AzulSCSI_platform.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754
  1. #include "AzulSCSI_platform.h"
  2. #include "gd32f20x_spi.h"
  3. #include "gd32f20x_sdio.h"
  4. #include "gd32f20x_dma.h"
  5. #include "AzulSCSI_log.h"
  6. #include "AzulSCSI_config.h"
  7. #include <SdFat.h>
  8. extern "C" {
  9. const char *g_azplatform_name = PLATFORM_NAME;
  10. static volatile uint32_t g_millisecond_counter;
  11. static volatile uint32_t g_watchdog_timeout;
  12. static uint32_t g_ns_to_cycles; // Q0.32 fixed point format
  13. static void watchdog_handler(uint32_t *sp);
  14. unsigned long millis()
  15. {
  16. return g_millisecond_counter;
  17. }
  18. void delay(unsigned long ms)
  19. {
  20. uint32_t start = g_millisecond_counter;
  21. while ((uint32_t)(g_millisecond_counter - start) < ms);
  22. }
  23. void delay_ns(unsigned long ns)
  24. {
  25. uint32_t CNT_start = DWT->CYCCNT;
  26. if (ns <= 100) return; // Approximate call overhead
  27. ns -= 100;
  28. uint32_t cycles = ((uint64_t)ns * g_ns_to_cycles) >> 32;
  29. while ((uint32_t)(DWT->CYCCNT - CNT_start) < cycles);
  30. }
  31. void SysTick_Handler_inner(uint32_t *sp)
  32. {
  33. g_millisecond_counter++;
  34. if (g_watchdog_timeout > 0)
  35. {
  36. g_watchdog_timeout--;
  37. if (g_watchdog_timeout == 0)
  38. {
  39. watchdog_handler(sp);
  40. }
  41. }
  42. }
  43. __attribute__((interrupt, naked))
  44. void SysTick_Handler(void)
  45. {
  46. // Take note of stack pointer so that we can print debug
  47. // info in watchdog handler.
  48. asm("mrs r0, msp\n"
  49. "b SysTick_Handler_inner": : : "r0");
  50. }
  51. // Writes log data to the PB3 SWO pin
  52. void azplatform_log(const char *s)
  53. {
  54. while (*s)
  55. {
  56. // Write to SWO pin
  57. while (ITM->PORT[0].u32 == 0);
  58. ITM->PORT[0].u8 = *s++;
  59. }
  60. }
  61. // Initialize SPI and GPIO configuration
  62. // Clock has already been initialized by system_gd32f20x.c
  63. void azplatform_init()
  64. {
  65. SystemCoreClockUpdate();
  66. // Enable SysTick to drive millis()
  67. g_millisecond_counter = 0;
  68. SysTick_Config(SystemCoreClock / 1000U);
  69. NVIC_SetPriority(SysTick_IRQn, 0x00U);
  70. // Enable DWT counter to drive delay_ns()
  71. g_ns_to_cycles = ((uint64_t)SystemCoreClock << 32) / 1000000000;
  72. CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
  73. DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;
  74. // Enable debug output on SWO pin
  75. DBG_CTL |= DBG_CTL_TRACE_IOEN;
  76. CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
  77. TPI->ACPR = SystemCoreClock / 2000000 - 1; // 2 Mbps baudrate for SWO
  78. TPI->SPPR = 2;
  79. TPI->FFCR = 0x100; // TPIU packet framing disabled
  80. // DWT->CTRL = (1 << DWT_CTRL_CYCTAP_Pos)
  81. // | (15 << DWT_CTRL_POSTPRESET_Pos)
  82. // | (1 << DWT_CTRL_PCSAMPLENA_Pos)
  83. // | (3 << DWT_CTRL_SYNCTAP_Pos)
  84. // | (1 << DWT_CTRL_CYCCNTENA_Pos);
  85. ITM->LAR = 0xC5ACCE55;
  86. ITM->TCR = (1 << ITM_TCR_DWTENA_Pos)
  87. | (1 << ITM_TCR_SYNCENA_Pos)
  88. | (1 << ITM_TCR_ITMENA_Pos);
  89. ITM->TER = 0xFFFFFFFF; // Enable all stimulus ports
  90. // Enable needed clocks for GPIO
  91. rcu_periph_clock_enable(RCU_GPIOA);
  92. rcu_periph_clock_enable(RCU_GPIOB);
  93. rcu_periph_clock_enable(RCU_GPIOC);
  94. rcu_periph_clock_enable(RCU_GPIOD);
  95. rcu_periph_clock_enable(RCU_GPIOE);
  96. // Switch to SWD debug port (disable JTAG) to release PB4 as GPIO
  97. gpio_pin_remap_config(GPIO_SWJ_SWDPENABLE_REMAP, ENABLE);
  98. // SCSI pins.
  99. // Initialize open drain outputs to high.
  100. SCSI_RELEASE_OUTPUTS();
  101. gpio_init(SCSI_OUT_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_DATA_MASK | SCSI_OUT_REQ);
  102. gpio_init(SCSI_OUT_IO_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_IO_PIN);
  103. gpio_init(SCSI_OUT_CD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_CD_PIN);
  104. gpio_init(SCSI_OUT_SEL_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_SEL_PIN);
  105. gpio_init(SCSI_OUT_MSG_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_MSG_PIN);
  106. gpio_init(SCSI_OUT_RST_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_RST_PIN);
  107. gpio_init(SCSI_OUT_BSY_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_BSY_PIN);
  108. gpio_init(SCSI_IN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_IN_MASK);
  109. gpio_init(SCSI_ATN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ATN_PIN);
  110. gpio_init(SCSI_BSY_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_BSY_PIN);
  111. gpio_init(SCSI_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_SEL_PIN);
  112. gpio_init(SCSI_ACK_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ACK_PIN);
  113. gpio_init(SCSI_RST_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_RST_PIN);
  114. // Terminator enable
  115. gpio_bit_set(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
  116. gpio_init(SCSI_TERM_EN_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, SCSI_TERM_EN_PIN);
  117. #ifndef SD_USE_SDIO
  118. // SD card pins
  119. gpio_init(SD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SD_CS_PIN);
  120. gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_CLK_PIN);
  121. gpio_init(SD_PORT, GPIO_MODE_IPU, 0, SD_MISO_PIN);
  122. gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_MOSI_PIN);
  123. #else
  124. #error SDIO support not added yet
  125. #endif
  126. // DIP switches
  127. gpio_init(DIP_PORT, GPIO_MODE_IPD, 0, DIPSW1_PIN | DIPSW2_PIN | DIPSW3_PIN);
  128. // LED pins
  129. gpio_bit_set(LED_PORT, LED_PINS);
  130. gpio_init(LED_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, LED_PINS);
  131. // SWO trace pin on PB3
  132. gpio_init(GPIOB, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_3);
  133. if (gpio_input_bit_get(DIP_PORT, DIPSW3_PIN))
  134. {
  135. azlog("DIPSW3 is ON: Enabling SCSI termination");
  136. gpio_bit_reset(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
  137. }
  138. else
  139. {
  140. azlog("DIPSW3 is OFF: SCSI termination disabled");
  141. }
  142. if (gpio_input_bit_get(DIP_PORT, DIPSW2_PIN))
  143. {
  144. azlog("DIPSW2 is ON: enabling debug messages");
  145. g_azlog_debug = true;
  146. }
  147. else
  148. {
  149. g_azlog_debug = false;
  150. }
  151. }
  152. static void (*g_rst_callback)();
  153. void azplatform_set_rst_callback(void (*callback)())
  154. {
  155. g_rst_callback = callback;
  156. gpio_exti_source_select(SCSI_RST_EXTI_SOURCE_PORT, SCSI_RST_EXTI_SOURCE_PIN);
  157. exti_init(SCSI_RST_EXTI, EXTI_INTERRUPT, EXTI_TRIG_FALLING);
  158. NVIC_SetPriority(SCSI_RST_IRQn, 0x00U);
  159. NVIC_EnableIRQ(SCSI_RST_IRQn);
  160. }
  161. void SCSI_RST_IRQ (void)
  162. {
  163. if (exti_interrupt_flag_get(SCSI_RST_EXTI))
  164. {
  165. exti_interrupt_flag_clear(SCSI_RST_EXTI);
  166. if (g_rst_callback)
  167. {
  168. g_rst_callback();
  169. }
  170. }
  171. }
  172. /*****************************************/
  173. /* Crash handlers */
  174. /*****************************************/
  175. extern SdFs SD;
  176. void azplatform_emergency_log_save()
  177. {
  178. FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  179. if (!crashfile.isOpen())
  180. {
  181. // Try to reinitialize
  182. int max_retry = 10;
  183. while (max_retry-- > 0 && !SD.begin(SD_CONFIG));
  184. crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  185. }
  186. uint32_t startpos = 0;
  187. crashfile.write(azlog_get_buffer(&startpos));
  188. crashfile.write(azlog_get_buffer(&startpos));
  189. crashfile.flush();
  190. crashfile.close();
  191. }
  192. extern uint32_t _estack;
  193. __attribute__((noinline))
  194. void show_hardfault(uint32_t *sp)
  195. {
  196. uint32_t pc = sp[6];
  197. uint32_t lr = sp[5];
  198. uint32_t cfsr = SCB->CFSR;
  199. azlog("--------------");
  200. azlog("CRASH!");
  201. azlog("Platform: ", g_azplatform_name);
  202. azlog("FW Version: ", g_azlog_firmwareversion);
  203. azlog("CFSR: ", cfsr);
  204. azlog("SP: ", (uint32_t)sp);
  205. azlog("PC: ", pc);
  206. azlog("LR: ", lr);
  207. azlog("R0: ", sp[0]);
  208. azlog("R1: ", sp[1]);
  209. azlog("R2: ", sp[2]);
  210. azlog("R3: ", sp[3]);
  211. uint32_t *p = (uint32_t*)((uint32_t)sp & ~3);
  212. for (int i = 0; i < 8; i++)
  213. {
  214. if (p == &_estack) break; // End of stack
  215. azlog("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  216. p += 4;
  217. }
  218. azplatform_emergency_log_save();
  219. while (1)
  220. {
  221. // Flash the crash address on the LED
  222. // Short pulse means 0, long pulse means 1
  223. int base_delay = 1000;
  224. for (int i = 31; i >= 0; i--)
  225. {
  226. LED_OFF();
  227. for (int j = 0; j < base_delay; j++) delay_ns(100000);
  228. int delay = (pc & (1 << i)) ? (3 * base_delay) : base_delay;
  229. LED_ON();
  230. for (int j = 0; j < delay; j++) delay_ns(100000);
  231. LED_OFF();
  232. }
  233. for (int j = 0; j < base_delay * 10; j++) delay_ns(100000);
  234. }
  235. }
  236. __attribute__((naked, interrupt))
  237. void HardFault_Handler(void)
  238. {
  239. // Copies stack pointer into first argument
  240. asm("mrs r0, msp\n"
  241. "b show_hardfault": : : "r0");
  242. }
  243. __attribute__((naked, interrupt))
  244. void MemManage_Handler(void)
  245. {
  246. asm("mrs r0, msp\n"
  247. "b show_hardfault": : : "r0");
  248. }
  249. __attribute__((naked, interrupt))
  250. void BusFault_Handler(void)
  251. {
  252. asm("mrs r0, msp\n"
  253. "b show_hardfault": : : "r0");
  254. }
  255. __attribute__((naked, interrupt))
  256. void UsageFault_Handler(void)
  257. {
  258. asm("mrs r0, msp\n"
  259. "b show_hardfault": : : "r0");
  260. }
  261. } /* extern "C" */
  262. static void watchdog_handler(uint32_t *sp)
  263. {
  264. azlog("-------------- WATCHDOG TIMEOUT");
  265. show_hardfault(sp);
  266. }
  267. void azplatform_reset_watchdog(int timeout_ms)
  268. {
  269. // This uses a software watchdog based on systick timer interrupt.
  270. // It gives us opportunity to collect better debug info than the
  271. // full hardware reset that would be caused by hardware watchdog.
  272. g_watchdog_timeout = timeout_ms;
  273. }
  274. /*****************************************/
  275. /* Driver for GD32 SPI for SdFat library */
  276. /*****************************************/
  277. extern volatile bool g_busreset;
  278. #define SCSI_WAIT_ACTIVE(pin) \
  279. if (!SCSI_IN(pin)) { \
  280. if (!SCSI_IN(pin)) { \
  281. while(!SCSI_IN(pin) && !g_busreset); \
  282. } \
  283. }
  284. #define SCSI_WAIT_INACTIVE(pin) \
  285. if (SCSI_IN(pin)) { \
  286. if (SCSI_IN(pin)) { \
  287. while(SCSI_IN(pin) && !g_busreset); \
  288. } \
  289. }
  290. // Optimized ASM blocks for the SCSI communication subroutine
  291. // Take 8 bits from d and format them for writing
  292. // d is name of data operand, b is bit offset, x is unique label
  293. #define ASM_LOAD_DATA(d, b, x) \
  294. " load_data1_" x "_%=: \n" \
  295. " ubfx %[tmp1], %[" d "], #" b ", #8 \n" \
  296. " ldr %[tmp1], [%[byte_lookup], %[tmp1], lsl #2] \n"
  297. // Write data to SCSI port and set REQ high
  298. #define ASM_SEND_DATA(x) \
  299. " send_data" x "_%=: \n" \
  300. " str %[tmp1], [%[out_port_bop]] \n"
  301. // Wait for ACK to be high, set REQ low, wait ACK low
  302. #define ASM_HANDSHAKE(x) \
  303. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  304. " str %[tmp2], [%[req_pin_bb]] \n" \
  305. " cbnz %[tmp2], req_is_low_now" x "_%= \n" \
  306. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  307. " str %[tmp2], [%[req_pin_bb]] \n" \
  308. " cbnz %[tmp2], req_is_low_now" x "_%= \n" \
  309. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  310. " str %[tmp2], [%[req_pin_bb]] \n" \
  311. " cbnz %[tmp2], req_is_low_now" x "_%= \n" \
  312. " wait_ack_inactive" x "_%=: \n" \
  313. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  314. " str %[tmp2], [%[req_pin_bb]] \n" \
  315. " cbnz %[tmp2], req_is_low_now" x "_%= \n" \
  316. " b.n wait_ack_inactive" x "_%= \n" \
  317. " req_is_low_now" x "_%=: \n" \
  318. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  319. " cbz %[tmp2], over_ack_active" x "_%= \n" \
  320. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  321. " cbz %[tmp2], over_ack_active" x "_%= \n" \
  322. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  323. " cbz %[tmp2], over_ack_active" x "_%= \n" \
  324. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  325. " cbz %[tmp2], over_ack_active" x "_%= \n" \
  326. " wait_ack_active" x "_%=: \n" \
  327. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  328. " cbz %[tmp2], over_ack_active" x "_%= \n" \
  329. " b.n wait_ack_active" x "_%= \n" \
  330. " over_ack_active" x "_%=: \n" \
  331. // Send bytes to SCSI bus using the asynchronous handshake mechanism
  332. // Takes 4 bytes at a time for sending from buf.
  333. // Returns the next buffer pointer.
  334. static inline uint32_t *scsi_send_words_async(uint32_t *buf, uint32_t num_words)
  335. {
  336. volatile uint32_t *out_port_bop = (volatile uint32_t*)&GPIO_BOP(SCSI_OUT_PORT);
  337. const uint32_t *byte_lookup = g_scsi_out_byte_to_bop;
  338. uint32_t ack_pin_bb = PERIPH_BB_BASE + (((uint32_t)&GPIO_ISTAT(SCSI_ACK_PORT)) - APB1_BUS_BASE) * 32 + 12 * 4;
  339. uint32_t req_pin_bb = PERIPH_BB_BASE + (((uint32_t)out_port_bop) - APB1_BUS_BASE) * 32 + (9 + 16) * 4;
  340. register uint32_t tmp1 = 0;
  341. register uint32_t tmp2 = 0;
  342. register uint32_t data = 0;
  343. asm volatile (
  344. " ldr %[data], [%[buf]], #4 \n" \
  345. ASM_LOAD_DATA("data", "0", "first")
  346. "inner_loop_%=: \n" \
  347. ASM_SEND_DATA("0")
  348. ASM_LOAD_DATA("data", "8", "8")
  349. ASM_HANDSHAKE("0")
  350. ASM_SEND_DATA("8")
  351. ASM_LOAD_DATA("data", "16", "16")
  352. ASM_HANDSHAKE("8")
  353. ASM_SEND_DATA("16")
  354. ASM_LOAD_DATA("data", "24", "24")
  355. ASM_HANDSHAKE("16")
  356. ASM_SEND_DATA("24")
  357. " ldr %[data], [%[buf]], #4 \n" \
  358. ASM_LOAD_DATA("data", "0", "0")
  359. ASM_HANDSHAKE("24")
  360. " subs %[num_words], %[num_words], #1 \n" \
  361. " bne inner_loop_%= \n"
  362. : /* Output */ [tmp1] "+l" (tmp1), [tmp2] "+l" (tmp2), [data] "+r" (data),
  363. [buf] "+r" (buf), [num_words] "+r" (num_words)
  364. : /* Input */ [ack_pin_bb] "r" (ack_pin_bb),
  365. [req_pin_bb] "r" (req_pin_bb),
  366. [out_port_bop] "r"(out_port_bop),
  367. [byte_lookup] "r" (byte_lookup)
  368. : /* Clobber */ );
  369. return buf - 1;
  370. }
  371. class GD32SPIDriver : public SdSpiBaseClass
  372. {
  373. public:
  374. void begin(SdSpiConfig config) {
  375. rcu_periph_clock_enable(RCU_SPI0);
  376. rcu_periph_clock_enable(RCU_DMA0);
  377. dma_parameter_struct rx_dma_config =
  378. {
  379. .periph_addr = (uint32_t)&SPI_DATA(SD_SPI),
  380. .periph_width = DMA_PERIPHERAL_WIDTH_8BIT,
  381. .memory_addr = 0, // Set before transfer
  382. .memory_width = DMA_MEMORY_WIDTH_8BIT,
  383. .number = 0, // Set before transfer
  384. .priority = DMA_PRIORITY_ULTRA_HIGH,
  385. .periph_inc = DMA_PERIPH_INCREASE_DISABLE,
  386. .memory_inc = DMA_MEMORY_INCREASE_ENABLE,
  387. .direction = DMA_PERIPHERAL_TO_MEMORY
  388. };
  389. dma_init(DMA0, SD_SPI_RX_DMA_CHANNEL, &rx_dma_config);
  390. dma_parameter_struct tx_dma_config =
  391. {
  392. .periph_addr = (uint32_t)&SPI_DATA(SD_SPI),
  393. .periph_width = DMA_PERIPHERAL_WIDTH_8BIT,
  394. .memory_addr = 0, // Set before transfer
  395. .memory_width = DMA_MEMORY_WIDTH_8BIT,
  396. .number = 0, // Set before transfer
  397. .priority = DMA_PRIORITY_HIGH,
  398. .periph_inc = DMA_PERIPH_INCREASE_DISABLE,
  399. .memory_inc = DMA_MEMORY_INCREASE_ENABLE,
  400. .direction = DMA_MEMORY_TO_PERIPHERAL
  401. };
  402. dma_init(DMA0, SD_SPI_TX_DMA_CHANNEL, &tx_dma_config);
  403. }
  404. void activate() {
  405. spi_parameter_struct config = {
  406. SPI_MASTER,
  407. SPI_TRANSMODE_FULLDUPLEX,
  408. SPI_FRAMESIZE_8BIT,
  409. SPI_NSS_SOFT,
  410. SPI_ENDIAN_MSB,
  411. SPI_CK_PL_LOW_PH_1EDGE,
  412. SPI_PSC_256
  413. };
  414. // Select closest available divider based on system frequency
  415. int divider = (SystemCoreClock + m_sckfreq / 2) / m_sckfreq;
  416. if (divider <= 2)
  417. config.prescale = SPI_PSC_2;
  418. else if (divider <= 4)
  419. config.prescale = SPI_PSC_4;
  420. else if (divider <= 8)
  421. config.prescale = SPI_PSC_8;
  422. else if (divider <= 16)
  423. config.prescale = SPI_PSC_16;
  424. else if (divider <= 32)
  425. config.prescale = SPI_PSC_32;
  426. else if (divider <= 64)
  427. config.prescale = SPI_PSC_64;
  428. else if (divider <= 128)
  429. config.prescale = SPI_PSC_128;
  430. else
  431. config.prescale = SPI_PSC_256;
  432. spi_init(SD_SPI, &config);
  433. spi_enable(SD_SPI);
  434. }
  435. void deactivate() {
  436. spi_disable(SD_SPI);
  437. }
  438. void wait_idle() {
  439. while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE));
  440. while (SPI_STAT(SD_SPI) & SPI_STAT_TRANS);
  441. }
  442. uint8_t receive() {
  443. // Wait for idle and clear RX buffer
  444. wait_idle();
  445. (void)SPI_DATA(SD_SPI);
  446. // Send dummy byte and wait for receive
  447. SPI_DATA(SD_SPI) = 0xFF;
  448. while (!(SPI_STAT(SD_SPI) & SPI_STAT_RBNE));
  449. return SPI_DATA(SD_SPI);
  450. }
  451. uint8_t receive(uint8_t* buf, size_t count) {
  452. // Wait for idle and clear RX buffer
  453. wait_idle();
  454. (void)SPI_DATA(SD_SPI);
  455. if (buf == m_stream_buffer + m_stream_status)
  456. {
  457. // Stream data directly to SCSI bus
  458. return stream_receive(buf, count);
  459. }
  460. // Stream to memory
  461. // Use DMA to stream dummy TX data and store RX data
  462. uint8_t tx_data = 0xFF;
  463. DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL);
  464. DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL);
  465. DMA_CHMADDR(DMA0, SD_SPI_RX_DMA_CHANNEL) = (uint32_t)buf;
  466. DMA_CHMADDR(DMA0, SD_SPI_TX_DMA_CHANNEL) = (uint32_t)&tx_data;
  467. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_MNAGA; // No memory increment for TX
  468. DMA_CHCNT(DMA0, SD_SPI_RX_DMA_CHANNEL) = count;
  469. DMA_CHCNT(DMA0, SD_SPI_TX_DMA_CHANNEL) = count;
  470. DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN;
  471. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN;
  472. SPI_CTL1(SD_SPI) |= SPI_CTL1_DMAREN | SPI_CTL1_DMATEN;
  473. uint32_t start = millis();
  474. while (!(DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL)))
  475. {
  476. if (millis() - start > 500)
  477. {
  478. azlog("ERROR: SPI DMA receive of ", (int)count, " bytes timeouted");
  479. return 1;
  480. }
  481. }
  482. if (DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL))
  483. {
  484. azlog("ERROR: SPI DMA receive set DMA_FLAG_ERR");
  485. }
  486. SPI_CTL1(SD_SPI) &= ~(SPI_CTL1_DMAREN | SPI_CTL1_DMATEN);
  487. DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN;
  488. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN;
  489. return 0;
  490. }
  491. // Stream data directly to SCSI bus
  492. uint8_t stream_receive(uint8_t *buf, size_t count)
  493. {
  494. uint8_t tx_data = 0xFF;
  495. DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL);
  496. DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL);
  497. DMA_CHMADDR(DMA0, SD_SPI_RX_DMA_CHANNEL) = (uint32_t)buf;
  498. DMA_CHMADDR(DMA0, SD_SPI_TX_DMA_CHANNEL) = (uint32_t)&tx_data;
  499. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_MNAGA; // No memory increment for TX
  500. DMA_CHCNT(DMA0, SD_SPI_RX_DMA_CHANNEL) = count;
  501. DMA_CHCNT(DMA0, SD_SPI_TX_DMA_CHANNEL) = count;
  502. DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN;
  503. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN;
  504. SPI_CTL1(SD_SPI) |= SPI_CTL1_DMAREN | SPI_CTL1_DMATEN;
  505. // DMA transfer is now running, we can start sending received bytes to SCSI
  506. uint32_t *word_ptr = (uint32_t*)buf;
  507. uint32_t *end_ptr = word_ptr + (count / 4);
  508. while (word_ptr < end_ptr)
  509. {
  510. uint32_t words_available = (count - DMA_CHCNT(DMA0, SD_SPI_RX_DMA_CHANNEL)) / 4;
  511. words_available -= (word_ptr - (uint32_t*)buf);
  512. if (words_available > 0)
  513. {
  514. if (word_ptr + words_available > end_ptr)
  515. {
  516. words_available = end_ptr - word_ptr;
  517. }
  518. word_ptr = scsi_send_words_async(word_ptr, words_available);
  519. }
  520. }
  521. SCSI_RELEASE_DATA_REQ();
  522. if (DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL))
  523. {
  524. azlog("ERROR: SPI DMA receive set DMA_FLAG_ERR");
  525. }
  526. SPI_CTL1(SD_SPI) &= ~(SPI_CTL1_DMAREN | SPI_CTL1_DMATEN);
  527. DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN;
  528. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN;
  529. m_stream_status += count;
  530. return 0;
  531. }
  532. void send(uint8_t data) {
  533. SPI_DATA(SD_SPI) = data;
  534. wait_idle();
  535. }
  536. void send(const uint8_t* buf, size_t count) {
  537. if (buf == m_stream_buffer + m_stream_status)
  538. {
  539. stream_send(count);
  540. return;
  541. }
  542. for (size_t i = 0; i < count; i++) {
  543. while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE));
  544. SPI_DATA(SD_SPI) = buf[i];
  545. }
  546. wait_idle();
  547. }
  548. // Stream data directly from SCSI bus
  549. void stream_send(size_t count)
  550. {
  551. for (size_t i = 0; i < count; i++) {
  552. SCSI_OUT(REQ, 1);
  553. SCSI_WAIT_ACTIVE(ACK);
  554. delay_100ns(); // ACK.Fall to DB output delay 100ns(MAX) (DTC-510B)
  555. uint8_t data = SCSI_IN_DATA();
  556. SCSI_OUT(REQ, 0);
  557. while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE));
  558. SPI_DATA(SD_SPI) = data;
  559. SCSI_WAIT_INACTIVE(ACK);
  560. }
  561. wait_idle();
  562. m_stream_status += count;
  563. }
  564. void setSckSpeed(uint32_t maxSck) {
  565. m_sckfreq = maxSck;
  566. }
  567. void prepare_stream(uint8_t *buffer)
  568. {
  569. m_stream_buffer = buffer;
  570. m_stream_status = 0;
  571. }
  572. size_t finish_stream()
  573. {
  574. size_t result = m_stream_status;
  575. m_stream_status = 0;
  576. m_stream_buffer = NULL;
  577. return result;
  578. }
  579. private:
  580. uint32_t m_sckfreq;
  581. uint8_t *m_stream_buffer;
  582. size_t m_stream_status; // Number of bytes transferred so far
  583. };
  584. void sdCsInit(SdCsPin_t pin)
  585. {
  586. }
  587. void sdCsWrite(SdCsPin_t pin, bool level)
  588. {
  589. if (level)
  590. GPIO_BOP(SD_PORT) = SD_CS_PIN;
  591. else
  592. GPIO_BC(SD_PORT) = SD_CS_PIN;
  593. }
  594. GD32SPIDriver g_sd_spi_port;
  595. SdSpiConfig g_sd_spi_config(0, DEDICATED_SPI, SD_SCK_MHZ(30), &g_sd_spi_port);
  596. void azplatform_prepare_stream(uint8_t *buffer)
  597. {
  598. g_sd_spi_port.prepare_stream(buffer);
  599. }
  600. size_t azplatform_finish_stream()
  601. {
  602. return g_sd_spi_port.finish_stream();
  603. }
  604. /**********************************************/
  605. /* Mapping from data bytes to GPIO BOP values */
  606. /**********************************************/
  607. #define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1)
  608. #define X(n) (\
  609. ((n & 0x01) ? (SCSI_OUT_DB0 << 16) : SCSI_OUT_DB0) | \
  610. ((n & 0x02) ? (SCSI_OUT_DB1 << 16) : SCSI_OUT_DB1) | \
  611. ((n & 0x04) ? (SCSI_OUT_DB2 << 16) : SCSI_OUT_DB2) | \
  612. ((n & 0x08) ? (SCSI_OUT_DB3 << 16) : SCSI_OUT_DB3) | \
  613. ((n & 0x10) ? (SCSI_OUT_DB4 << 16) : SCSI_OUT_DB4) | \
  614. ((n & 0x20) ? (SCSI_OUT_DB5 << 16) : SCSI_OUT_DB5) | \
  615. ((n & 0x40) ? (SCSI_OUT_DB6 << 16) : SCSI_OUT_DB6) | \
  616. ((n & 0x80) ? (SCSI_OUT_DB7 << 16) : SCSI_OUT_DB7) | \
  617. (PARITY(n) ? (SCSI_OUT_DBP << 16) : SCSI_OUT_DBP) | \
  618. (SCSI_OUT_REQ) \
  619. )
  620. const uint32_t g_scsi_out_byte_to_bop[256] =
  621. {
  622. X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f),
  623. X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f),
  624. X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f),
  625. X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f),
  626. X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f),
  627. X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f),
  628. X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f),
  629. X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f),
  630. X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f),
  631. X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f),
  632. X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf),
  633. X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf),
  634. X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf),
  635. X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf),
  636. X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef),
  637. X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff)
  638. };
  639. #undef X