| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565 | /**  * Copyright (C) 2023 saybur *  * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version.  *  * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details.  *  * You should have received a copy of the GNU General Public License * along with this program.  If not, see <https://www.gnu.org/licenses/>.**/#ifdef ENABLE_AUDIO_OUTPUT#include <SdFat.h>#include <stdbool.h>#include <hardware/dma.h>#include <hardware/irq.h>#include <hardware/spi.h>#include <pico/multicore.h>#include "audio.h"#include "BlueSCSI_audio.h"#include "BlueSCSI_config.h"#include "BlueSCSI_log.h"#include "BlueSCSI_platform.h"extern SdFs SD;// Table with the number of '1' bits for each index.// Used for SP/DIF parity calculations.// Placed in SRAM5 for the second core to use with reduced contention.const uint8_t snd_parity[256] __attribute__((aligned(256), section(".scratch_y.snd_parity"))) = {    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,     1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,     1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,     2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,     1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,     2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,     2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,     3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,     1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,     2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,     2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,     3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,     2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,     3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,     3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,     4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, };/* * Precomputed biphase-mark patterns for data. For an 8-bit value this has * 16-bits in MSB-first order for the correct high/low transitions to * represent the data, given an output clocking rate twice the bitrate (so the * bits '11' or '00' reflect a zero and '10' or '01' represent a one). Each * value below starts with a '1' and will need to be inverted if the last bit * of the previous mask was also a '1'. These values can be written to an * appropriately configured SPI peripheral to blast biphase data at a * receiver. *  * To facilitate fast lookups this table should be put in SRAM with low * contention, aligned to an apppropriate boundry. */const uint16_t biphase[256] __attribute__((aligned(512), section(".scratch_y.biphase"))) = {    0xCCCC, 0xB333, 0xD333, 0xACCC, 0xCB33, 0xB4CC, 0xD4CC, 0xAB33,    0xCD33, 0xB2CC, 0xD2CC, 0xAD33, 0xCACC, 0xB533, 0xD533, 0xAACC,    0xCCB3, 0xB34C, 0xD34C, 0xACB3, 0xCB4C, 0xB4B3, 0xD4B3, 0xAB4C,    0xCD4C, 0xB2B3, 0xD2B3, 0xAD4C, 0xCAB3, 0xB54C, 0xD54C, 0xAAB3,    0xCCD3, 0xB32C, 0xD32C, 0xACD3, 0xCB2C, 0xB4D3, 0xD4D3, 0xAB2C,    0xCD2C, 0xB2D3, 0xD2D3, 0xAD2C, 0xCAD3, 0xB52C, 0xD52C, 0xAAD3,    0xCCAC, 0xB353, 0xD353, 0xACAC, 0xCB53, 0xB4AC, 0xD4AC, 0xAB53,    0xCD53, 0xB2AC, 0xD2AC, 0xAD53, 0xCAAC, 0xB553, 0xD553, 0xAAAC,    0xCCCB, 0xB334, 0xD334, 0xACCB, 0xCB34, 0xB4CB, 0xD4CB, 0xAB34,    0xCD34, 0xB2CB, 0xD2CB, 0xAD34, 0xCACB, 0xB534, 0xD534, 0xAACB,    0xCCB4, 0xB34B, 0xD34B, 0xACB4, 0xCB4B, 0xB4B4, 0xD4B4, 0xAB4B,    0xCD4B, 0xB2B4, 0xD2B4, 0xAD4B, 0xCAB4, 0xB54B, 0xD54B, 0xAAB4,    0xCCD4, 0xB32B, 0xD32B, 0xACD4, 0xCB2B, 0xB4D4, 0xD4D4, 0xAB2B,    0xCD2B, 0xB2D4, 0xD2D4, 0xAD2B, 0xCAD4, 0xB52B, 0xD52B, 0xAAD4,    0xCCAB, 0xB354, 0xD354, 0xACAB, 0xCB54, 0xB4AB, 0xD4AB, 0xAB54,    0xCD54, 0xB2AB, 0xD2AB, 0xAD54, 0xCAAB, 0xB554, 0xD554, 0xAAAB,    0xCCCD, 0xB332, 0xD332, 0xACCD, 0xCB32, 0xB4CD, 0xD4CD, 0xAB32,    0xCD32, 0xB2CD, 0xD2CD, 0xAD32, 0xCACD, 0xB532, 0xD532, 0xAACD,    0xCCB2, 0xB34D, 0xD34D, 0xACB2, 0xCB4D, 0xB4B2, 0xD4B2, 0xAB4D,    0xCD4D, 0xB2B2, 0xD2B2, 0xAD4D, 0xCAB2, 0xB54D, 0xD54D, 0xAAB2,    0xCCD2, 0xB32D, 0xD32D, 0xACD2, 0xCB2D, 0xB4D2, 0xD4D2, 0xAB2D,    0xCD2D, 0xB2D2, 0xD2D2, 0xAD2D, 0xCAD2, 0xB52D, 0xD52D, 0xAAD2,    0xCCAD, 0xB352, 0xD352, 0xACAD, 0xCB52, 0xB4AD, 0xD4AD, 0xAB52,    0xCD52, 0xB2AD, 0xD2AD, 0xAD52, 0xCAAD, 0xB552, 0xD552, 0xAAAD,    0xCCCA, 0xB335, 0xD335, 0xACCA, 0xCB35, 0xB4CA, 0xD4CA, 0xAB35,    0xCD35, 0xB2CA, 0xD2CA, 0xAD35, 0xCACA, 0xB535, 0xD535, 0xAACA,    0xCCB5, 0xB34A, 0xD34A, 0xACB5, 0xCB4A, 0xB4B5, 0xD4B5, 0xAB4A,    0xCD4A, 0xB2B5, 0xD2B5, 0xAD4A, 0xCAB5, 0xB54A, 0xD54A, 0xAAB5,    0xCCD5, 0xB32A, 0xD32A, 0xACD5, 0xCB2A, 0xB4D5, 0xD4D5, 0xAB2A,    0xCD2A, 0xB2D5, 0xD2D5, 0xAD2A, 0xCAD5, 0xB52A, 0xD52A, 0xAAD5,    0xCCAA, 0xB355, 0xD355, 0xACAA, 0xCB55, 0xB4AA, 0xD4AA, 0xAB55,    0xCD55, 0xB2AA, 0xD2AA, 0xAD55, 0xCAAA, 0xB555, 0xD555, 0xAAAA };/* * Biphase frame headers for SP/DIF, including the special bit framing * errors used to detect (sub)frame start conditions. See above table * for details. */const uint16_t x_preamble = 0xE2CC;const uint16_t y_preamble = 0xE4CC;const uint16_t z_preamble = 0xE8CC;// DMA configuration infostatic dma_channel_config snd_dma_a_cfg;static dma_channel_config snd_dma_b_cfg;// some chonky buffers to store audio samplesstatic uint8_t sample_buf_a[AUDIO_BUFFER_SIZE];static uint8_t sample_buf_b[AUDIO_BUFFER_SIZE];// tracking for the state of the above buffersenum bufstate { STALE, FILLING, READY };static volatile bufstate sbufst_a = STALE;static volatile bufstate sbufst_b = STALE;enum bufselect { A, B };static bufselect sbufsel = A;static uint16_t sbufpos = 0;static uint8_t sbufswap = 0;// buffers for storing biphase patterns#define SAMPLE_CHUNK_SIZE 1024 // ~5.8ms#define WIRE_BUFFER_SIZE (SAMPLE_CHUNK_SIZE * 2)static uint16_t wire_buf_a[WIRE_BUFFER_SIZE];static uint16_t wire_buf_b[WIRE_BUFFER_SIZE];// tracking for audio playbackstatic uint8_t audio_owner; // SCSI ID or 0xFF when idlestatic volatile bool audio_paused = false;static ImageBackingStore* audio_file;static uint64_t fpos;static uint32_t fleft;// historical playback status informationstatic audio_status_code audio_last_status[8] = {ASC_NO_STATUS};// volume information for targetsstatic volatile uint16_t volumes[8] = {    DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL,    DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL, DEFAULT_VOLUME_LEVEL};// mechanism for cleanly stopping DMA unitsstatic volatile bool audio_stopping = false;// trackers for the below function callstatic uint16_t sfcnt = 0; // sub-frame count; 2 per frame, 192 frames/blockstatic uint8_t invert = 0; // biphase encode help: set if last wire bit was '1'/* * Translates 16-bit stereo sound samples to biphase wire patterns for the * SPI peripheral. Produces 8 patterns (128 bits, or 1 SP/DIF frame) per pair * of input samples. Provided length is the total number of sample bytes present, * _twice_ the number of samples (little-endian order assumed) *  * This function operates with side-effects and is not safe to call from both * cores. It must also be called in the same order data is intended to be * output. */static void snd_encode(uint8_t* samples, uint16_t* wire_patterns, uint16_t len, uint8_t swap) {    uint16_t wvol = volumes[audio_owner & 7];    uint8_t vol = ((wvol >> 8) + (wvol & 0xFF)) >> 1; // average of both values    // limit maximum volume; with my DACs I've had persistent issues    // with signal clipping when sending data in the highest bit position    vol = vol >> 2;    uint16_t widx = 0;    for (uint16_t i = 0; i < len; i += 2) {        uint32_t sample = 0;        uint8_t parity = 0;        if (samples != NULL) {            int32_t rsamp;            if (swap) {                rsamp = (int16_t)(samples[i + 1] + (samples[i] << 8));            } else {                rsamp = (int16_t)(samples[i] + (samples[i + 1] << 8));            }            // linear scale to requested audio value            rsamp *= vol;            // use 20 bits of value only, which allows ignoring the lowest 8            // bits during biphase conversion (after including sample shift)            sample = ((uint32_t)rsamp) & 0xFFFFF0;            // determine parity, simplified to one lookup via XOR            parity = ((sample >> 16) ^ (sample >> 8)) ^ sample;            parity = snd_parity[parity];            // shift sample into the correct bit positions of the sub-frame.            sample = sample << 4;        }        // if needed, establish even parity with P bit        if (parity % 2) sample |= 0x80000000;        // translate sample into biphase encoding        // first is low 8 bits: preamble and 4 least-significant bits of         // 24-bit audio, pre-encoded as all '0' due to 16-bit samples        uint16_t wp;        if (sfcnt == 0) {            wp = z_preamble; // left channel, block start        } else if (sfcnt % 2) {            wp = y_preamble; // right channel        } else {            wp = x_preamble; // left channel, not block start        }        if (invert) wp = ~wp;        invert = wp & 1;        wire_patterns[widx++] = wp;        // next 8 bits        wp = biphase[(uint8_t) (sample >> 8)];        if (invert) wp = ~wp;        invert = wp & 1;        wire_patterns[widx++] = wp;        // next 8 again, all audio data        wp = biphase[(uint8_t) (sample >> 16)];        if (invert) wp = ~wp;        invert = wp & 1;        wire_patterns[widx++] = wp;        // final 8, low 4 audio data and high 4 control bits        wp = biphase[(uint8_t) (sample >> 24)];        if (invert) wp = ~wp;        invert = wp & 1;        wire_patterns[widx++] = wp;        // increment subframe counter for next pass        sfcnt++;        if (sfcnt == 384) sfcnt = 0; // if true, block complete    }}// functions for passing to Core1static void snd_process_a() {    if (sbufsel == A) {        if (sbufst_a == READY) {            snd_encode(sample_buf_a + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);            sbufpos += SAMPLE_CHUNK_SIZE;            if (sbufpos >= AUDIO_BUFFER_SIZE) {                sbufsel = B;                sbufpos = 0;                sbufst_a = STALE;            }        } else {            snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);        }    } else {        if (sbufst_b == READY) {            snd_encode(sample_buf_b + sbufpos, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);            sbufpos += SAMPLE_CHUNK_SIZE;            if (sbufpos >= AUDIO_BUFFER_SIZE) {                sbufsel = A;                sbufpos = 0;                sbufst_b = STALE;            }        } else {            snd_encode(NULL, wire_buf_a, SAMPLE_CHUNK_SIZE, sbufswap);        }    }}static void snd_process_b() {    // clone of above for the other wire buffer    if (sbufsel == A) {        if (sbufst_a == READY) {            snd_encode(sample_buf_a + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);            sbufpos += SAMPLE_CHUNK_SIZE;            if (sbufpos >= AUDIO_BUFFER_SIZE) {                sbufsel = B;                sbufpos = 0;                sbufst_a = STALE;            }        } else {            snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);        }    } else {        if (sbufst_b == READY) {            snd_encode(sample_buf_b + sbufpos, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);            sbufpos += SAMPLE_CHUNK_SIZE;            if (sbufpos >= AUDIO_BUFFER_SIZE) {                sbufsel = A;                sbufpos = 0;                sbufst_b = STALE;            }        } else {            snd_encode(NULL, wire_buf_b, SAMPLE_CHUNK_SIZE, sbufswap);        }    }}// Allows execution on Core1 via function pointers. Each function can take// no parameters and should return nothing, operating via side-effects only.static void core1_handler() {    while (1) {        void (*function)() = (void (*)()) multicore_fifo_pop_blocking();        (*function)();    }}/* ------------------------------------------------------------------------ *//* ---------- VISIBLE FUNCTIONS ------------------------------------------- *//* ------------------------------------------------------------------------ */void audio_dma_irq() {    if (dma_hw->intr & (1 << SOUND_DMA_CHA)) {        dma_hw->ints0 = (1 << SOUND_DMA_CHA);        multicore_fifo_push_blocking((uintptr_t) &snd_process_a);        if (audio_stopping) {            channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHA);        }        dma_channel_configure(SOUND_DMA_CHA,                &snd_dma_a_cfg,                &(spi_get_hw(AUDIO_SPI)->dr),                &wire_buf_a,                WIRE_BUFFER_SIZE,                false);    } else if (dma_hw->intr & (1 << SOUND_DMA_CHB)) {        dma_hw->ints0 = (1 << SOUND_DMA_CHB);        multicore_fifo_push_blocking((uintptr_t) &snd_process_b);        if (audio_stopping) {            channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHB);        }        dma_channel_configure(SOUND_DMA_CHB,                &snd_dma_b_cfg,                &(spi_get_hw(AUDIO_SPI)->dr),                &wire_buf_b,                WIRE_BUFFER_SIZE,                false);    }}bool audio_is_active() {    return audio_owner != 0xFF;}bool audio_is_playing(uint8_t id) {    return audio_owner == (id & 7);}void audio_setup() {    // setup SPI to blast SP/DIF data over the TX pin    spi_set_baudrate(AUDIO_SPI, 5644800); // will be slightly wrong, ~0.03% slow    hw_write_masked(&spi_get_hw(AUDIO_SPI)->cr0,            0x1F, // TI mode with 16 bits            SPI_SSPCR0_DSS_BITS | SPI_SSPCR0_FRF_BITS);    spi_get_hw(AUDIO_SPI)->dmacr = SPI_SSPDMACR_TXDMAE_BITS;    hw_set_bits(&spi_get_hw(AUDIO_SPI)->cr1, SPI_SSPCR1_SSE_BITS);    dma_channel_claim(SOUND_DMA_CHA);	dma_channel_claim(SOUND_DMA_CHB);    log("Starting Core1 for audio");    multicore_launch_core1(core1_handler);}void audio_poll() {    if (!audio_is_active()) return;    if (audio_paused) return;    if (fleft == 0 && sbufst_a == STALE && sbufst_b == STALE) {        // out of data and ready to stop        audio_stop(audio_owner);        return;    } else if (fleft == 0) {        // out of data to read but still working on remainder        return;    } else if (!audio_file->isOpen()) {        // closed elsewhere, maybe disk ejected?        debuglog("------ Playback stop due to closed file");        audio_stop(audio_owner);        return;    }    // are new audio samples needed from the memory card?    uint8_t* audiobuf;    if (sbufst_a == STALE) {        sbufst_a = FILLING;        audiobuf = sample_buf_a;    } else if (sbufst_b == STALE) {        sbufst_b = FILLING;        audiobuf = sample_buf_b;    } else {        // no data needed this time        return;    }    platform_set_sd_callback(NULL, NULL);    uint16_t toRead = AUDIO_BUFFER_SIZE;    if (fleft < toRead) toRead = fleft;    if (audio_file->position() != fpos) {        // should be uncommon due to SCSI command restrictions on devices        // playing audio; if this is showing up in logs a different approach        // will be needed to avoid seek performance issues on FAT32 vols        debuglog("------ Audio seek required on ", audio_owner);        if (!audio_file->seek(fpos)) {            log("Audio error, unable to seek to ", fpos, ", ID:", audio_owner);        }    }    if (audio_file->read(audiobuf, toRead) != toRead) {        log("Audio sample data underrun");    }    fpos += toRead;    fleft -= toRead;    if (sbufst_a == FILLING) {        sbufst_a = READY;    } else if (sbufst_b == FILLING) {        sbufst_b = READY;    }}bool audio_play(uint8_t owner, ImageBackingStore* img, uint64_t start, uint64_t end, bool swap) {    // stop any existing playback first    if (audio_is_active()) audio_stop(audio_owner);    // debuglog("Request to play ('", file, "':", start, ":", end, ")");    // verify audio file is present and inputs are (somewhat) sane    if (owner == 0xFF) {        log("Illegal audio owner");        return false;    }    if (start >= end) {        log("Invalid range for audio (", start, ":", end, ")");        return false;    }    platform_set_sd_callback(NULL, NULL);    audio_file = img;    if (!audio_file->isOpen()) {        log("File not open for audio playback, ", owner);        return false;    }    uint64_t len = audio_file->size();    if (start > len) {        log("File playback request start (", start, ":", len, ") outside file bounds");        return false;    }    // truncate playback end to end of file    // we will not consider this to be an error at the moment    if (end > len) {        debuglog("------ Truncate audio play request end ", end, " to file size ", len);        end = len;    }    fleft = end - start;    if (fleft <= 2 * AUDIO_BUFFER_SIZE) {        log("File playback request (", start, ":", end, ") too short");        return false;    }    // read in initial sample buffers    if (!audio_file->seek(start)) {        log("Sample file failed start seek to ", start);        return false;    }    if (audio_file->read(sample_buf_a, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) {        log("File playback start returned fewer bytes than allowed");        return false;    }    if (audio_file->read(sample_buf_b, AUDIO_BUFFER_SIZE) != AUDIO_BUFFER_SIZE) {        log("File playback start returned fewer bytes than allowed");        return false;    }    // prepare initial tracking state    fpos = audio_file->position();    fleft -= AUDIO_BUFFER_SIZE * 2;    sbufsel = A;    sbufpos = 0;    sbufswap = swap;    sbufst_a = READY;    sbufst_b = READY;    audio_owner = owner & 7;    audio_last_status[audio_owner] = ASC_PLAYING;    audio_paused = false;    // prepare the wire buffers    for (uint16_t i = 0; i < WIRE_BUFFER_SIZE; i++) {        wire_buf_a[i] = 0;        wire_buf_b[i] = 0;    }    sfcnt = 0;    invert = 0;    // setup the two DMA units to hand-off to each other    // to maintain a stable bitstream these need to run without interruption	snd_dma_a_cfg = dma_channel_get_default_config(SOUND_DMA_CHA);	channel_config_set_transfer_data_size(&snd_dma_a_cfg, DMA_SIZE_16);	channel_config_set_dreq(&snd_dma_a_cfg, spi_get_dreq(AUDIO_SPI, true));	channel_config_set_read_increment(&snd_dma_a_cfg, true);	channel_config_set_chain_to(&snd_dma_a_cfg, SOUND_DMA_CHB);    // version of pico-sdk lacks channel_config_set_high_priority()    snd_dma_a_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;	dma_channel_configure(SOUND_DMA_CHA, &snd_dma_a_cfg, &(spi_get_hw(AUDIO_SPI)->dr),			&wire_buf_a, WIRE_BUFFER_SIZE, false);    dma_channel_set_irq0_enabled(SOUND_DMA_CHA, true);	snd_dma_b_cfg = dma_channel_get_default_config(SOUND_DMA_CHB);	channel_config_set_transfer_data_size(&snd_dma_b_cfg, DMA_SIZE_16);	channel_config_set_dreq(&snd_dma_b_cfg, spi_get_dreq(AUDIO_SPI, true));	channel_config_set_read_increment(&snd_dma_b_cfg, true);	channel_config_set_chain_to(&snd_dma_b_cfg, SOUND_DMA_CHA);    snd_dma_b_cfg.ctrl |= DMA_CH0_CTRL_TRIG_HIGH_PRIORITY_BITS;	dma_channel_configure(SOUND_DMA_CHB, &snd_dma_b_cfg, &(spi_get_hw(AUDIO_SPI)->dr),			&wire_buf_b, WIRE_BUFFER_SIZE, false);    dma_channel_set_irq0_enabled(SOUND_DMA_CHB, true);    // ready to go    dma_channel_start(SOUND_DMA_CHA);    return true;}bool audio_set_paused(uint8_t id, bool paused) {    if (audio_owner != (id & 7)) return false;    else if (audio_paused && paused) return false;    else if (!audio_paused && !paused) return false;    audio_paused = paused;    if (paused) {        audio_last_status[audio_owner] = ASC_PAUSED;    } else {        audio_last_status[audio_owner] = ASC_PLAYING;    }    return true;}void audio_stop(uint8_t id) {    if (audio_owner != (id & 7)) return;    // to help mute external hardware, send a bunch of '0' samples prior to    // halting the datastream; easiest way to do this is invalidating the    // sample buffers, same as if there was a sample data underrun    sbufst_a = STALE;    sbufst_b = STALE;    // then indicate that the streams should no longer chain to one another    // and wait for them to shut down naturally    audio_stopping = true;    while (dma_channel_is_busy(SOUND_DMA_CHA)) tight_loop_contents();    while (dma_channel_is_busy(SOUND_DMA_CHB)) tight_loop_contents();    while (spi_is_busy(AUDIO_SPI)) tight_loop_contents();    audio_stopping = false;    // idle the subsystem    audio_last_status[audio_owner] = ASC_COMPLETED;    audio_paused = false;    audio_owner = 0xFF;}audio_status_code audio_get_status_code(uint8_t id) {    audio_status_code tmp = audio_last_status[id & 7];    if (tmp == ASC_COMPLETED || tmp == ASC_ERRORED) {        audio_last_status[id & 7] = ASC_NO_STATUS;    }    return tmp;}uint16_t audio_get_volume(uint8_t id) {    return volumes[id & 7];}void audio_set_volume(uint8_t id, uint16_t vol) {    volumes[id & 7] = vol;}#endif // ENABLE_AUDIO_OUTPUT
 |