| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906 | #include "BlueSCSI_platform.h"#include "BlueSCSI_log.h"#include "BlueSCSI_config.h"#include <SdFat.h>#include <scsi.h>#include <assert.h>#include <hardware/gpio.h>#include <hardware/uart.h>#include <hardware/pll.h>#include <hardware/clocks.h>#include <hardware/spi.h>#include <hardware/adc.h>#include <hardware/flash.h>#include <hardware/structs/xip_ctrl.h>#include <hardware/structs/usb.h>#include <platform/mbed_error.h>#include <multicore.h>#include <USB/PluggableUSBSerial.h>#include "audio.h"#include "scsi_accel_rp2040.h"extern "C" {const char *g_platform_name = PLATFORM_NAME;static bool g_scsi_initiator = false;static uint32_t g_flash_chip_size = 0;static bool g_uart_initialized = false;void mbed_error_hook(const mbed_error_ctx * error_context);/***************//* GPIO init   *//***************/// Helper function to configure whole GPIO in one linestatic void gpio_conf(uint gpio, enum gpio_function fn, bool pullup, bool pulldown, bool output, bool initial_state, bool fast_slew){    gpio_put(gpio, initial_state);    gpio_set_dir(gpio, output);    gpio_set_pulls(gpio, pullup, pulldown);    gpio_set_function(gpio, fn);    if (fast_slew)    {        padsbank0_hw->io[gpio] |= PADS_BANK0_GPIO0_SLEWFAST_BITS;    }}#ifdef ENABLE_AUDIO_OUTPUT// Increases clk_sys and clk_peri to 135.428571MHz at runtime to support// division to audio output rates. Invoke before anything is using clk_peri// except for the logging UART, which is handled below.static void reclock_for_audio() {    // ensure UART is fully drained before we mess up its clock    uart_tx_wait_blocking(uart0);    // switch clk_sys and clk_peri to pll_usb    // see code in 2.15.6.1 of the datasheet for useful comments    clock_configure(clk_sys,            CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,            CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,            48 * MHZ,            48 * MHZ);    clock_configure(clk_peri,            0,            CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,            48 * MHZ,            48 * MHZ);    // reset PLL for 135.428571MHz    pll_init(pll_sys, 1, 948000000, 7, 1);    // switch clocks back to pll_sys    clock_configure(clk_sys,            CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,            CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,            135428571,            135428571);    clock_configure(clk_peri,            0,            CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,            135428571,            135428571);    // reset UART for the new clock speed    uart_init(uart0, 1000000);}#endifvoid platform_init(){    // Make sure second core is stopped    multicore_reset_core1();    /* First configure the pins that affect external buffer directions.     * RP2040 defaults to pulldowns, while these pins have external pull-ups.     */    //        pin             function       pup   pdown  out    state fast    gpio_conf(SCSI_DATA_DIR,  GPIO_FUNC_SIO, false,false, true,  false, true);    //gpio_conf(SCSI_OUT_RST,   GPIO_FUNC_SIO, false,false, true,  true, true);    gpio_conf(SCSI_OUT_BSY,   GPIO_FUNC_SIO, false,false, true,  true, false);       //gpio_set_drive_strength(SCSI_OUT_BSY, GPIO_DRIVE_STRENGTH_8MA);    gpio_conf(SCSI_OUT_SEL,   GPIO_FUNC_SIO, false,false, true,  true, false);    /* Check dip switch settings */    // Option switches: S1 is iATN, S2 is iACK    gpio_conf(SCSI_IN_ACK,    GPIO_FUNC_SIO, false, false, false, false, false);    gpio_conf(SCSI_IN_ATN,    GPIO_FUNC_SIO, false, false, false, false, false);    delay(10); /// Settle time    bool optionS1 = !gpio_get(SCSI_IN_ATN);    bool optionS2 = !gpio_get(SCSI_IN_ACK);    /* Initialize logging to SWO pin (UART0) */    gpio_conf(SWO_PIN,        GPIO_FUNC_UART,false,false, true,  false, true);    uart_init(uart0, 1000000);    g_uart_initialized = true;    mbed_set_error_hook(mbed_error_hook);    //log("DIP switch settings: debug log ", (int)dbglog, ", termination ", (int)termination);    log("Platform: ", g_platform_name);    log("FW Version: ", g_log_firmwareversion);    g_log_debug = false; // Debug logging can be handled with a debug firmware, very easy to reflash    // if (termination)  // Termination is handled by hardware jumper    // {    //     log("SCSI termination is enabled");    // }    // else    // {    //     log("NOTE: SCSI termination is disabled");    // }#ifdef ENABLE_AUDIO_OUTPUT    log("SP/DIF audio to expansion header enabled");    log("-- Overclocking to 135.428571MHz");    reclock_for_audio();#endif    // Get flash chip size    uint8_t cmd_read_jedec_id[4] = {0x9f, 0, 0, 0};    uint8_t response_jedec[4] = {0};    __disable_irq();    flash_do_cmd(cmd_read_jedec_id, response_jedec, 4);    __enable_irq();    g_flash_chip_size = (1 << response_jedec[3]);    log("Flash chip size: ", (int)(g_flash_chip_size / 1024), " kB");    // SD card pins    // Card is used in SDIO mode for main program, and in SPI mode for crash handler & bootloader.    //        pin             function       pup   pdown  out    state fast    gpio_conf(SD_SPI_SCK,     GPIO_FUNC_SPI, true, false, true,  true, true);    gpio_conf(SD_SPI_MOSI,    GPIO_FUNC_SPI, true, false, true,  true, true);    gpio_conf(SD_SPI_MISO,    GPIO_FUNC_SPI, true, false, false, true, true);    gpio_conf(SD_SPI_CS,      GPIO_FUNC_SIO, true, false, true,  true, true);    gpio_conf(SDIO_D1,        GPIO_FUNC_SIO, true, false, false, true, true);    gpio_conf(SDIO_D2,        GPIO_FUNC_SIO, true, false, false, true, true);    // LED pin    gpio_conf(LED_PIN,        GPIO_FUNC_SIO, false,false, true,  false, false);#ifndef ENABLE_AUDIO_OUTPUT#ifdef GPIO_I2C_SDA    // I2C pins    //        pin             function       pup   pdown  out    state fast    //gpio_conf(GPIO_I2C_SCL,   GPIO_FUNC_I2C, true,false, false,  true, true);    //gpio_conf(GPIO_I2C_SDA,   GPIO_FUNC_I2C, true,false, false,  true, true);#endif#else    //        pin             function       pup   pdown  out    state fast<<<<<<< HEAD:lib/BlueSCSI_platform_RP2040/BlueSCSI_platform.cpp    //gpio_conf(GPIO_EXP_AUDIO, GPIO_FUNC_SPI, true,false, false,  true, true);=======    gpio_conf(GPIO_EXP_AUDIO, GPIO_FUNC_SPI, true,false, false,  true, true);    gpio_conf(GPIO_EXP_SPARE, GPIO_FUNC_SIO, true,false, false,  true, false);>>>>>>> 299656a1 (Support for platform eject buttons.):lib/ZuluSCSI_platform_RP2040/ZuluSCSI_platform.cpp    // configuration of corresponding SPI unit occurs in audio_setup()#endif}static bool read_initiator_dip_switch(){    /* Revision 2022d hardware has problems reading initiator DIP switch setting.     * The 74LVT245 hold current is keeping the GPIO_ACK state too strongly.     * Detect this condition by toggling the pin up and down and seeing if it sticks.     */    // Strong output high, then pulldown    //        pin             function       pup   pdown   out    state  fast    //gpio_conf(DIP_INITIATOR,  GPIO_FUNC_SIO, false, false, true,  true,  false);    //gpio_conf(DIP_INITIATOR,  GPIO_FUNC_SIO, false, true,  false, true,  false);    //delay(1);    //bool initiator_state1 = gpio_get(DIP_INITIATOR);    // Strong output low, then pullup    //        pin             function       pup   pdown   out    state  fast    //gpio_conf(DIP_INITIATOR,  GPIO_FUNC_SIO, false, false, true,  false, false);    //gpio_conf(DIP_INITIATOR,  GPIO_FUNC_SIO, true,  false, false, false, false);    //delay(1);    //bool initiator_state2 = gpio_get(DIP_INITIATOR);    //if (initiator_state1 == initiator_state2)    //{        // Ok, was able to read the state directly        //return !initiator_state1;    //}    // Enable OUT_BSY for a short time.    // If in target mode, this will force GPIO_ACK high.    gpio_put(SCSI_OUT_BSY, 0);    delay_100ns();    gpio_put(SCSI_OUT_BSY, 1);    //return !gpio_get(DIP_INITIATOR);    return false;}// late_init() only runs in main application, SCSI not needed in bootloadervoid platform_late_init(){    if (read_initiator_dip_switch())    {        g_scsi_initiator = true;        log("SCSI initiator mode selected by DIP switch, expecting SCSI disks on the bus");    }    else    {        g_scsi_initiator = false;        // log("SCSI target/disk mode selected by DIP switch, acting as a SCSI disk");    }    /* Initialize SCSI pins to required modes.     * SCSI pins should be inactive / input at this point.     */    // SCSI data bus direction is switched by DATA_DIR signal.    // Pullups make sure that no glitches occur when switching direction.    //        pin             function       pup   pdown  out    state fast    gpio_conf(SCSI_IO_DB0,    GPIO_FUNC_SIO, true, false, false, true, true);    gpio_conf(SCSI_IO_DB1,    GPIO_FUNC_SIO, true, false, false, true, true);    gpio_conf(SCSI_IO_DB2,    GPIO_FUNC_SIO, true, false, false, true, true);    gpio_conf(SCSI_IO_DB3,    GPIO_FUNC_SIO, true, false, false, true, true);    gpio_conf(SCSI_IO_DB4,    GPIO_FUNC_SIO, true, false, false, true, true);    gpio_conf(SCSI_IO_DB5,    GPIO_FUNC_SIO, true, false, false, true, true);    gpio_conf(SCSI_IO_DB6,    GPIO_FUNC_SIO, true, false, false, true, true);    gpio_conf(SCSI_IO_DB7,    GPIO_FUNC_SIO, true, false, false, true, true);    gpio_conf(SCSI_IO_DBP,    GPIO_FUNC_SIO, true, false, false, true, true);    if (!g_scsi_initiator)    {        // Act as SCSI device / target        // SCSI control outputs        //        pin             function       pup   pdown  out    state fast        gpio_conf(SCSI_OUT_IO,    GPIO_FUNC_SIO, false,false, true,  true, true);        gpio_conf(SCSI_OUT_MSG,   GPIO_FUNC_SIO, false,false, true,  true, true);        // REQ pin is switched between PIO and SIO, pull-up makes sure no glitches        gpio_conf(SCSI_OUT_REQ,   GPIO_FUNC_SIO, true ,false, true,  true, true);        // Shared pins are changed to input / output depending on communication phase        gpio_conf(SCSI_IN_SEL,    GPIO_FUNC_SIO, true, false, false, true, true);        if (SCSI_OUT_CD != SCSI_IN_SEL)        {            gpio_conf(SCSI_OUT_CD,    GPIO_FUNC_SIO, false,false, true,  true, true);        }        gpio_conf(SCSI_IN_BSY,    GPIO_FUNC_SIO, true, false, false, true, true);        if (SCSI_OUT_MSG != SCSI_IN_BSY)        {            gpio_conf(SCSI_OUT_MSG,    GPIO_FUNC_SIO, false,false, true,  true, true);        }        // SCSI control inputs        //        pin             function       pup   pdown  out    state fast        gpio_conf(SCSI_IN_ACK,    GPIO_FUNC_SIO, false, false, false, true, false);        gpio_conf(SCSI_IN_ATN,    GPIO_FUNC_SIO, false, false, false, true, false);        gpio_conf(SCSI_IN_RST,    GPIO_FUNC_SIO, true, false, false, true, false);#ifdef ENABLE_AUDIO_OUTPUT        // one-time control setup for DMA channels and second core        audio_setup();#endif    }    else    {        // Act as SCSI initiator        //        pin             function       pup   pdown  out    state fast        gpio_conf(SCSI_IN_IO,     GPIO_FUNC_SIO, true ,false, false, true, false);        gpio_conf(SCSI_IN_MSG,    GPIO_FUNC_SIO, true ,false, false, true, false);        gpio_conf(SCSI_IN_CD,     GPIO_FUNC_SIO, true ,false, false, true, false);        gpio_conf(SCSI_IN_REQ,    GPIO_FUNC_SIO, true ,false, false, true, false);        gpio_conf(SCSI_IN_BSY,    GPIO_FUNC_SIO, true, false, false, true, false);        gpio_conf(SCSI_IN_RST,    GPIO_FUNC_SIO, true, false, false, true, false);        gpio_conf(SCSI_OUT_SEL,   GPIO_FUNC_SIO, false,false, true,  true, true);        gpio_conf(SCSI_OUT_ACK,   GPIO_FUNC_SIO, false,false, true,  true, true);        gpio_conf(SCSI_OUT_ATN,   GPIO_FUNC_SIO, false,false, true,  true, true);    }}bool platform_is_initiator_mode_enabled(){    return g_scsi_initiator;}void platform_disable_led(void){       //        pin      function       pup   pdown  out    state fast    gpio_conf(LED_PIN, GPIO_FUNC_SIO, false,false, false, false, false);    log("Disabling status LED");}/*****************************************//* Crash handlers                        *//*****************************************/extern SdFs SD;extern uint32_t __StackTop;void platform_emergency_log_save(){    platform_set_sd_callback(NULL, NULL);    SD.begin(SD_CONFIG_CRASH);    FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);    if (!crashfile.isOpen())    {        // Try to reinitialize        int max_retry = 10;        while (max_retry-- > 0 && !SD.begin(SD_CONFIG_CRASH));        crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);    }    uint32_t startpos = 0;    crashfile.write(log_get_buffer(&startpos));    crashfile.write(log_get_buffer(&startpos));    crashfile.flush();    crashfile.close();}void mbed_error_hook(const mbed_error_ctx * error_context){    log("--------------");    log("CRASH!");    log("Platform: ", g_platform_name);    log("FW Version: ", g_log_firmwareversion);    log("error_status: ", (uint32_t)error_context->error_status);    log("error_address: ", error_context->error_address);    log("error_value: ", error_context->error_value);    log("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));    log("scsiDev.phase: ", (int)scsiDev.phase);    scsi_accel_log_state();    uint32_t *p = (uint32_t*)((uint32_t)error_context->thread_current_sp & ~3);    for (int i = 0; i < 8; i++)    {        if (p == &__StackTop) break; // End of stack        log("STACK ", (uint32_t)p, ":    ", p[0], " ", p[1], " ", p[2], " ", p[3]);        p += 4;    }    platform_emergency_log_save();    while (1)    {        // Flash the crash address on the LED        // Short pulse means 0, long pulse means 1        int base_delay = 1000;        for (int i = 31; i >= 0; i--)        {            LED_OFF();            for (int j = 0; j < base_delay; j++) delay_ns(100000);            int delay = (error_context->error_address & (1 << i)) ? (3 * base_delay) : base_delay;            LED_ON();            for (int j = 0; j < delay; j++) delay_ns(100000);            LED_OFF();        }        for (int j = 0; j < base_delay * 10; j++) delay_ns(100000);    }}/*****************************************//* Debug logging and watchdog            *//*****************************************/// Send log data to USB UART if USB is connected.// Data is retrieved from the shared log ring buffer and// this function sends as much as fits in USB CDC buffer.//// This is normally called by platform_reset_watchdog() in// the normal polling loop. If code hangs, the watchdog_callback()// also starts calling this after 2 seconds.// This ensures that log messages get passed even if code hangs,// but does not unnecessarily delay normal execution.static void usb_log_poll(){    static uint32_t logpos = 0;    if (_SerialUSB.ready())    {        // Retrieve pointer to log start and determine number of bytes available.        uint32_t available = 0;        const char *data = log_get_buffer(&logpos, &available);        // Limit to CDC packet size        uint32_t len = available;        if (len == 0) return;        if (len > CDC_MAX_PACKET_SIZE) len = CDC_MAX_PACKET_SIZE;        // Update log position by the actual number of bytes sent        // If USB CDC buffer is full, this may be 0        uint32_t actual = 0;        _SerialUSB.send_nb((uint8_t*)data, len, &actual);        logpos -= available - actual;    }}// Use ADC to implement supply voltage monitoring for the +3.0V rail.// This works by sampling the temperature sensor channel, which has// a voltage of 0.7 V, allowing to calculate the VDD voltage.static bool adc_initial_log = true;static void adc_poll(){#if PLATFORM_VDD_WARNING_LIMIT_mV > 0    static bool initialized = false;    static int lowest_vdd_seen = PLATFORM_VDD_WARNING_LIMIT_mV;    if (!initialized)    {        adc_init();        adc_set_temp_sensor_enabled(true);        adc_set_clkdiv(65535); // Lowest samplerate, about 2 kHz        adc_select_input(4);        adc_fifo_setup(true, false, 0, false, false);        adc_run(true);        initialized = true;    }#ifdef ENABLE_AUDIO_OUTPUT    /*    * If ADC sample reads are done, either via direct reading, FIFO, or DMA,    * at the same time a SPI DMA write begins, it appears that the first    * 16-bit word of the DMA data is lost. This causes the bitstream to glitch    * and audio to 'pop' noticably. For now, just disable ADC reads when audio    * is playing.    */   if (audio_is_active()) return;#endif    int adc_value_max = 0;    while (!adc_fifo_is_empty())    {        int adc_value = adc_fifo_get();        if (adc_value > adc_value_max) adc_value_max = adc_value;    }    // adc_value = 700mV * 4096 / Vdd    // => Vdd = 700mV * 4096 / adc_value    // To avoid wasting time on division, compare against    // limit directly.    const int limit = (700 * 4096) / PLATFORM_VDD_WARNING_LIMIT_mV;    if (adc_value_max > limit)    {        // Warn once, and then again if we detect even a lower drop.        int vdd_mV = (700 * 4096) / adc_value_max;        if (vdd_mV < lowest_vdd_seen)        {            log("WARNING: Detected voltage drop to ", (vdd_mV / 1000.0), "V - See: https://www.github.com/BlueSCSI/BlueSCSI-v2/wiki/Low-Voltage");            lowest_vdd_seen = vdd_mV - 50; // Small hysteresis to avoid excessive warnings        }    }    else if (adc_initial_log && adc_value_max != 0)    {        adc_initial_log = false;        int vdd_mV = (700 * 4096) / adc_value_max;        log("INFO: Pico Voltage: ", (vdd_mV / 1000.0), "V.");    }#endif}// This function is called for every log message.void platform_log(const char *s){    if (g_uart_initialized)    {        uart_puts(uart0, s);    }}static int g_watchdog_timeout;static bool g_watchdog_initialized;static void watchdog_callback(unsigned alarm_num){    g_watchdog_timeout -= 1000;    if (g_watchdog_timeout < WATCHDOG_CRASH_TIMEOUT - 1000)    {        // Been stuck for at least a second, start dumping USB log        usb_log_poll();    }    if (g_watchdog_timeout <= WATCHDOG_CRASH_TIMEOUT - WATCHDOG_BUS_RESET_TIMEOUT)    {        if (!scsiDev.resetFlag || !g_scsiHostPhyReset)        {            log("--------------");            log("WATCHDOG TIMEOUT, attempting bus reset");            log("Platform: ", g_platform_name);            log("FW Version: ", g_log_firmwareversion);            log("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in);            log("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));            log("scsiDev.phase: ", (int)scsiDev.phase);            scsi_accel_log_state();            uint32_t *p = (uint32_t*)__get_PSP();            for (int i = 0; i < 8; i++)            {                if (p == &__StackTop) break; // End of stack                log("STACK ", (uint32_t)p, ":    ", p[0], " ", p[1], " ", p[2], " ", p[3]);                p += 4;            }            scsiDev.resetFlag = 1;            g_scsiHostPhyReset = true;        }        if (g_watchdog_timeout <= 0)        {            log("--------------");            log("WATCHDOG TIMEOUT!");            log("Platform: ", g_platform_name);            log("FW Version: ", g_log_firmwareversion);            log("GPIO states: out ", sio_hw->gpio_out, " oe ", sio_hw->gpio_oe, " in ", sio_hw->gpio_in);            log("scsiDev.cdb: ", bytearray(scsiDev.cdb, 12));            log("scsiDev.phase: ", (int)scsiDev.phase);            uint32_t *p = (uint32_t*)__get_PSP();            for (int i = 0; i < 8; i++)            {                if (p == &__StackTop) break; // End of stack                log("STACK ", (uint32_t)p, ":    ", p[0], " ", p[1], " ", p[2], " ", p[3]);                p += 4;            }            usb_log_poll();            platform_emergency_log_save();            platform_boot_to_main_firmware();        }    }    hardware_alarm_set_target(3, delayed_by_ms(get_absolute_time(), 1000));}// This function can be used to periodically reset watchdog timer for crash handling.// It can also be left empty if the platform does not use a watchdog timer.void platform_reset_watchdog(){    g_watchdog_timeout = WATCHDOG_CRASH_TIMEOUT;    if (!g_watchdog_initialized)    {        hardware_alarm_claim(3);        hardware_alarm_set_callback(3, &watchdog_callback);        hardware_alarm_set_target(3, delayed_by_ms(get_absolute_time(), 1000));        g_watchdog_initialized = true;    }    // USB log is polled here also to make sure any log messages in fault states    // get passed to USB.    usb_log_poll();}// Poll function that is called every few milliseconds.// Can be left empty or used for platform-specific processing.void platform_poll(){    usb_log_poll();    adc_poll();    #ifdef ENABLE_AUDIO_OUTPUT    audio_poll();#endif}uint8_t platform_get_buttons(){    uint8_t buttons = 0;#if defined(ENABLE_AUDIO_OUTPUT)    // pulled to VCC via resistor, sinking when pressed    if (!gpio_get(GPIO_EXP_SPARE)) buttons |= 1;#elif defined(GPIO_I2C_SDA)    // SDA = button 1, SCL = button 2    if (!gpio_get(GPIO_I2C_SDA)) buttons |= 1;    if (!gpio_get(GPIO_I2C_SCL)) buttons |= 2;#endif    // Simple debouncing logic: handle button releases after 100 ms delay.    static uint32_t debounce;    static uint8_t buttons_debounced = 0;    if (buttons != 0)    {        buttons_debounced = buttons;        debounce = millis();    }    else if ((uint32_t)(millis() - debounce) > 100)    {        buttons_debounced = 0;    }    return buttons_debounced;}/*****************************************//* Flash reprogramming from bootloader   *//*****************************************/#ifdef PLATFORM_BOOTLOADER_SIZEextern uint32_t __real_vectors_start;extern uint32_t __StackTop;static volatile void *g_bootloader_exit_req;__attribute__((section(".time_critical.platform_rewrite_flash_page")))bool platform_rewrite_flash_page(uint32_t offset, uint8_t buffer[PLATFORM_FLASH_PAGE_SIZE]){    if (offset == PLATFORM_BOOTLOADER_SIZE)    {        if (buffer[3] != 0x20 || buffer[7] != 0x10)        {            log("Invalid firmware file, starts with: ", bytearray(buffer, 16));            return false;        }    }    if (NVIC_GetEnableIRQ(USBCTRL_IRQn))    {        log("Disabling USB during firmware flashing");        NVIC_DisableIRQ(USBCTRL_IRQn);        usb_hw->main_ctrl = 0;    }    debuglog("Writing flash at offset ", offset, " data ", bytearray(buffer, 4));    assert(offset % PLATFORM_FLASH_PAGE_SIZE == 0);    assert(offset >= PLATFORM_BOOTLOADER_SIZE);    // Avoid any mbed timer interrupts triggering during the flashing.    __disable_irq();    // For some reason any code executed after flashing crashes    // unless we disable the XIP cache.    // Not sure why this happens, as flash_range_program() is flushing    // the cache correctly.    // The cache is now enabled from bootloader start until it starts    // flashing, and again after reset to main firmware.    xip_ctrl_hw->ctrl = 0;    flash_range_erase(offset, PLATFORM_FLASH_PAGE_SIZE);    flash_range_program(offset, buffer, PLATFORM_FLASH_PAGE_SIZE);    uint32_t *buf32 = (uint32_t*)buffer;    uint32_t num_words = PLATFORM_FLASH_PAGE_SIZE / 4;    for (int i = 0; i < num_words; i++)    {        uint32_t expected = buf32[i];        uint32_t actual = *(volatile uint32_t*)(XIP_NOCACHE_BASE + offset + i * 4);        if (actual != expected)        {            log("Flash verify failed at offset ", offset + i * 4, " got ", actual, " expected ", expected);            __enable_irq();            return false;        }    }    __enable_irq();    return true;}void platform_boot_to_main_firmware(){    // To ensure that the system state is reset properly, we perform    // a SYSRESETREQ and jump straight from the reset vector to main application.    g_bootloader_exit_req = &g_bootloader_exit_req;    SCB->AIRCR = 0x05FA0004;    while(1);}void btldr_reset_handler(){    uint32_t* application_base = &__real_vectors_start;    if (g_bootloader_exit_req == &g_bootloader_exit_req)    {        // Boot to main application        application_base = (uint32_t*)(XIP_BASE + PLATFORM_BOOTLOADER_SIZE);    }    SCB->VTOR = (uint32_t)application_base;    __asm__(        "msr msp, %0\n\t"        "bx %1" : : "r" (application_base[0]),                    "r" (application_base[1]) : "memory");}// Replace the reset handler when building the bootloader// The rp2040_btldr.ld places real vector table at an offset.__attribute__((section(".btldr_vectors")))const void * btldr_vectors[2] = {&__StackTop, (void*)&btldr_reset_handler};#endif/************************************//* ROM drive in extra flash space   *//************************************/#ifdef PLATFORM_HAS_ROM_DRIVE// Reserve up to 352 kB for firmware.#define ROMDRIVE_OFFSET (352 * 1024)uint32_t platform_get_romdrive_maxsize(){    if (g_flash_chip_size >= ROMDRIVE_OFFSET)    {        return g_flash_chip_size - ROMDRIVE_OFFSET;    }    else    {        // Failed to read flash chip size, default to 2 MB        return 2048 * 1024 - ROMDRIVE_OFFSET;    }}bool platform_read_romdrive(uint8_t *dest, uint32_t start, uint32_t count){    xip_ctrl_hw->stream_ctr = 0;    while (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))    {        (void) xip_ctrl_hw->stream_fifo;    }    xip_ctrl_hw->stream_addr = start + ROMDRIVE_OFFSET;    xip_ctrl_hw->stream_ctr = count / 4;    // Transfer happens in multiples of 4 bytes    assert(start < platform_get_romdrive_maxsize());    assert((count & 3) == 0);    assert((((uint32_t)dest) & 3) == 0);    uint32_t *dest32 = (uint32_t*)dest;    uint32_t words_remain = count / 4;    while (words_remain > 0)    {        if (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))        {            *dest32++ = xip_ctrl_hw->stream_fifo;            words_remain--;        }    }    return true;}bool platform_write_romdrive(const uint8_t *data, uint32_t start, uint32_t count){    assert(start < platform_get_romdrive_maxsize());    assert((count % PLATFORM_ROMDRIVE_PAGE_SIZE) == 0);    __disable_irq();    flash_range_erase(start + ROMDRIVE_OFFSET, count);    flash_range_program(start + ROMDRIVE_OFFSET, data, count);    __enable_irq();    return true;}#endif/**********************************************//* Mapping from data bytes to GPIO BOP values *//**********************************************//* A lookup table is the fastest way to calculate parity and convert the IO pin mapping for data bus. * For RP2040 we expect that the bits are consecutive and in order. * The PIO-based parity scheme also requires that the lookup table is aligned to 512-byte increment. * The parity table is placed into SRAM4 area to reduce bus contention. */#define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1)#define X(n) (\    ((n & 0x01) ? 0 : (1 << SCSI_IO_DB0)) | \    ((n & 0x02) ? 0 : (1 << SCSI_IO_DB1)) | \    ((n & 0x04) ? 0 : (1 << SCSI_IO_DB2)) | \    ((n & 0x08) ? 0 : (1 << SCSI_IO_DB3)) | \    ((n & 0x10) ? 0 : (1 << SCSI_IO_DB4)) | \    ((n & 0x20) ? 0 : (1 << SCSI_IO_DB5)) | \    ((n & 0x40) ? 0 : (1 << SCSI_IO_DB6)) | \    ((n & 0x80) ? 0 : (1 << SCSI_IO_DB7)) | \    (PARITY(n)  ? 0 : (1 << SCSI_IO_DBP)) \)const uint16_t g_scsi_parity_lookup[256] __attribute__((aligned(512), section(".scratch_x.parity"))) ={    X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f),    X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f),    X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f),    X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f),    X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f),    X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f),    X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f),    X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f),    X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f),    X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f),    X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf),    X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf),    X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf),    X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf),    X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef),    X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff)};#undef X/* Similarly, another lookup table is used to verify parity of received data. * This table is indexed by the 8 data bits + 1 parity bit from SCSI bus (active low) * Each word contains the data byte (inverted to active-high) and a bit indicating whether parity is valid. */#define X(n) (\    ((n & 0xFF) ^ 0xFF) | \    (((PARITY(n & 0xFF) ^ (n >> 8)) & 1) << 8) \)const uint16_t g_scsi_parity_check_lookup[512] __attribute__((aligned(1024), section(".scratch_x.parity"))) ={    X(0x000), X(0x001), X(0x002), X(0x003), X(0x004), X(0x005), X(0x006), X(0x007), X(0x008), X(0x009), X(0x00a), X(0x00b), X(0x00c), X(0x00d), X(0x00e), X(0x00f),    X(0x010), X(0x011), X(0x012), X(0x013), X(0x014), X(0x015), X(0x016), X(0x017), X(0x018), X(0x019), X(0x01a), X(0x01b), X(0x01c), X(0x01d), X(0x01e), X(0x01f),    X(0x020), X(0x021), X(0x022), X(0x023), X(0x024), X(0x025), X(0x026), X(0x027), X(0x028), X(0x029), X(0x02a), X(0x02b), X(0x02c), X(0x02d), X(0x02e), X(0x02f),    X(0x030), X(0x031), X(0x032), X(0x033), X(0x034), X(0x035), X(0x036), X(0x037), X(0x038), X(0x039), X(0x03a), X(0x03b), X(0x03c), X(0x03d), X(0x03e), X(0x03f),    X(0x040), X(0x041), X(0x042), X(0x043), X(0x044), X(0x045), X(0x046), X(0x047), X(0x048), X(0x049), X(0x04a), X(0x04b), X(0x04c), X(0x04d), X(0x04e), X(0x04f),    X(0x050), X(0x051), X(0x052), X(0x053), X(0x054), X(0x055), X(0x056), X(0x057), X(0x058), X(0x059), X(0x05a), X(0x05b), X(0x05c), X(0x05d), X(0x05e), X(0x05f),    X(0x060), X(0x061), X(0x062), X(0x063), X(0x064), X(0x065), X(0x066), X(0x067), X(0x068), X(0x069), X(0x06a), X(0x06b), X(0x06c), X(0x06d), X(0x06e), X(0x06f),    X(0x070), X(0x071), X(0x072), X(0x073), X(0x074), X(0x075), X(0x076), X(0x077), X(0x078), X(0x079), X(0x07a), X(0x07b), X(0x07c), X(0x07d), X(0x07e), X(0x07f),    X(0x080), X(0x081), X(0x082), X(0x083), X(0x084), X(0x085), X(0x086), X(0x087), X(0x088), X(0x089), X(0x08a), X(0x08b), X(0x08c), X(0x08d), X(0x08e), X(0x08f),    X(0x090), X(0x091), X(0x092), X(0x093), X(0x094), X(0x095), X(0x096), X(0x097), X(0x098), X(0x099), X(0x09a), X(0x09b), X(0x09c), X(0x09d), X(0x09e), X(0x09f),    X(0x0a0), X(0x0a1), X(0x0a2), X(0x0a3), X(0x0a4), X(0x0a5), X(0x0a6), X(0x0a7), X(0x0a8), X(0x0a9), X(0x0aa), X(0x0ab), X(0x0ac), X(0x0ad), X(0x0ae), X(0x0af),    X(0x0b0), X(0x0b1), X(0x0b2), X(0x0b3), X(0x0b4), X(0x0b5), X(0x0b6), X(0x0b7), X(0x0b8), X(0x0b9), X(0x0ba), X(0x0bb), X(0x0bc), X(0x0bd), X(0x0be), X(0x0bf),    X(0x0c0), X(0x0c1), X(0x0c2), X(0x0c3), X(0x0c4), X(0x0c5), X(0x0c6), X(0x0c7), X(0x0c8), X(0x0c9), X(0x0ca), X(0x0cb), X(0x0cc), X(0x0cd), X(0x0ce), X(0x0cf),    X(0x0d0), X(0x0d1), X(0x0d2), X(0x0d3), X(0x0d4), X(0x0d5), X(0x0d6), X(0x0d7), X(0x0d8), X(0x0d9), X(0x0da), X(0x0db), X(0x0dc), X(0x0dd), X(0x0de), X(0x0df),    X(0x0e0), X(0x0e1), X(0x0e2), X(0x0e3), X(0x0e4), X(0x0e5), X(0x0e6), X(0x0e7), X(0x0e8), X(0x0e9), X(0x0ea), X(0x0eb), X(0x0ec), X(0x0ed), X(0x0ee), X(0x0ef),    X(0x0f0), X(0x0f1), X(0x0f2), X(0x0f3), X(0x0f4), X(0x0f5), X(0x0f6), X(0x0f7), X(0x0f8), X(0x0f9), X(0x0fa), X(0x0fb), X(0x0fc), X(0x0fd), X(0x0fe), X(0x0ff),    X(0x100), X(0x101), X(0x102), X(0x103), X(0x104), X(0x105), X(0x106), X(0x107), X(0x108), X(0x109), X(0x10a), X(0x10b), X(0x10c), X(0x10d), X(0x10e), X(0x10f),    X(0x110), X(0x111), X(0x112), X(0x113), X(0x114), X(0x115), X(0x116), X(0x117), X(0x118), X(0x119), X(0x11a), X(0x11b), X(0x11c), X(0x11d), X(0x11e), X(0x11f),    X(0x120), X(0x121), X(0x122), X(0x123), X(0x124), X(0x125), X(0x126), X(0x127), X(0x128), X(0x129), X(0x12a), X(0x12b), X(0x12c), X(0x12d), X(0x12e), X(0x12f),    X(0x130), X(0x131), X(0x132), X(0x133), X(0x134), X(0x135), X(0x136), X(0x137), X(0x138), X(0x139), X(0x13a), X(0x13b), X(0x13c), X(0x13d), X(0x13e), X(0x13f),    X(0x140), X(0x141), X(0x142), X(0x143), X(0x144), X(0x145), X(0x146), X(0x147), X(0x148), X(0x149), X(0x14a), X(0x14b), X(0x14c), X(0x14d), X(0x14e), X(0x14f),    X(0x150), X(0x151), X(0x152), X(0x153), X(0x154), X(0x155), X(0x156), X(0x157), X(0x158), X(0x159), X(0x15a), X(0x15b), X(0x15c), X(0x15d), X(0x15e), X(0x15f),    X(0x160), X(0x161), X(0x162), X(0x163), X(0x164), X(0x165), X(0x166), X(0x167), X(0x168), X(0x169), X(0x16a), X(0x16b), X(0x16c), X(0x16d), X(0x16e), X(0x16f),    X(0x170), X(0x171), X(0x172), X(0x173), X(0x174), X(0x175), X(0x176), X(0x177), X(0x178), X(0x179), X(0x17a), X(0x17b), X(0x17c), X(0x17d), X(0x17e), X(0x17f),    X(0x180), X(0x181), X(0x182), X(0x183), X(0x184), X(0x185), X(0x186), X(0x187), X(0x188), X(0x189), X(0x18a), X(0x18b), X(0x18c), X(0x18d), X(0x18e), X(0x18f),    X(0x190), X(0x191), X(0x192), X(0x193), X(0x194), X(0x195), X(0x196), X(0x197), X(0x198), X(0x199), X(0x19a), X(0x19b), X(0x19c), X(0x19d), X(0x19e), X(0x19f),    X(0x1a0), X(0x1a1), X(0x1a2), X(0x1a3), X(0x1a4), X(0x1a5), X(0x1a6), X(0x1a7), X(0x1a8), X(0x1a9), X(0x1aa), X(0x1ab), X(0x1ac), X(0x1ad), X(0x1ae), X(0x1af),    X(0x1b0), X(0x1b1), X(0x1b2), X(0x1b3), X(0x1b4), X(0x1b5), X(0x1b6), X(0x1b7), X(0x1b8), X(0x1b9), X(0x1ba), X(0x1bb), X(0x1bc), X(0x1bd), X(0x1be), X(0x1bf),    X(0x1c0), X(0x1c1), X(0x1c2), X(0x1c3), X(0x1c4), X(0x1c5), X(0x1c6), X(0x1c7), X(0x1c8), X(0x1c9), X(0x1ca), X(0x1cb), X(0x1cc), X(0x1cd), X(0x1ce), X(0x1cf),    X(0x1d0), X(0x1d1), X(0x1d2), X(0x1d3), X(0x1d4), X(0x1d5), X(0x1d6), X(0x1d7), X(0x1d8), X(0x1d9), X(0x1da), X(0x1db), X(0x1dc), X(0x1dd), X(0x1de), X(0x1df),    X(0x1e0), X(0x1e1), X(0x1e2), X(0x1e3), X(0x1e4), X(0x1e5), X(0x1e6), X(0x1e7), X(0x1e8), X(0x1e9), X(0x1ea), X(0x1eb), X(0x1ec), X(0x1ed), X(0x1ee), X(0x1ef),    X(0x1f0), X(0x1f1), X(0x1f2), X(0x1f3), X(0x1f4), X(0x1f5), X(0x1f6), X(0x1f7), X(0x1f8), X(0x1f9), X(0x1fa), X(0x1fb), X(0x1fc), X(0x1fd), X(0x1fe), X(0x1ff),};#undef X} /* extern "C" *//* Logging from mbed */static class LogTarget: public mbed::FileHandle {public:    virtual ssize_t read(void *buffer, size_t size) { return 0; }    virtual ssize_t write(const void *buffer, size_t size)    {        // A bit inefficient but mbed seems to write() one character        // at a time anyways.        for (int i = 0; i < size; i++)        {            char buf[2] = {((const char*)buffer)[i], 0};            log_raw(buf);        }        return size;    }    virtual off_t seek(off_t offset, int whence = SEEK_SET) { return offset; }    virtual int close() { return 0; }    virtual off_t size() { return 0; }} g_LogTarget;mbed::FileHandle *mbed::mbed_override_console(int fd){    return &g_LogTarget;}
 |