audio.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565
  1. /**
  2. * Copyright (C) 2023 saybur
  3. *
  4. * This program is free software: you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation, either version 3 of the License, or
  7. * (at your option) any later version. 
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12. * GNU General Public License for more details. 
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  16. **/
  17. #ifdef ENABLE_AUDIO_OUTPUT
  18. #include <SdFat.h>
  19. #include <stdbool.h>
  20. #include <hardware/dma.h>
  21. #include <hardware/irq.h>
  22. #include <hardware/spi.h>
  23. #include <pico/multicore.h>
  24. #include "audio.h"
  25. #include "BlueSCSI_audio.h"
  26. #include "BlueSCSI_config.h"
  27. #include "BlueSCSI_log.h"
  28. #include "BlueSCSI_platform.h"
  29. extern SdFs SD;
  30. // Table with the number of '1' bits for each index.
  31. // Used for SP/DIF parity calculations.
  32. // Placed in SRAM5 for the second core to use with reduced contention.
  33. const uint8_t snd_parity[256] __attribute__((aligned(256), section(".scratch_y.snd_parity"))) = {
  34. 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
  35. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  36. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  37. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  38. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  39. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  40. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  41. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  42. 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
  43. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  44. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  45. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  46. 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
  47. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  48. 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
  49. 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, };
  50. /*
  51. * Precomputed biphase-mark patterns for data. For an 8-bit value this has
  52. * 16-bits in MSB-first order for the correct high/low transitions to
  53. * represent the data, given an output clocking rate twice the bitrate (so the
  54. * bits '11' or '00' reflect a zero and '10' or '01' represent a one). Each
  55. * value below starts with a '1' and will need to be inverted if the last bit
  56. * of the previous mask was also a '1'. These values can be written to an
  57. * appropriately configured SPI peripheral to blast biphase data at a
  58. * receiver.
  59. *
  60. * To facilitate fast lookups this table should be put in SRAM with low
  61. * contention, aligned to an apppropriate boundry.
  62. */
  63. const uint16_t biphase[256] __attribute__((aligned(512), section(".scratch_y.biphase"))) = {
  64. 0xCCCC, 0xB333, 0xD333, 0xACCC, 0xCB33, 0xB4CC, 0xD4CC, 0xAB33,
  65. 0xCD33, 0xB2CC, 0xD2CC, 0xAD33, 0xCACC, 0xB533, 0xD533, 0xAACC,
  66. 0xCCB3, 0xB34C, 0xD34C, 0xACB3, 0xCB4C, 0xB4B3, 0xD4B3, 0xAB4C,
  67. 0xCD4C, 0xB2B3, 0xD2B3, 0xAD4C, 0xCAB3, 0xB54C, 0xD54C, 0xAAB3,
  68. 0xCCD3, 0xB32C, 0xD32C, 0xACD3, 0xCB2C, 0xB4D3, 0xD4D3, 0xAB2C,
  69. 0xCD2C, 0xB2D3, 0xD2D3, 0xAD2C, 0xCAD3, 0xB52C, 0xD52C, 0xAAD3,
  70. 0xCCAC, 0xB353, 0xD353, 0xACAC, 0xCB53, 0xB4AC, 0xD4AC, 0xAB53,
  71. 0xCD53, 0xB2AC, 0xD2AC, 0xAD53, 0xCAAC, 0xB553, 0xD553, 0xAAAC,
  72. 0xCCCB, 0xB334, 0xD334, 0xACCB, 0xCB34, 0xB4CB, 0xD4CB, 0xAB34,
  73. 0xCD34, 0xB2CB, 0xD2CB, 0xAD34, 0xCACB, 0xB534, 0xD534, 0xAACB,
  74. 0xCCB4, 0xB34B, 0xD34B, 0xACB4, 0xCB4B, 0xB4B4, 0xD4B4, 0xAB4B,
  75. 0xCD4B, 0xB2B4, 0xD2B4, 0xAD4B, 0xCAB4, 0xB54B, 0xD54B, 0xAAB4,
  76. 0xCCD4, 0xB32B, 0xD32B, 0xACD4, 0xCB2B, 0xB4D4, 0xD4D4, 0xAB2B,
  77. 0xCD2B, 0xB2D4, 0xD2D4, 0xAD2B, 0xCAD4, 0xB52B, 0xD52B, 0xAAD4,
  78. 0xCCAB, 0xB354, 0xD354, 0xACAB, 0xCB54, 0xB4AB, 0xD4AB, 0xAB54,
  79. 0xCD54, 0xB2AB, 0xD2AB, 0xAD54, 0xCAAB, 0xB554, 0xD554, 0xAAAB,
  80. 0xCCCD, 0xB332, 0xD332, 0xACCD, 0xCB32, 0xB4CD, 0xD4CD, 0xAB32,
  81. 0xCD32, 0xB2CD, 0xD2CD, 0xAD32, 0xCACD, 0xB532, 0xD532, 0xAACD,
  82. 0xCCB2, 0xB34D, 0xD34D, 0xACB2, 0xCB4D, 0xB4B2, 0xD4B2, 0xAB4D,
  83. 0xCD4D, 0xB2B2, 0xD2B2, 0xAD4D, 0xCAB2, 0xB54D, 0xD54D, 0xAAB2,
  84. 0xCCD2, 0xB32D, 0xD32D, 0xACD2, 0xCB2D, 0xB4D2, 0xD4D2, 0xAB2D,
  85. 0xCD2D, 0xB2D2, 0xD2D2, 0xAD2D, 0xCAD2, 0xB52D, 0xD52D, 0xAAD2,
  86. 0xCCAD, 0xB352, 0xD352, 0xACAD, 0xCB52, 0xB4AD, 0xD4AD, 0xAB52,
  87. 0xCD52, 0xB2AD, 0xD2AD, 0xAD52, 0xCAAD, 0xB552, 0xD552, 0xAAAD,
  88. 0xCCCA, 0xB335, 0xD335, 0xACCA, 0xCB35, 0xB4CA, 0xD4CA, 0xAB35,
  89. 0xCD35, 0xB2CA, 0xD2CA, 0xAD35, 0xCACA, 0xB535, 0xD535, 0xAACA,
  90. 0xCCB5, 0xB34A, 0xD34A, 0xACB5, 0xCB4A, 0xB4B5, 0xD4B5, 0xAB4A,
  91. 0xCD4A, 0xB2B5, 0xD2B5, 0xAD4A, 0xCAB5, 0xB54A, 0xD54A, 0xAAB5,
  92. 0xCCD5, 0xB32A, 0xD32A, 0xACD5, 0xCB2A, 0xB4D5, 0xD4D5, 0xAB2A,
  93. 0xCD2A, 0xB2D5, 0xD2D5, 0xAD2A, 0xCAD5, 0xB52A, 0xD52A, 0xAAD5,
  94. 0xCCAA, 0xB355, 0xD355, 0xACAA, 0xCB55, 0xB4AA, 0xD4AA, 0xAB55,
  95. 0xCD55, 0xB2AA, 0xD2AA, 0xAD55, 0xCAAA, 0xB555, 0xD555, 0xAAAA };
  96. /*
  97. * Biphase frame headers for SP/DIF, including the special bit framing
  98. * errors used to detect (sub)frame start conditions. See above table
  99. * for details.
  100. */
  101. const uint16_t x_preamble = 0xE2CC;
  102. const uint16_t y_preamble = 0xE4CC;
  103. const uint16_t z_preamble = 0xE8CC;
  104. // DMA configuration info
  105. static dma_channel_config snd_dma_a_cfg;
  106. static dma_channel_config snd_dma_b_cfg;
  107. // some chonky buffers to store audio samples
  108. static uint8_t sample_buf_a[AUDIO_BUFFER_SIZE];
  109. static uint8_t sample_buf_b[AUDIO_BUFFER_SIZE];
  110. // tracking for the state of the above buffers
  111. enum bufstate { STALE, FILLING, READY };
  112. static volatile bufstate sbufst_a = STALE;
  113. static volatile bufstate sbufst_b = STALE;
  114. enum bufselect { A, B };
  115. static bufselect sbufsel = A;
  116. static uint16_t sbufpos = 0;
  117. static uint8_t sbufswap = 0;
  118. // buffers for storing biphase patterns
  119. #define SAMPLE_CHUNK_SIZE 1024 // ~5.8ms
  120. #define WIRE_BUFFER_SIZE (SAMPLE_CHUNK_SIZE * 2)
  121. static uint16_t wire_buf_a[WIRE_BUFFER_SIZE];
  122. static uint16_t wire_buf_b[WIRE_BUFFER_SIZE];
  123. // tracking for audio playback
  124. static uint8_t audio_owner; // SCSI ID or 0xFF when idle
  125. static volatile bool audio_paused = false;
  126. static ImageBackingStore* audio_file;
  127. static uint64_t fpos;
  128. static uint32_t fleft;
  129. // historical playback status information
  130. static audio_status_code audio_last_status[8] = {ASC_NO_STATUS};
  131. // volume information for targets
  132. static volatile uint16_t volumes[8] = {
  133. DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL,
  134. DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL
  135. };
  136. // mechanism for cleanly stopping DMA units
  137. static volatile bool audio_stopping = false;
  138. // trackers for the below function call
  139. static uint16_t sfcnt = 0; // sub-frame count; 2 per frame, 192 frames/block
  140. static uint8_t invert = 0; // biphase encode help: set if last wire bit was '1'
  141. /*
  142. * Translates 16-bit stereo sound samples to biphase wire patterns for the
  143. * SPI peripheral. Produces 8 patterns (128 bits, or 1 SP/DIF frame) per pair
  144. * of input samples. Provided length is the total number of sample bytes present,
  145. * _twice_ the number of samples (little-endian order assumed)
  146. *
  147. * This function operates with side-effects and is not safe to call from both
  148. * cores. It must also be called in the same order data is intended to be
  149. * output.
  150. */
  151. static void snd_encode(uint8_t* samples, uint16_t* wire_patterns, uint16_t len, uint8_t swap) {
  152. uint16_t wvol = volumes[audio_owner & 7];
  153. uint8_t vol = ((wvol >> 8) + (wvol & 0xFF)) >> 1; // average of both values
  154. // limit maximum volume; with my DACs I've had persistent issues
  155. // with signal clipping when sending data in the highest bit position
  156. vol = vol >> 2;
  157. uint16_t widx = 0;
  158. for (uint16_t i = 0; i < len; i += 2) {
  159. uint32_t sample = 0;
  160. uint8_t parity = 0;
  161. if (samples != NULL) {
  162. int32_t rsamp;
  163. if (swap) {
  164. rsamp = (int16_t)(samples[i + 1] + (samples[i] << 8));
  165. } else {
  166. rsamp = (int16_t)(samples[i] + (samples[i + 1] << 8));
  167. }
  168. // linear scale to requested audio value
  169. rsamp *= vol;
  170. // use 20 bits of value only, which allows ignoring the lowest 8
  171. // bits during biphase conversion (after including sample shift)
  172. sample = ((uint32_t)rsamp) & 0xFFFFF0;
  173. // determine parity, simplified to one lookup via XOR
  174. parity = ((sample >> 16) ^ (sample >> 8)) ^ sample;
  175. parity = snd_parity[parity];
  176. // shift sample into the correct bit positions of the sub-frame.
  177. sample = sample << 4;
  178. }
  179. // if needed, establish even parity with P bit
  180. if (parity % 2) sample |= 0x80000000;
  181. // translate sample into biphase encoding
  182. // first is low 8 bits: preamble and 4 least-significant bits of
  183. // 24-bit audio, pre-encoded as all '0' due to 16-bit samples
  184. uint16_t wp;
  185. if (sfcnt == 0) {
  186. wp = z_preamble; // left channel, block start
  187. } else if (sfcnt % 2) {
  188. wp = y_preamble; // right channel
  189. } else {
  190. wp = x_preamble; // left channel, not block start
  191. }
  192. if (invert) wp = ~wp;
  193. invert = wp & 1;
  194. wire_patterns[widx++] = wp;
  195. // next 8 bits
  196. wp = biphase[(uint8_t) (sample >> 8)];
  197. if (invert) wp = ~wp;
  198. invert = wp & 1;
  199. wire_patterns[widx++] = wp;
  200. // next 8 again, all audio data
  201. wp = biphase[(uint8_t) (sample >> 16)];
  202. if (invert) wp = ~wp;
  203. invert = wp & 1;
  204. wire_patterns[widx++] = wp;
  205. // final 8, low 4 audio data and high 4 control bits
  206. wp = biphase[(uint8_t) (sample >> 24)];
  207. if (invert) wp = ~wp;
  208. invert = wp & 1;
  209. wire_patterns[widx++] = wp;
  210. // increment subframe counter for next pass
  211. sfcnt++;
  212. if (sfcnt == 384) sfcnt = 0; // if true, block complete
  213. }
  214. }
  215. // functions for passing to Core1
  216. static void snd_process_a() {
  217. if (sbufsel == A) {
  218. if (sbufst_a == READY) {
  219. snd_encode(sample_buf_a + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  220. sbufpos += SAMPLE_CHUNK_SIZE;
  221. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  222. sbufsel = B;
  223. sbufpos = 0;
  224. sbufst_a = STALE;
  225. }
  226. } else {
  227. snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  228. }
  229. } else {
  230. if (sbufst_b == READY) {
  231. snd_encode(sample_buf_b + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  232. sbufpos += SAMPLE_CHUNK_SIZE;
  233. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  234. sbufsel = A;
  235. sbufpos = 0;
  236. sbufst_b = STALE;
  237. }
  238. } else {
  239. snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);
  240. }
  241. }
  242. }
  243. static void snd_process_b() {
  244. // clone of above for the other wire buffer
  245. if (sbufsel == A) {
  246. if (sbufst_a == READY) {
  247. snd_encode(sample_buf_a + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  248. sbufpos += SAMPLE_CHUNK_SIZE;
  249. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  250. sbufsel = B;
  251. sbufpos = 0;
  252. sbufst_a = STALE;
  253. }
  254. } else {
  255. snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  256. }
  257. } else {
  258. if (sbufst_b == READY) {
  259. snd_encode(sample_buf_b + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  260. sbufpos += SAMPLE_CHUNK_SIZE;
  261. if (sbufpos >= AUDIO_BUFFER_SIZE) {
  262. sbufsel = A;
  263. sbufpos = 0;
  264. sbufst_b = STALE;
  265. }
  266. } else {
  267. snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);
  268. }
  269. }
  270. }
  271. // Allows execution on Core1 via function pointers. Each function can take
  272. // no parameters and should return nothing, operating via side-effects only.
  273. static void core1_handler() {
  274. while (1) {
  275. void (*function)() = (void (*)()) multicore_fifo_pop_blocking();
  276. (*function)();
  277. }
  278. }
  279. /* ------------------------------------------------------------------------ */
  280. /* ---------- VISIBLE FUNCTIONS ------------------------------------------- */
  281. /* ------------------------------------------------------------------------ */
  282. void audio_dma_irq() {
  283. if (dma_hw->intr & (1 << SOUND_DMA_CHA)) {
  284. dma_hw->ints0 = (1 << SOUND_DMA_CHA);
  285. multicore_fifo_push_blocking((uintptr_t) &snd_process_a);
  286. if (audio_stopping) {
  287. channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHA);
  288. }
  289. dma_channel_configure(SOUND_DMA_CHA,
  290. &snd_dma_a_cfg,
  291. &(spi_get_hw(AUDIO_SPI)->dr),
  292. &wire_buf_a,
  293. WIRE_BUFFER_SIZE,
  294. false);
  295. } else if (dma_hw->intr & (1 << SOUND_DMA_CHB)) {
  296. dma_hw->ints0 = (1 << SOUND_DMA_CHB);
  297. multicore_fifo_push_blocking((uintptr_t) &snd_process_b);
  298. if (audio_stopping) {
  299. channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHB);
  300. }
  301. dma_channel_configure(SOUND_DMA_CHB,
  302. &snd_dma_b_cfg,
  303. &(spi_get_hw(AUDIO_SPI)->dr),
  304. &wire_buf_b,
  305. WIRE_BUFFER_SIZE,
  306. false);
  307. }
  308. }
  309. bool audio_is_active() {
  310. return audio_owner != 0xFF;
  311. }
  312. bool audio_is_playing(uint8_t id) {
  313. return audio_owner == (id & 7);
  314. }
  315. void audio_setup() {
  316. // setup SPI to blast SP/DIF data over the TX pin
  317. spi_set_baudrate(AUDIO_SPI, 5644800); // will be slightly wrong, ~0.03% slow
  318. hw_write_masked(&spi_get_hw(AUDIO_SPI)->cr0,
  319. 0x1F, // TI mode with 16 bits
  320. SPI_SSPCR0_DSS_BITS | SPI_SSPCR0_FRF_BITS);
  321. spi_get_hw(AUDIO_SPI)->dmacr = SPI_SSPDMACR_TXDMAE_BITS;
  322. hw_set_bits(&spi_get_hw(AUDIO_SPI)->cr1, SPI_SSPCR1_SSE_BITS);
  323. dma_channel_claim(SOUND_DMA_CHA);
  324. dma_channel_claim(SOUND_DMA_CHB);
  325. log("Starting Core1 for audio");
  326. multicore_launch_core1(core1_handler);
  327. }
  328. void audio_poll() {
  329. if (!audio_is_active()) return;
  330. if (audio_paused) return;
  331. if (fleft == 0 && sbufst_a == STALE && sbufst_b == STALE) {
  332. // out of data and ready to stop
  333. audio_stop(audio_owner);
  334. return;
  335. } else if (fleft == 0) {
  336. // out of data to read but still working on remainder
  337. return;
  338. } else if (!audio_file->isOpen()) {
  339. // closed elsewhere, maybe disk ejected?
  340. debuglog("------ Playback stop due to closed file");
  341. audio_stop(audio_owner);
  342. return;
  343. }
  344. // are new audio samples needed from the memory card?
  345. uint8_t* audiobuf;
  346. if (sbufst_a == STALE) {
  347. sbufst_a = FILLING;
  348. audiobuf = sample_buf_a;
  349. } else if (sbufst_b == STALE) {
  350. sbufst_b = FILLING;
  351. audiobuf = sample_buf_b;
  352. } else {
  353. // no data needed this time
  354. return;
  355. }
  356. platform_set_sd_callback(NULL, NULL);
  357. uint16_t toRead = AUDIO_BUFFER_SIZE;
  358. if (fleft < toRead) toRead = fleft;
  359. if (audio_file->position() != fpos) {
  360. // should be uncommon due to SCSI command restrictions on devices
  361. // playing audio; if this is showing up in logs a different approach
  362. // will be needed to avoid seek performance issues on FAT32 vols
  363. debuglog("------ Audio seek required on ", audio_owner);
  364. if (!audio_file->seek(fpos)) {
  365. log("Audio error, unable to seek to ", fpos, ", ID:", audio_owner);
  366. }
  367. }
  368. if (audio_file->read(audiobuf, toRead) != toRead) {
  369. log("Audio sample data underrun");
  370. }
  371. fpos += toRead;
  372. fleft -= toRead;
  373. if (sbufst_a == FILLING) {
  374. sbufst_a = READY;
  375. } else if (sbufst_b == FILLING) {
  376. sbufst_b = READY;
  377. }
  378. }
  379. bool audio_play(uint8_t owner, ImageBackingStore* img, uint64_t start, uint64_t end, bool swap) {
  380. // stop any existing playback first
  381. if (audio_is_active()) audio_stop(audio_owner);
  382. // debuglog("Request to play ('", file, "':", start, ":", end, ")");
  383. // verify audio file is present and inputs are (somewhat) sane
  384. if (owner == 0xFF) {
  385. log("Illegal audio owner");
  386. return false;
  387. }
  388. if (start >= end) {
  389. log("Invalid range for audio (", start, ":", end, ")");
  390. return false;
  391. }
  392. platform_set_sd_callback(NULL, NULL);
  393. audio_file = img;
  394. if (!audio_file->isOpen()) {
  395. log("File not open for audio playback, ", owner);
  396. return false;
  397. }
  398. uint64_t len = audio_file->size();
  399. if (start > len) {
  400. log("File playback request start (", start, ":", len, ") outside file bounds");
  401. return false;
  402. }
  403. // truncate playback end to end of file
  404. // we will not consider this to be an error at the moment
  405. if (end > len) {
  406. debuglog("------ Truncate audio play request end ", end, " to file size ", len);
  407. end = len;
  408. }
  409. fleft = end - start;
  410. if (fleft <= 2 * AUDIO_BUFFER_SIZE) {
  411. log("File playback request (", start, ":", end, ") too short");
  412. return false;
  413. }
  414. // read in initial sample buffers
  415. if (!audio_file->seek(start)) {
  416. log("Sample file failed start seek to ", start);
  417. return false;
  418. }
  419. if (audio_file->read(sample_buf_a, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) {
  420. log("File playback start returned fewer bytes than allowed");
  421. return false;
  422. }
  423. if (audio_file->read(sample_buf_b, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) {
  424. log("File playback start returned fewer bytes than allowed");
  425. return false;
  426. }
  427. // prepare initial tracking state
  428. fpos = audio_file->position();
  429. fleft -= AUDIO_BUFFER_SIZE * 2;
  430. sbufsel = A;
  431. sbufpos = 0;
  432. sbufswap = swap;
  433. sbufst_a = READY;
  434. sbufst_b = READY;
  435. audio_owner = owner & 7;
  436. audio_last_status[audio_owner] = ASC_PLAYING;
  437. audio_paused = false;
  438. // prepare the wire buffers
  439. for (uint16_t i = 0; i < WIRE_BUFFER_SIZE; i++) {
  440. wire_buf_a[i] = 0;
  441. wire_buf_b[i] = 0;
  442. }
  443. sfcnt = 0;
  444. invert = 0;
  445. // setup the two DMA units to hand-off to each other
  446. // to maintain a stable bitstream these need to run without interruption
  447. snd_dma_a_cfg = dma_channel_get_default_config(SOUND_DMA_CHA);
  448. channel_config_set_transfer_data_size(&snd_dma_a_cfg, DMA_SIZE_16);
  449. channel_config_set_dreq(&snd_dma_a_cfg, spi_get_dreq(AUDIO_SPI, true));
  450. channel_config_set_read_increment(&snd_dma_a_cfg, true);
  451. channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHB);
  452. // version of pico-sdk lacks channel_config_set_high_priority()
  453. snd_dma_a_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
  454. dma_channel_configure(SOUND_DMA_CHA, &snd_dma_a_cfg, &(spi_get_hw(AUDIO_SPI)->dr),
  455. &wire_buf_a, WIRE_BUFFER_SIZE, false);
  456. dma_channel_set_irq0_enabled(SOUND_DMA_CHA, true);
  457. snd_dma_b_cfg = dma_channel_get_default_config(SOUND_DMA_CHB);
  458. channel_config_set_transfer_data_size(&snd_dma_b_cfg, DMA_SIZE_16);
  459. channel_config_set_dreq(&snd_dma_b_cfg, spi_get_dreq(AUDIO_SPI, true));
  460. channel_config_set_read_increment(&snd_dma_b_cfg, true);
  461. channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHA);
  462. snd_dma_b_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;
  463. dma_channel_configure(SOUND_DMA_CHB, &snd_dma_b_cfg, &(spi_get_hw(AUDIO_SPI)->dr),
  464. &wire_buf_b, WIRE_BUFFER_SIZE, false);
  465. dma_channel_set_irq0_enabled(SOUND_DMA_CHB, true);
  466. // ready to go
  467. dma_channel_start(SOUND_DMA_CHA);
  468. return true;
  469. }
  470. bool audio_set_paused(uint8_t id, bool paused) {
  471. if (audio_owner != (id & 7)) return false;
  472. else if (audio_paused && paused) return false;
  473. else if (!audio_paused && !paused) return false;
  474. audio_paused = paused;
  475. if (paused) {
  476. audio_last_status[audio_owner] = ASC_PAUSED;
  477. } else {
  478. audio_last_status[audio_owner] = ASC_PLAYING;
  479. }
  480. return true;
  481. }
  482. void audio_stop(uint8_t id) {
  483. if (audio_owner != (id & 7)) return;
  484. // to help mute external hardware, send a bunch of '0' samples prior to
  485. // halting the datastream; easiest way to do this is invalidating the
  486. // sample buffers, same as if there was a sample data underrun
  487. sbufst_a = STALE;
  488. sbufst_b = STALE;
  489. // then indicate that the streams should no longer chain to one another
  490. // and wait for them to shut down naturally
  491. audio_stopping = true;
  492. while (dma_channel_is_busy(SOUND_DMA_CHA)) tight_loop_contents();
  493. while (dma_channel_is_busy(SOUND_DMA_CHB)) tight_loop_contents();
  494. while (spi_is_busy(AUDIO_SPI)) tight_loop_contents();
  495. audio_stopping = false;
  496. // idle the subsystem
  497. audio_last_status[audio_owner] = ASC_COMPLETED;
  498. audio_paused = false;
  499. audio_owner = 0xFF;
  500. }
  501. audio_status_code audio_get_status_code(uint8_t id) {
  502. audio_status_code tmp = audio_last_status[id & 7];
  503. if (tmp == ASC_COMPLETED || tmp == ASC_ERRORED) {
  504. audio_last_status[id & 7] = ASC_NO_STATUS;
  505. }
  506. return tmp;
  507. }
  508. uint16_t audio_get_volume(uint8_t id) {
  509. return volumes[id & 7];
  510. }
  511. void audio_set_volume(uint8_t id, uint16_t vol) {
  512. volumes[id & 7] = vol;
  513. }
  514. #endif // ENABLE_AUDIO_OUTPUT