[2];
  215. if (response) {
  216. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  217. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_8);
  218. channel_config_set_read_increment(&dmacfg, false);
  219. channel_config_set_write_increment(&dmacfg, true);
  220. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false)); //6 * 8 = 48 bits
  221. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &resp, &SDIO_PIO->rxf[SDIO_CMD_SM], 6, true);
  222. }
  223. sdio_send_command(command, arg, response ? 48 : 0);
  224. uint32_t start = millis();
  225. if (response)
  226. {
  227. // Wait for DMA channel to receive response
  228. while (dma_channel_is_busy(SDIO_DMA_CHB))
  229. {
  230. if ((uint32_t)(millis() - start) > 2)
  231. {
  232. if (command != 8) {
  233. /*debug*/log("Timeout waiting for response in rp2040_sdio_command_R1(", (int)command, "), ",
  234. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_rsp_clk_offset,
  235. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  236. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  237. }
  238. // Reset the state machine program
  239. dma_channel_abort(SDIO_DMA_CHB);
  240. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, there was an error
  241. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  242. return SDIO_ERR_RESPONSE_TIMEOUT;
  243. }
  244. }
  245. // Must bswap due to 8 bit segmentation
  246. resp[0] = __builtin_bswap32(resp[0]);
  247. resp[1] = __builtin_bswap32(resp[1]) >> 16;
  248. // debuglog("SDIO R1 response: ", resp0, " ", resp1);
  249. // Calculate response checksum
  250. uint8_t crc = 0;
  251. crc = crc7_table[crc ^ ((resp[0] >> 24) & 0xFF)];
  252. crc = crc7_table[crc ^ ((resp[0] >> 16) & 0xFF)];
  253. crc = crc7_table[crc ^ ((resp[0] >> 8) & 0xFF)];
  254. crc = crc7_table[crc ^ ((resp[0] >> 0) & 0xFF)];
  255. crc = crc7_table[crc ^ ((resp[1] >> 8) & 0xFF)];
  256. uint8_t actual_crc = ((resp[1] >> 0) & 0xFE);
  257. if (crc != actual_crc)
  258. {
  259. debuglog("rp2040_sdio_command_R1(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  260. debuglog("resp[0]:", resp[0], "resp[1]:", resp[1]);
  261. return SDIO_ERR_RESPONSE_CRC;
  262. }
  263. uint8_t response_cmd = ((resp[0] >> 24) & 0xFF);
  264. if (response_cmd != command && command != 41)
  265. {
  266. debuglog("rp2040_sdio_command_R1(", (int)command, "): received reply for ", (int)response_cmd);
  267. return SDIO_ERR_RESPONSE_CODE;
  268. }
  269. *response = ((resp[0] & 0xFFFFFF) << 8) | ((resp[1] >> 8) & 0xFF);
  270. } else {
  271. // Wait for CMD SM TX FIFO Stall (all command bits were sent)
  272. uint32_t tx_stall_flag = 1u << (PIO_FDEBUG_TXSTALL_LSB + SDIO_CMD_SM);
  273. // Clear the stall marker
  274. SDIO_PIO->fdebug = tx_stall_flag;
  275. // Wait for the stall
  276. while (!(SDIO_PIO->fdebug & tx_stall_flag)) {
  277. if ((uint32_t)(millis() - start) > 2)
  278. {
  279. if (command != 8) {
  280. /*debug*/log("Timeout waiting for CMD TX in rp2040_sdio_command_R1(", (int)command, "), ",
  281. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_rsp_clk_offset,
  282. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  283. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  284. }
  285. // Reset the state machine program
  286. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, there was an error
  287. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  288. return SDIO_ERR_RESPONSE_TIMEOUT;
  289. }
  290. }
  291. }
  292. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  293. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  294. return SDIO_OK;
  295. }
  296. sdio_status_t rp2040_sdio_command_R2(uint8_t command, uint32_t arg, uint8_t response[16])
  297. {
  298. // The response is too long to fit in the PIO FIFO, so use DMA to receive it.
  299. uint32_t response_buf[5];
  300. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  301. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_8);
  302. channel_config_set_read_increment(&dmacfg, false);
  303. channel_config_set_write_increment(&dmacfg, true);
  304. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false)); //17 * 8 = 136
  305. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &response_buf, &SDIO_PIO->rxf[SDIO_CMD_SM], 17, true);
  306. sdio_send_command(command, arg, 136);
  307. uint32_t start = millis();
  308. while (dma_channel_is_busy(SDIO_DMA_CHB))
  309. {
  310. if ((uint32_t)(millis() - start) > 2)
  311. {
  312. debuglog("Timeout waiting for response in rp2040_sdio_command_R2(", (int)command, "), ",
  313. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_rsp_clk_offset,
  314. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  315. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  316. // Reset the state machine program
  317. dma_channel_abort(SDIO_DMA_CHB);
  318. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, there was an error
  319. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  320. return SDIO_ERR_RESPONSE_TIMEOUT;
  321. }
  322. }
  323. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, its job is done
  324. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  325. dma_channel_abort(SDIO_DMA_CHB);
  326. // Must byte swap because receiving 8-bit chunks instead of 32 bit
  327. response_buf[0] = __builtin_bswap32(response_buf[0]);
  328. response_buf[1] = __builtin_bswap32(response_buf[1]);
  329. response_buf[2] = __builtin_bswap32(response_buf[2]);
  330. response_buf[3] = __builtin_bswap32(response_buf[3]);
  331. response_buf[4] = __builtin_bswap32(response_buf[4]) >> 24;
  332. // Copy the response payload to output buffer
  333. response[0] = ((response_buf[0] >> 16) & 0xFF);
  334. response[1] = ((response_buf[0] >> 8) & 0xFF);
  335. response[2] = ((response_buf[0] >> 0) & 0xFF);
  336. response[3] = ((response_buf[1] >> 24) & 0xFF);
  337. response[4] = ((response_buf[1] >> 16) & 0xFF);
  338. response[5] = ((response_buf[1] >> 8) & 0xFF);
  339. response[6] = ((response_buf[1] >> 0) & 0xFF);
  340. response[7] = ((response_buf[2] >> 24) & 0xFF);
  341. response[8] = ((response_buf[2] >> 16) & 0xFF);
  342. response[9] = ((response_buf[2] >> 8) & 0xFF);
  343. response[10] = ((response_buf[2] >> 0) & 0xFF);
  344. response[11] = ((response_buf[3] >> 24) & 0xFF);
  345. response[12] = ((response_buf[3] >> 16) & 0xFF);
  346. response[13] = ((response_buf[3] >> 8) & 0xFF);
  347. response[14] = ((response_buf[3] >> 0) & 0xFF);
  348. response[15] = ((response_buf[4] >> 0) & 0xFF);
  349. // Calculate checksum of the payload
  350. uint8_t crc = 0;
  351. for (int i = 0; i < 15; i++)
  352. {
  353. crc = crc7_table[crc ^ response[i]];
  354. }
  355. uint8_t actual_crc = response[15] & 0xFE;
  356. if (crc != actual_crc)
  357. {
  358. debuglog("rp2040_sdio_command_R2(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  359. return SDIO_ERR_RESPONSE_CRC;
  360. }
  361. uint8_t response_cmd = ((response_buf[0] >> 24) & 0xFF);
  362. if (response_cmd != 0x3F)
  363. {
  364. debuglog("rp2040_sdio_command_R2(", (int)command, "): Expected reply code 0x3F");
  365. return SDIO_ERR_RESPONSE_CODE;
  366. }
  367. return SDIO_OK;
  368. }
  369. sdio_status_t rp2040_sdio_command_R3(uint8_t command, uint32_t arg, uint32_t *response)
  370. {
  371. uint32_t resp[2];
  372. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  373. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_8);
  374. channel_config_set_read_increment(&dmacfg, false);
  375. channel_config_set_write_increment(&dmacfg, true);
  376. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false)); //6 * 8 = 48 bits
  377. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &resp, &SDIO_PIO->rxf[SDIO_CMD_SM], 6, true);
  378. sdio_send_command(command, arg, 48);
  379. // Wait for response
  380. uint32_t start = millis();
  381. while (dma_channel_is_busy(SDIO_DMA_CHB))
  382. {
  383. if ((uint32_t)(millis() - start) > 2)
  384. {
  385. debuglog("Timeout waiting for response in rp2040_sdio_command_R3(", (int)command, "), ",
  386. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_rsp_clk_offset,
  387. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  388. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  389. // Reset the state machine program
  390. dma_channel_abort(SDIO_DMA_CHB);
  391. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, there was an error
  392. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  393. return SDIO_ERR_RESPONSE_TIMEOUT;
  394. }
  395. }
  396. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, its job is done
  397. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  398. // Must bswap due to 8 bit transfer
  399. resp[0] = __builtin_bswap32(resp[0]);
  400. resp[1] = __builtin_bswap32(resp[1]) >> 16;
  401. *response = ((resp[0] & 0xFFFFFF) << 8) | ((resp[1] >> 8) & 0xFF);
  402. // debuglog("SDIO R3 response: ", resp0, " ", resp1);
  403. return SDIO_OK;
  404. }
  405. /*******************************************************
  406. * Data reception from SD card
  407. *******************************************************/
  408. sdio_status_t rp2040_sdio_rx_start(uint8_t *buffer, uint32_t num_blocks, uint32_t block_size)
  409. {
  410. // Buffer must be aligned
  411. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  412. g_sdio.transfer_state = SDIO_RX;
  413. g_sdio.transfer_start_time = millis();
  414. g_sdio.data_buf = (uint32_t*)buffer;
  415. g_sdio.blocks_done = 0;
  416. g_sdio.total_blocks = num_blocks;
  417. g_sdio.blocks_checksumed = 0;
  418. g_sdio.checksum_errors = 0;
  419. // Create DMA block descriptors to store each block of block_size bytes of data to buffer
  420. // and then 8 bytes to g_sdio.received_checksums.
  421. for (int i = 0; i < num_blocks; i++)
  422. {
  423. g_sdio.dma_blocks[i * 2].write_addr = buffer + (i * block_size);
  424. g_sdio.dma_blocks[i * 2].transfer_count = block_size / sizeof(uint32_t);
  425. g_sdio.dma_blocks[i * 2 + 1].write_addr = &g_sdio.received_checksums[i];
  426. g_sdio.dma_blocks[i * 2 + 1].transfer_count = 2;
  427. }
  428. g_sdio.dma_blocks[num_blocks * 2].write_addr = 0;
  429. g_sdio.dma_blocks[num_blocks * 2].transfer_count = 0;
  430. // Configure first DMA channel for reading from the PIO RX fifo
  431. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  432. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  433. channel_config_set_read_increment(&dmacfg, false);
  434. channel_config_set_write_increment(&dmacfg, true);
  435. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  436. channel_config_set_bswap(&dmacfg, true);
  437. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  438. dma_channel_configure(SDIO_DMA_CH, &dmacfg, 0, &SDIO_PIO->rxf[SDIO_DATA_SM], 0, false);
  439. // Configure second DMA channel for reconfiguring the first one
  440. dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  441. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  442. channel_config_set_read_increment(&dmacfg, true);
  443. channel_config_set_write_increment(&dmacfg, true);
  444. channel_config_set_ring(&dmacfg, true, 3);
  445. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &dma_hw->ch[SDIO_DMA_CH].al1_write_addr,
  446. g_sdio.dma_blocks, 2, false);
  447. // Initialize PIO state machine
  448. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_rx_offset, &g_sdio.pio_cfg_data_rx);
  449. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_CLK, 1, true);
  450. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  451. // Write number of nibbles to receive to Y register
  452. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, (block_size * 2) + 16 - 1);
  453. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  454. // Enable RX FIFO join because we don't need the TX FIFO during transfer.
  455. // This gives more leeway for the DMA block switching
  456. SDIO_PIO->sm[SDIO_DATA_SM].shiftctrl |= PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS;
  457. // Start PIO and DMA
  458. dma_channel_start(SDIO_DMA_CHB);
  459. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  460. return SDIO_OK;
  461. }
  462. // Check checksums for received blocks
  463. static void sdio_verify_rx_checksums(uint32_t maxcount)
  464. {
  465. while (g_sdio.blocks_checksumed < g_sdio.blocks_done && maxcount-- > 0)
  466. {
  467. // Calculate checksum from received data
  468. int blockidx = g_sdio.blocks_checksumed++;
  469. uint64_t checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  470. SDIO_WORDS_PER_BLOCK);
  471. // Convert received checksum to little-endian format
  472. uint32_t top = __builtin_bswap32(g_sdio.received_checksums[blockidx].top);
  473. uint32_t bottom = __builtin_bswap32(g_sdio.received_checksums[blockidx].bottom);
  474. uint64_t expected = ((uint64_t)top << 32) | bottom;
  475. if (checksum != expected)
  476. {
  477. g_sdio.checksum_errors++;
  478. if (g_sdio.checksum_errors == 1)
  479. {
  480. log("SDIO checksum error in reception: block ", blockidx,
  481. " calculated ", checksum, " expected ", expected);
  482. }
  483. }
  484. }
  485. }
  486. sdio_status_t rp2040_sdio_rx_poll(uint32_t *bytes_complete)
  487. {
  488. // Was everything done when the previous rx_poll() finished?
  489. if (g_sdio.blocks_done >= g_sdio.total_blocks)
  490. {
  491. g_sdio.transfer_state = SDIO_IDLE;
  492. }
  493. else
  494. {
  495. // Use the idle time to calculate checksums
  496. sdio_verify_rx_checksums(4);
  497. // Check how many DMA control blocks have been consumed
  498. uint32_t dma_ctrl_block_count = (dma_hw->ch[SDIO_DMA_CHB].read_addr - (uint32_t)&g_sdio.dma_blocks);
  499. dma_ctrl_block_count /= sizeof(g_sdio.dma_blocks[0]);
  500. // Compute how many complete 512 byte SDIO blocks have been transferred
  501. // When transfer ends, dma_ctrl_block_count == g_sdio.total_blocks * 2 + 1
  502. g_sdio.blocks_done = (dma_ctrl_block_count - 1) / 2;
  503. // NOTE: When all blocks are done, rx_poll() still returns SDIO_BUSY once.
  504. // This provides a chance to start the SCSI transfer before the last checksums
  505. // are computed. Any checksum failures can be indicated in SCSI status after
  506. // the data transfer has finished.
  507. }
  508. if (bytes_complete)
  509. {
  510. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  511. }
  512. if (g_sdio.transfer_state == SDIO_IDLE)
  513. {
  514. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  515. // Verify all remaining checksums.
  516. sdio_verify_rx_checksums(g_sdio.total_blocks);
  517. if (g_sdio.checksum_errors == 0)
  518. return SDIO_OK;
  519. else
  520. return SDIO_ERR_DATA_CRC;
  521. }
  522. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  523. {
  524. debuglog("rp2040_sdio_rx_poll() timeout, "
  525. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_rx_offset,
  526. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  527. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  528. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count,
  529. " BD: ", g_sdio.blocks_done);
  530. rp2040_sdio_stop();
  531. return SDIO_ERR_DATA_TIMEOUT;
  532. }
  533. return SDIO_BUSY;
  534. }
  535. /*******************************************************
  536. * Data transmission to SD card
  537. *******************************************************/
  538. static void sdio_start_next_block_tx()
  539. {
  540. // Initialize PIOs
  541. pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_data_tx_offset, &g_sdio.pio_cfg_data_tx);
  542. // Re-set the pin direction things here
  543. pio_sm_set_pins(SDIO_PIO, SDIO_CMD_SM, 0xF);
  544. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
  545. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_D0, 4, true);
  546. // Configure DMA to send the data block payload (512 bytes)
  547. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  548. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  549. channel_config_set_read_increment(&dmacfg, true);
  550. channel_config_set_write_increment(&dmacfg, false);
  551. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, true));
  552. channel_config_set_bswap(&dmacfg, true);
  553. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  554. dma_channel_configure(SDIO_DMA_CH, &dmacfg,
  555. &SDIO_PIO->txf[SDIO_CMD_SM], g_sdio.data_buf + g_sdio.blocks_done * SDIO_WORDS_PER_BLOCK,
  556. SDIO_WORDS_PER_BLOCK, false);
  557. // Prepare second DMA channel to send the CRC and block end marker
  558. uint64_t crc = g_sdio.next_wr_block_checksum;
  559. g_sdio.end_token_buf[0] = (uint32_t)(crc >> 32);
  560. g_sdio.end_token_buf[1] = (uint32_t)(crc >> 0);
  561. g_sdio.end_token_buf[2] = 0xFFFFFFFF;
  562. channel_config_set_bswap(&dmacfg, false);
  563. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  564. &SDIO_PIO->txf[SDIO_CMD_SM], g_sdio.end_token_buf, 3, false);
  565. // Enable IRQ to trigger when block is done
  566. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  567. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 1);
  568. // Initialize register X with nibble count
  569. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, 1048);
  570. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_out(pio_x, 32));
  571. // Initialize CRC receiver Y bit count
  572. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, 7);
  573. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_out(pio_y, 32));
  574. // Initialize pins to output and high
  575. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_set(pio_pins, 15));
  576. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_set(pio_pindirs, 15));
  577. // Write start token and start the DMA transfer.
  578. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, 0xFFFFFFF0);
  579. dma_channel_start(SDIO_DMA_CH);
  580. // Start state machine
  581. pio_set_sm_mask_enabled(SDIO_PIO, (1ul << SDIO_CMD_SM)/* | (1ul << SDIO_DATA_SM)*/, true);
  582. }
  583. static void sdio_compute_next_tx_checksum()
  584. {
  585. assert (g_sdio.blocks_done < g_sdio.total_blocks && g_sdio.blocks_checksumed < g_sdio.total_blocks);
  586. int blockidx = g_sdio.blocks_checksumed++;
  587. g_sdio.next_wr_block_checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  588. SDIO_WORDS_PER_BLOCK);
  589. }
  590. // Start transferring data from memory to SD card
  591. sdio_status_t rp2040_sdio_tx_start(const uint8_t *buffer, uint32_t num_blocks)
  592. {
  593. // Buffer must be aligned
  594. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  595. g_sdio.transfer_state = SDIO_TX;
  596. g_sdio.transfer_start_time = millis();
  597. g_sdio.data_buf = (uint32_t*)buffer;
  598. g_sdio.blocks_done = 0;
  599. g_sdio.total_blocks = num_blocks;
  600. g_sdio.blocks_checksumed = 0;
  601. g_sdio.checksum_errors = 0;
  602. // Compute first block checksum
  603. sdio_compute_next_tx_checksum();
  604. // Start first DMA transfer and PIO
  605. sdio_start_next_block_tx();
  606. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  607. {
  608. // Precompute second block checksum
  609. sdio_compute_next_tx_checksum();
  610. }
  611. return SDIO_OK;
  612. }
  613. sdio_status_t check_sdio_write_response(uint32_t card_response)
  614. {
  615. uint8_t wr_status = card_response & 0x1F;
  616. // 5 = 0b0101 = data accepted (11100101)
  617. // 11 = 0b1011 = CRC error (11101011)
  618. // 13 = 0b1101 = Write Error (11101101)
  619. if (wr_status == 0b101)
  620. {
  621. return SDIO_OK;
  622. }
  623. else if (wr_status == 0b1011)
  624. {
  625. log("SDIO card reports write CRC error, status ", card_response);
  626. return SDIO_ERR_WRITE_CRC;
  627. }
  628. else if (wr_status == 0b1101)
  629. {
  630. log("SDIO card reports write failure, status ", card_response);
  631. return SDIO_ERR_WRITE_FAIL;
  632. }
  633. else
  634. {
  635. log("SDIO card reports unknown write status ", card_response);
  636. return SDIO_ERR_WRITE_FAIL;
  637. }
  638. }
  639. // When a block finishes, this IRQ handler starts the next one
  640. static void rp2040_sdio_tx_irq()
  641. {
  642. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  643. if (g_sdio.transfer_state == SDIO_TX)
  644. {
  645. if (!dma_channel_is_busy(SDIO_DMA_CH) && !dma_channel_is_busy(SDIO_DMA_CHB))
  646. {
  647. // Main data transfer is finished now.
  648. // When card is ready, PIO will put card response on RX fifo
  649. g_sdio.transfer_state = SDIO_TX_WAIT_IDLE;
  650. if (!pio_sm_is_rx_fifo_empty(SDIO_PIO, SDIO_CMD_SM))
  651. {
  652. // Card is already idle
  653. g_sdio.card_response = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  654. }
  655. else
  656. {
  657. // Use DMA to wait for the response
  658. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  659. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_8);
  660. channel_config_set_read_increment(&dmacfg, false);
  661. channel_config_set_write_increment(&dmacfg, false);
  662. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false));
  663. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  664. &g_sdio.card_response, &SDIO_PIO->rxf[SDIO_CMD_SM], 1, true);
  665. }
  666. }
  667. }
  668. if (g_sdio.transfer_state == SDIO_TX_WAIT_IDLE)
  669. {
  670. if (!dma_channel_is_busy(SDIO_DMA_CHB))
  671. {
  672. g_sdio.wr_status = check_sdio_write_response(g_sdio.card_response);
  673. if (g_sdio.wr_status != SDIO_OK)
  674. {
  675. rp2040_sdio_stop();
  676. return;
  677. }
  678. g_sdio.blocks_done++;
  679. if (g_sdio.blocks_done < g_sdio.total_blocks)
  680. {
  681. sdio_start_next_block_tx();
  682. g_sdio.transfer_state = SDIO_TX;
  683. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  684. {
  685. // Precompute the CRC for next block so that it is ready when
  686. // we want to send it.
  687. sdio_compute_next_tx_checksum();
  688. }
  689. }
  690. else
  691. {
  692. rp2040_sdio_stop();
  693. }
  694. }
  695. }
  696. }
  697. // Check if transmission is complete
  698. sdio_status_t rp2040_sdio_tx_poll(uint32_t *bytes_complete)
  699. {
  700. if (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk)
  701. {
  702. // Verify that IRQ handler gets called even if we are in hardfault handler
  703. rp2040_sdio_tx_irq();
  704. }
  705. if (bytes_complete)
  706. {
  707. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  708. }
  709. if (g_sdio.transfer_state == SDIO_IDLE)
  710. {
  711. rp2040_sdio_stop();
  712. return g_sdio.wr_status;
  713. }
  714. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  715. {
  716. debuglog("rp2040_sdio_tx_poll() timeout, "
  717. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_data_tx_offset,
  718. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  719. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  720. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  721. rp2040_sdio_stop();
  722. return SDIO_ERR_DATA_TIMEOUT;
  723. }
  724. return SDIO_BUSY;
  725. }
  726. // Force everything to idle state
  727. sdio_status_t rp2040_sdio_stop()
  728. {
  729. dma_channel_abort(SDIO_DMA_CH);
  730. dma_channel_abort(SDIO_DMA_CHB);
  731. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 0);
  732. pio_set_sm_mask_enabled(SDIO_PIO, (1ul << SDIO_CMD_SM) | (1ul << SDIO_DATA_SM), false);
  733. g_sdio.transfer_state = SDIO_IDLE;
  734. return SDIO_OK;
  735. }
  736. void rp2040_sdio_init(int clock_divider)
  737. {
  738. // Mark resources as being in use, unless it has been done already.
  739. static bool resources_claimed = false;
  740. if (!resources_claimed)
  741. {
  742. pio_sm_claim(SDIO_PIO, SDIO_CMD_SM);
  743. pio_sm_claim(SDIO_PIO, SDIO_DATA_SM);
  744. dma_channel_claim(SDIO_DMA_CH);
  745. dma_channel_claim(SDIO_DMA_CHB);
  746. resources_claimed = true;
  747. }
  748. memset(&g_sdio, 0, sizeof(g_sdio));
  749. dma_channel_abort(SDIO_DMA_CH);
  750. dma_channel_abort(SDIO_DMA_CHB);
  751. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  752. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  753. // Load PIO programs
  754. pio_clear_instruction_memory(SDIO_PIO);
  755. // Set pull resistors for all SD data lines
  756. gpio_set_pulls(SDIO_CLK, true, false);
  757. gpio_set_pulls(SDIO_CMD, true, false);
  758. gpio_set_pulls(SDIO_D0, true, false);
  759. gpio_set_pulls(SDIO_D1, true, false);
  760. gpio_set_pulls(SDIO_D2, true, false);
  761. gpio_set_pulls(SDIO_D3, true, false);
  762. // Command state machine
  763. g_sdio.pio_cmd_rsp_clk_offset = pio_add_program(SDIO_PIO, &cmd_rsp_program);
  764. g_sdio.pio_cfg_cmd_rsp = pio_cmd_rsp_program_config(g_sdio.pio_cmd_rsp_clk_offset, SDIO_CMD, SDIO_CLK, clock_divider, 0);
  765. pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_cmd_rsp_clk_offset, &g_sdio.pio_cfg_cmd_rsp);
  766. pio_sm_set_pins(SDIO_PIO, SDIO_CMD_SM, 1);
  767. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
  768. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CMD, 1, true);
  769. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_D0, 4, false);
  770. // Data reception program
  771. g_sdio.pio_data_rx_offset = pio_add_program(SDIO_PIO, &rd_data_w_clock_program);
  772. g_sdio.pio_cfg_data_rx = pio_rd_data_w_clock_program_config(g_sdio.pio_data_rx_offset, SDIO_D0, SDIO_CLK, clock_divider);
  773. // Data transmission program
  774. g_sdio.pio_data_tx_offset = pio_add_program(SDIO_PIO, &sdio_tx_w_clock_program);
  775. g_sdio.pio_cfg_data_tx = pio_sdio_tx_w_clock_program_config(g_sdio.pio_data_tx_offset, SDIO_D0, SDIO_CLK, clock_divider);
  776. // Disable SDIO pins input synchronizer.
  777. // This reduces input delay.
  778. // Because the CLK is driven synchronously to CPU clock,
  779. // there should be no metastability problems.
  780. SDIO_PIO->input_sync_bypass |= (1 << SDIO_CLK) | (1 << SDIO_CMD)
  781. | (1 << SDIO_D0) | (1 << SDIO_D1) | (1 << SDIO_D2) | (1 << SDIO_D3);
  782. // Redirect GPIOs to PIO
  783. gpio_set_function(SDIO_CMD, GPIO_FUNC_PIO1);
  784. gpio_set_function(SDIO_CLK, GPIO_FUNC_PIO1);
  785. gpio_set_function(SDIO_D0, GPIO_FUNC_PIO1);
  786. gpio_set_function(SDIO_D1, GPIO_FUNC_PIO1);
  787. gpio_set_function(SDIO_D2, GPIO_FUNC_PIO1);
  788. gpio_set_function(SDIO_D3, GPIO_FUNC_PIO1);
  789. // Set up IRQ handler when DMA completes.
  790. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  791. irq_set_enabled(DMA_IRQ_1, true);
  792. #if 0
  793. #ifndef ENABLE_AUDIO_OUTPUT
  794. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  795. #else
  796. // seem to hit assertion in _exclusive_handler call due to DMA_IRQ_0 being shared?
  797. // slightly less efficient to do it this way, so investigate further at some point
  798. irq_add_shared_handler(DMA_IRQ_1, rp2040_sdio_tx_irq, 0xFF);
  799. #endif
  800. irq_set_enabled(DMA_IRQ_1, true);
  801. #endif
  802. }