sdio.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022 Rabbit Hole Computing™
  3. * Copyright (c) 2024 Tech by Androda, LLC
  4. *
  5. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
  6. *
  7. * https://www.gnu.org/licenses/gpl-3.0.html
  8. * ----
  9. * This program is free software: you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation, either version 3 of the License, or
  12. * (at your option) any later version. 
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17. * GNU General Public License for more details. 
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  21. **/
  22. // Implementation of SDIO communication for RP2040 and RP23XX
  23. //
  24. // The RP2040 official work-in-progress code at
  25. // https://github.com/raspberrypi/pico-extras/tree/master/src/rp2_common/pico_sd_card
  26. // may be useful reference, but this is independent implementation.
  27. //
  28. // For official SDIO specifications, refer to:
  29. // https://www.sdcard.org/downloads/pls/
  30. // "SDIO Physical Layer Simplified Specification Version 8.00"
  31. #include "sdio.h"
  32. #include <hardware/pio.h>
  33. #include <hardware/dma.h>
  34. #include <hardware/gpio.h>
  35. #include <hardware/structs/scb.h>
  36. #include <ZuluSCSI_platform.h>
  37. #include <ZuluSCSI_log.h>
  38. #if defined(ZULUSCSI_PICO) || defined(ZULUSCSI_BS2)
  39. # include "sdio_Pico.pio.h"
  40. #elif defined(ZULUSCSI_PICO_2)
  41. # include "sdio_Pico_2.pio.h"
  42. #elif defined(ZULUSCSI_RP2350A)
  43. # include "sdio_RP2350A.pio.h"
  44. #else
  45. # include "sdio_RP2040.pio.h"
  46. #endif
  47. #define SDIO_PIO pio1
  48. #define SDIO_CMD_SM 0
  49. #define SDIO_DATA_SM 1
  50. #define SDIO_DMA_CH 4
  51. #define SDIO_DMA_CHB 5
  52. // Maximum number of 512 byte blocks to transfer in one request
  53. #define SDIO_MAX_BLOCKS 256
  54. enum sdio_transfer_state_t { SDIO_IDLE, SDIO_RX, SDIO_TX, SDIO_TX_WAIT_IDLE};
  55. static struct {
  56. uint32_t pio_cmd_clk_offset;
  57. uint32_t pio_data_rx_offset;
  58. pio_sm_config pio_cfg_data_rx;
  59. uint32_t pio_data_tx_offset;
  60. pio_sm_config pio_cfg_data_tx;
  61. sdio_transfer_state_t transfer_state;
  62. uint32_t transfer_start_time;
  63. uint32_t *data_buf;
  64. uint32_t blocks_done; // Number of blocks transferred so far
  65. uint32_t total_blocks; // Total number of blocks to transfer
  66. uint32_t blocks_checksumed; // Number of blocks that have had CRC calculated
  67. uint32_t checksum_errors; // Number of checksum errors detected
  68. // Variables for block writes
  69. uint64_t next_wr_block_checksum;
  70. uint32_t end_token_buf[3]; // CRC and end token for write block
  71. sdio_status_t wr_status;
  72. uint32_t card_response;
  73. // Variables for block reads
  74. // This is used to perform DMA into data buffers and checksum buffers separately.
  75. struct {
  76. void * write_addr;
  77. uint32_t transfer_count;
  78. } dma_blocks[SDIO_MAX_BLOCKS * 2];
  79. struct {
  80. uint32_t top;
  81. uint32_t bottom;
  82. } received_checksums[SDIO_MAX_BLOCKS];
  83. } g_sdio;
  84. void rp2040_sdio_dma_irq();
  85. /*******************************************************
  86. * Checksum algorithms
  87. *******************************************************/
  88. // Table lookup for calculating CRC-7 checksum that is used in SDIO command packets.
  89. // Usage:
  90. // uint8_t crc = 0;
  91. // crc = crc7_table[crc ^ byte];
  92. // .. repeat for every byte ..
  93. static const uint8_t crc7_table[256] = {
  94. 0x00, 0x12, 0x24, 0x36, 0x48, 0x5a, 0x6c, 0x7e, 0x90, 0x82, 0xb4, 0xa6, 0xd8, 0xca, 0xfc, 0xee,
  95. 0x32, 0x20, 0x16, 0x04, 0x7a, 0x68, 0x5e, 0x4c, 0xa2, 0xb0, 0x86, 0x94, 0xea, 0xf8, 0xce, 0xdc,
  96. 0x64, 0x76, 0x40, 0x52, 0x2c, 0x3e, 0x08, 0x1a, 0xf4, 0xe6, 0xd0, 0xc2, 0xbc, 0xae, 0x98, 0x8a,
  97. 0x56, 0x44, 0x72, 0x60, 0x1e, 0x0c, 0x3a, 0x28, 0xc6, 0xd4, 0xe2, 0xf0, 0x8e, 0x9c, 0xaa, 0xb8,
  98. 0xc8, 0xda, 0xec, 0xfe, 0x80, 0x92, 0xa4, 0xb6, 0x58, 0x4a, 0x7c, 0x6e, 0x10, 0x02, 0x34, 0x26,
  99. 0xfa, 0xe8, 0xde, 0xcc, 0xb2, 0xa0, 0x96, 0x84, 0x6a, 0x78, 0x4e, 0x5c, 0x22, 0x30, 0x06, 0x14,
  100. 0xac, 0xbe, 0x88, 0x9a, 0xe4, 0xf6, 0xc0, 0xd2, 0x3c, 0x2e, 0x18, 0x0a, 0x74, 0x66, 0x50, 0x42,
  101. 0x9e, 0x8c, 0xba, 0xa8, 0xd6, 0xc4, 0xf2, 0xe0, 0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62, 0x70,
  102. 0x82, 0x90, 0xa6, 0xb4, 0xca, 0xd8, 0xee, 0xfc, 0x12, 0x00, 0x36, 0x24, 0x5a, 0x48, 0x7e, 0x6c,
  103. 0xb0, 0xa2, 0x94, 0x86, 0xf8, 0xea, 0xdc, 0xce, 0x20, 0x32, 0x04, 0x16, 0x68, 0x7a, 0x4c, 0x5e,
  104. 0xe6, 0xf4, 0xc2, 0xd0, 0xae, 0xbc, 0x8a, 0x98, 0x76, 0x64, 0x52, 0x40, 0x3e, 0x2c, 0x1a, 0x08,
  105. 0xd4, 0xc6, 0xf0, 0xe2, 0x9c, 0x8e, 0xb8, 0xaa, 0x44, 0x56, 0x60, 0x72, 0x0c, 0x1e, 0x28, 0x3a,
  106. 0x4a, 0x58, 0x6e, 0x7c, 0x02, 0x10, 0x26, 0x34, 0xda, 0xc8, 0xfe, 0xec, 0x92, 0x80, 0xb6, 0xa4,
  107. 0x78, 0x6a, 0x5c, 0x4e, 0x30, 0x22, 0x14, 0x06, 0xe8, 0xfa, 0xcc, 0xde, 0xa0, 0xb2, 0x84, 0x96,
  108. 0x2e, 0x3c, 0x0a, 0x18, 0x66, 0x74, 0x42, 0x50, 0xbe, 0xac, 0x9a, 0x88, 0xf6, 0xe4, 0xd2, 0xc0,
  109. 0x1c, 0x0e, 0x38, 0x2a, 0x54, 0x46, 0x70, 0x62, 0x8c, 0x9e, 0xa8, 0xba, 0xc4, 0xd6, 0xe0, 0xf2
  110. };
  111. // Calculate the CRC16 checksum for parallel 4 bit lines separately.
  112. // When the SDIO bus operates in 4-bit mode, the CRC16 algorithm
  113. // is applied to each line separately and generates total of
  114. // 4 x 16 = 64 bits of checksum.
  115. __attribute__((optimize("O3")))
  116. uint64_t sdio_crc16_4bit_checksum(uint32_t *data, uint32_t num_words)
  117. {
  118. uint64_t crc = 0;
  119. uint32_t *end = data + num_words;
  120. while (data < end)
  121. {
  122. for (int unroll = 0; unroll < 4; unroll++)
  123. {
  124. // Each 32-bit word contains 8 bits per line.
  125. // Reverse the bytes because SDIO protocol is big-endian.
  126. uint32_t data_in = __builtin_bswap32(*data++);
  127. // Shift out 8 bits for each line
  128. uint32_t data_out = crc >> 32;
  129. crc <<= 32;
  130. // XOR outgoing data to itself with 4 bit delay
  131. data_out ^= (data_out >> 16);
  132. // XOR incoming data to outgoing data with 4 bit delay
  133. data_out ^= (data_in >> 16);
  134. // XOR outgoing and incoming data to accumulator at each tap
  135. uint64_t xorred = data_out ^ data_in;
  136. crc ^= xorred;
  137. crc ^= xorred << (5 * 4);
  138. crc ^= xorred << (12 * 4);
  139. }
  140. }
  141. return crc;
  142. }
  143. /*******************************************************
  144. * Status Register Receiver
  145. *******************************************************/
  146. sdio_status_t receive_status_register(uint8_t* sds) {
  147. rp2040_sdio_rx_start(sds, 1, 64);
  148. // Wait for the DMA operation to complete, or fail if it took too long
  149. waitagain:
  150. while (dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH))
  151. {
  152. if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 2)
  153. {
  154. // Reset the state machine program
  155. dma_channel_abort(SDIO_DMA_CHB);
  156. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  157. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  158. return SDIO_ERR_RESPONSE_TIMEOUT;
  159. }
  160. }
  161. // Assert that both DMA channels are complete
  162. if(dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH)) {
  163. // Wait failure, go back.
  164. goto waitagain;
  165. }
  166. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  167. g_sdio.transfer_state = SDIO_IDLE;
  168. return SDIO_OK;
  169. }
  170. /*******************************************************
  171. * Basic SDIO command execution
  172. *******************************************************/
  173. static void sdio_send_command(uint8_t command, uint32_t arg, uint8_t response_bits)
  174. {
  175. // dbgmsg("SDIO Command: ", (int)command, " arg ", arg);
  176. // Format the arguments in the way expected by the PIO code.
  177. uint32_t word0 =
  178. (47 << 24) | // Number of bits in command minus one
  179. ( 1 << 22) | // Transfer direction from host to card
  180. (command << 16) | // Command byte
  181. (((arg >> 24) & 0xFF) << 8) | // MSB byte of argument
  182. (((arg >> 16) & 0xFF) << 0);
  183. uint32_t word1 =
  184. (((arg >> 8) & 0xFF) << 24) |
  185. (((arg >> 0) & 0xFF) << 16) | // LSB byte of argument
  186. ( 1 << 8); // End bit
  187. // Set number of bits in response minus one, or leave at 0 if no response expected
  188. if (response_bits)
  189. {
  190. word1 |= ((response_bits - 1) << 0);
  191. }
  192. // Calculate checksum in the order that the bytes will be transmitted (big-endian)
  193. uint8_t crc = 0;
  194. crc = crc7_table[crc ^ ((word0 >> 16) & 0xFF)];
  195. crc = crc7_table[crc ^ ((word0 >> 8) & 0xFF)];
  196. crc = crc7_table[crc ^ ((word0 >> 0) & 0xFF)];
  197. crc = crc7_table[crc ^ ((word1 >> 24) & 0xFF)];
  198. crc = crc7_table[crc ^ ((word1 >> 16) & 0xFF)];
  199. word1 |= crc << 8;
  200. // Transmit command
  201. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  202. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word0);
  203. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word1);
  204. }
  205. sdio_status_t rp2040_sdio_command_R1(uint8_t command, uint32_t arg, uint32_t *response)
  206. {
  207. sdio_send_command(command, arg, response ? 48 : 0);
  208. // Wait for response
  209. uint32_t start = millis();
  210. uint32_t wait_words = response ? 2 : 1;
  211. while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < wait_words)
  212. {
  213. if ((uint32_t)(millis() - start) > 2)
  214. {
  215. if (command != 8) // Don't log for missing SD card
  216. {
  217. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R1(", (int)command, "), ",
  218. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  219. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  220. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  221. }
  222. // Reset the state machine program
  223. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  224. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  225. return SDIO_ERR_RESPONSE_TIMEOUT;
  226. }
  227. }
  228. if (response)
  229. {
  230. // Read out response packet
  231. uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  232. uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  233. // dbgmsg("SDIO R1 response: ", resp0, " ", resp1);
  234. // Calculate response checksum
  235. uint8_t crc = 0;
  236. crc = crc7_table[crc ^ ((resp0 >> 24) & 0xFF)];
  237. crc = crc7_table[crc ^ ((resp0 >> 16) & 0xFF)];
  238. crc = crc7_table[crc ^ ((resp0 >> 8) & 0xFF)];
  239. crc = crc7_table[crc ^ ((resp0 >> 0) & 0xFF)];
  240. crc = crc7_table[crc ^ ((resp1 >> 8) & 0xFF)];
  241. uint8_t actual_crc = ((resp1 >> 0) & 0xFE);
  242. if (crc != actual_crc)
  243. {
  244. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  245. return SDIO_ERR_RESPONSE_CRC;
  246. }
  247. uint8_t response_cmd = ((resp0 >> 24) & 0xFF);
  248. if (response_cmd != command && command != 41)
  249. {
  250. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): received reply for ", (int)response_cmd);
  251. return SDIO_ERR_RESPONSE_CODE;
  252. }
  253. *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
  254. }
  255. else
  256. {
  257. // Read out dummy marker
  258. pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  259. }
  260. return SDIO_OK;
  261. }
  262. sdio_status_t rp2040_sdio_command_R2(uint8_t command, uint32_t arg, uint8_t response[16])
  263. {
  264. // The response is too long to fit in the PIO FIFO, so use DMA to receive it.
  265. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  266. uint32_t response_buf[5];
  267. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  268. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  269. channel_config_set_read_increment(&dmacfg, false);
  270. channel_config_set_write_increment(&dmacfg, true);
  271. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false));
  272. dma_channel_configure(SDIO_DMA_CH, &dmacfg, &response_buf, &SDIO_PIO->rxf[SDIO_CMD_SM], 5, true);
  273. sdio_send_command(command, arg, 136);
  274. uint32_t start = millis();
  275. while (dma_channel_is_busy(SDIO_DMA_CH))
  276. {
  277. if ((uint32_t)(millis() - start) > 2)
  278. {
  279. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R2(", (int)command, "), ",
  280. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  281. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  282. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  283. // Reset the state machine program
  284. dma_channel_abort(SDIO_DMA_CH);
  285. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  286. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  287. return SDIO_ERR_RESPONSE_TIMEOUT;
  288. }
  289. }
  290. dma_channel_abort(SDIO_DMA_CH);
  291. // Copy the response payload to output buffer
  292. response[0] = ((response_buf[0] >> 16) & 0xFF);
  293. response[1] = ((response_buf[0] >> 8) & 0xFF);
  294. response[2] = ((response_buf[0] >> 0) & 0xFF);
  295. response[3] = ((response_buf[1] >> 24) & 0xFF);
  296. response[4] = ((response_buf[1] >> 16) & 0xFF);
  297. response[5] = ((response_buf[1] >> 8) & 0xFF);
  298. response[6] = ((response_buf[1] >> 0) & 0xFF);
  299. response[7] = ((response_buf[2] >> 24) & 0xFF);
  300. response[8] = ((response_buf[2] >> 16) & 0xFF);
  301. response[9] = ((response_buf[2] >> 8) & 0xFF);
  302. response[10] = ((response_buf[2] >> 0) & 0xFF);
  303. response[11] = ((response_buf[3] >> 24) & 0xFF);
  304. response[12] = ((response_buf[3] >> 16) & 0xFF);
  305. response[13] = ((response_buf[3] >> 8) & 0xFF);
  306. response[14] = ((response_buf[3] >> 0) & 0xFF);
  307. response[15] = ((response_buf[4] >> 0) & 0xFF);
  308. // Calculate checksum of the payload
  309. uint8_t crc = 0;
  310. for (int i = 0; i < 15; i++)
  311. {
  312. crc = crc7_table[crc ^ response[i]];
  313. }
  314. uint8_t actual_crc = response[15] & 0xFE;
  315. if (crc != actual_crc)
  316. {
  317. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  318. return SDIO_ERR_RESPONSE_CRC;
  319. }
  320. uint8_t response_cmd = ((response_buf[0] >> 24) & 0xFF);
  321. if (response_cmd != 0x3F)
  322. {
  323. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): Expected reply code 0x3F");
  324. return SDIO_ERR_RESPONSE_CODE;
  325. }
  326. return SDIO_OK;
  327. }
  328. sdio_status_t rp2040_sdio_command_R3(uint8_t command, uint32_t arg, uint32_t *response)
  329. {
  330. sdio_send_command(command, arg, 48);
  331. // Wait for response
  332. uint32_t start = millis();
  333. while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < 2)
  334. {
  335. if ((uint32_t)(millis() - start) > 2)
  336. {
  337. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R3(", (int)command, "), ",
  338. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_clk_offset,
  339. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  340. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  341. // Reset the state machine program
  342. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  343. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(g_sdio.pio_cmd_clk_offset));
  344. return SDIO_ERR_RESPONSE_TIMEOUT;
  345. }
  346. }
  347. // Read out response packet
  348. uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  349. uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  350. *response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
  351. // dbgmsg("SDIO R3 response: ", resp0, " ", resp1);
  352. return SDIO_OK;
  353. }
  354. /*******************************************************
  355. * Data reception from SD card
  356. *******************************************************/
  357. sdio_status_t rp2040_sdio_rx_start(uint8_t *buffer, uint32_t num_blocks, uint32_t block_size)
  358. {
  359. // Buffer must be aligned
  360. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  361. g_sdio.transfer_state = SDIO_RX;
  362. g_sdio.transfer_start_time = millis();
  363. g_sdio.data_buf = (uint32_t*)buffer;
  364. g_sdio.blocks_done = 0;
  365. g_sdio.total_blocks = num_blocks;
  366. g_sdio.blocks_checksumed = 0;
  367. g_sdio.checksum_errors = 0;
  368. // Create DMA block descriptors to store each block of block_size bytes of data to buffer
  369. // and then 8 bytes to g_sdio.received_checksums.
  370. for (int i = 0; i < num_blocks; i++)
  371. {
  372. g_sdio.dma_blocks[i * 2].write_addr = buffer + i * block_size;
  373. g_sdio.dma_blocks[i * 2].transfer_count = block_size / sizeof(uint32_t);
  374. g_sdio.dma_blocks[i * 2 + 1].write_addr = &g_sdio.received_checksums[i];
  375. g_sdio.dma_blocks[i * 2 + 1].transfer_count = 2;
  376. }
  377. g_sdio.dma_blocks[num_blocks * 2].write_addr = 0;
  378. g_sdio.dma_blocks[num_blocks * 2].transfer_count = 0;
  379. // Configure first DMA channel for reading from the PIO RX fifo
  380. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  381. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  382. channel_config_set_read_increment(&dmacfg, false);
  383. channel_config_set_write_increment(&dmacfg, true);
  384. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  385. channel_config_set_bswap(&dmacfg, true);
  386. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  387. dma_channel_configure(SDIO_DMA_CH, &dmacfg, 0, &SDIO_PIO->rxf[SDIO_DATA_SM], 0, false);
  388. // Configure second DMA channel for reconfiguring the first one
  389. dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  390. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  391. channel_config_set_read_increment(&dmacfg, true);
  392. channel_config_set_write_increment(&dmacfg, true);
  393. channel_config_set_ring(&dmacfg, true, 3);
  394. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &dma_hw->ch[SDIO_DMA_CH].al1_write_addr,
  395. g_sdio.dma_blocks, 2, false);
  396. // Initialize PIO state machine
  397. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_rx_offset, &g_sdio.pio_cfg_data_rx);
  398. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  399. // Write number of nibbles to receive to Y register
  400. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, block_size * 2 + 16 - 1);
  401. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  402. // Enable RX FIFO join because we don't need the TX FIFO during transfer.
  403. // This gives more leeway for the DMA block switching
  404. SDIO_PIO->sm[SDIO_DATA_SM].shiftctrl |= PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS;
  405. // Start PIO and DMA
  406. dma_channel_start(SDIO_DMA_CHB);
  407. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  408. return SDIO_OK;
  409. }
  410. // Check checksums for received blocks
  411. static void sdio_verify_rx_checksums(uint32_t maxcount)
  412. {
  413. while (g_sdio.blocks_checksumed < g_sdio.blocks_done && maxcount-- > 0)
  414. {
  415. // Calculate checksum from received data
  416. int blockidx = g_sdio.blocks_checksumed++;
  417. uint64_t checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  418. SDIO_WORDS_PER_BLOCK);
  419. // Convert received checksum to little-endian format
  420. uint32_t top = __builtin_bswap32(g_sdio.received_checksums[blockidx].top);
  421. uint32_t bottom = __builtin_bswap32(g_sdio.received_checksums[blockidx].bottom);
  422. uint64_t expected = ((uint64_t)top << 32) | bottom;
  423. if (checksum != expected)
  424. {
  425. g_sdio.checksum_errors++;
  426. if (g_sdio.checksum_errors == 1)
  427. {
  428. logmsg("SDIO checksum error in reception: block ", blockidx,
  429. " calculated ", checksum, " expected ", expected);
  430. }
  431. }
  432. }
  433. }
  434. sdio_status_t rp2040_sdio_rx_poll(uint32_t *bytes_complete)
  435. {
  436. // Was everything done when the previous rx_poll() finished?
  437. if (g_sdio.blocks_done >= g_sdio.total_blocks)
  438. {
  439. g_sdio.transfer_state = SDIO_IDLE;
  440. }
  441. else
  442. {
  443. // Use the idle time to calculate checksums
  444. sdio_verify_rx_checksums(4);
  445. // Check how many DMA control blocks have been consumed
  446. uint32_t dma_ctrl_block_count = (dma_hw->ch[SDIO_DMA_CHB].read_addr - (uint32_t)&g_sdio.dma_blocks);
  447. dma_ctrl_block_count /= sizeof(g_sdio.dma_blocks[0]);
  448. // Compute how many complete 512 byte SDIO blocks have been transferred
  449. // When transfer ends, dma_ctrl_block_count == g_sdio.total_blocks * 2 + 1
  450. g_sdio.blocks_done = (dma_ctrl_block_count - 1) / 2;
  451. // NOTE: When all blocks are done, rx_poll() still returns SDIO_BUSY once.
  452. // This provides a chance to start the SCSI transfer before the last checksums
  453. // are computed. Any checksum failures can be indicated in SCSI status after
  454. // the data transfer has finished.
  455. }
  456. if (bytes_complete)
  457. {
  458. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  459. }
  460. if (g_sdio.transfer_state == SDIO_IDLE)
  461. {
  462. // Verify all remaining checksums.
  463. sdio_verify_rx_checksums(g_sdio.total_blocks);
  464. if (g_sdio.checksum_errors == 0)
  465. return SDIO_OK;
  466. else
  467. return SDIO_ERR_DATA_CRC;
  468. }
  469. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  470. {
  471. dbgmsg("rp2040_sdio_rx_poll() timeout, "
  472. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_rx_offset,
  473. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  474. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  475. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  476. rp2040_sdio_stop();
  477. return SDIO_ERR_DATA_TIMEOUT;
  478. }
  479. return SDIO_BUSY;
  480. }
  481. /*******************************************************
  482. * Data transmission to SD card
  483. *******************************************************/
  484. static void sdio_start_next_block_tx()
  485. {
  486. // Initialize PIO
  487. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_tx_offset, &g_sdio.pio_cfg_data_tx);
  488. // Configure DMA to send the data block payload (512 bytes)
  489. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  490. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  491. channel_config_set_read_increment(&dmacfg, true);
  492. channel_config_set_write_increment(&dmacfg, false);
  493. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, true));
  494. channel_config_set_bswap(&dmacfg, true);
  495. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  496. dma_channel_configure(SDIO_DMA_CH, &dmacfg,
  497. &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.data_buf + g_sdio.blocks_done * SDIO_WORDS_PER_BLOCK,
  498. SDIO_WORDS_PER_BLOCK, false);
  499. // Prepare second DMA channel to send the CRC and block end marker
  500. uint64_t crc = g_sdio.next_wr_block_checksum;
  501. g_sdio.end_token_buf[0] = (uint32_t)(crc >> 32);
  502. g_sdio.end_token_buf[1] = (uint32_t)(crc >> 0);
  503. g_sdio.end_token_buf[2] = 0xFFFFFFFF;
  504. channel_config_set_bswap(&dmacfg, false);
  505. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  506. &SDIO_PIO->txf[SDIO_DATA_SM], g_sdio.end_token_buf, 3, false);
  507. // Enable IRQ to trigger when block is done
  508. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  509. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 1);
  510. // Initialize register X with nibble count and register Y with response bit count
  511. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 1048);
  512. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_x, 32));
  513. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 31);
  514. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  515. // Initialize pins to output and high
  516. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pins, 15));
  517. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pindirs, 15));
  518. // Write start token and start the DMA transfer.
  519. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 0xFFFFFFF0);
  520. dma_channel_start(SDIO_DMA_CH);
  521. // Start state machine
  522. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  523. }
  524. static void sdio_compute_next_tx_checksum()
  525. {
  526. assert (g_sdio.blocks_done < g_sdio.total_blocks && g_sdio.blocks_checksumed < g_sdio.total_blocks);
  527. int blockidx = g_sdio.blocks_checksumed++;
  528. g_sdio.next_wr_block_checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  529. SDIO_WORDS_PER_BLOCK);
  530. }
  531. // Start transferring data from memory to SD card
  532. sdio_status_t rp2040_sdio_tx_start(const uint8_t *buffer, uint32_t num_blocks)
  533. {
  534. // Buffer must be aligned
  535. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  536. g_sdio.transfer_state = SDIO_TX;
  537. g_sdio.transfer_start_time = millis();
  538. g_sdio.data_buf = (uint32_t*)buffer;
  539. g_sdio.blocks_done = 0;
  540. g_sdio.total_blocks = num_blocks;
  541. g_sdio.blocks_checksumed = 0;
  542. g_sdio.checksum_errors = 0;
  543. // Compute first block checksum
  544. sdio_compute_next_tx_checksum();
  545. // Start first DMA transfer and PIO
  546. sdio_start_next_block_tx();
  547. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  548. {
  549. // Precompute second block checksum
  550. sdio_compute_next_tx_checksum();
  551. }
  552. return SDIO_OK;
  553. }
  554. sdio_status_t check_sdio_write_response(uint32_t card_response)
  555. {
  556. // Shift card response until top bit is 0 (the start bit)
  557. // The format of response is poorly documented in SDIO spec but refer to e.g.
  558. // http://my-cool-projects.blogspot.com/2013/02/the-mysterious-sd-card-crc-status.html
  559. uint32_t resp = card_response;
  560. if (!(~resp & 0xFFFF0000)) resp <<= 16;
  561. if (!(~resp & 0xFF000000)) resp <<= 8;
  562. if (!(~resp & 0xF0000000)) resp <<= 4;
  563. if (!(~resp & 0xC0000000)) resp <<= 2;
  564. if (!(~resp & 0x80000000)) resp <<= 1;
  565. uint32_t wr_status = (resp >> 28) & 7;
  566. if (wr_status == 2)
  567. {
  568. return SDIO_OK;
  569. }
  570. else if (wr_status == 5)
  571. {
  572. logmsg("SDIO card reports write CRC error, status ", card_response);
  573. return SDIO_ERR_WRITE_CRC;
  574. }
  575. else if (wr_status == 6)
  576. {
  577. logmsg("SDIO card reports write failure, status ", card_response);
  578. return SDIO_ERR_WRITE_FAIL;
  579. }
  580. else
  581. {
  582. logmsg("SDIO card reports unknown write status ", card_response);
  583. return SDIO_ERR_WRITE_FAIL;
  584. }
  585. }
  586. // When a block finishes, this IRQ handler starts the next one
  587. static void rp2040_sdio_tx_irq()
  588. {
  589. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  590. if (g_sdio.transfer_state == SDIO_TX)
  591. {
  592. if (!dma_channel_is_busy(SDIO_DMA_CH) && !dma_channel_is_busy(SDIO_DMA_CHB))
  593. {
  594. // Main data transfer is finished now.
  595. // When card is ready, PIO will put card response on RX fifo
  596. g_sdio.transfer_state = SDIO_TX_WAIT_IDLE;
  597. if (!pio_sm_is_rx_fifo_empty(SDIO_PIO, SDIO_DATA_SM))
  598. {
  599. // Card is already idle
  600. g_sdio.card_response = pio_sm_get(SDIO_PIO, SDIO_DATA_SM);
  601. }
  602. else
  603. {
  604. // Use DMA to wait for the response
  605. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  606. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  607. channel_config_set_read_increment(&dmacfg, false);
  608. channel_config_set_write_increment(&dmacfg, false);
  609. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  610. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  611. &g_sdio.card_response, &SDIO_PIO->rxf[SDIO_DATA_SM], 1, true);
  612. }
  613. }
  614. }
  615. if (g_sdio.transfer_state == SDIO_TX_WAIT_IDLE)
  616. {
  617. if (!dma_channel_is_busy(SDIO_DMA_CHB))
  618. {
  619. g_sdio.wr_status = check_sdio_write_response(g_sdio.card_response);
  620. if (g_sdio.wr_status != SDIO_OK)
  621. {
  622. rp2040_sdio_stop();
  623. return;
  624. }
  625. g_sdio.blocks_done++;
  626. if (g_sdio.blocks_done < g_sdio.total_blocks)
  627. {
  628. sdio_start_next_block_tx();
  629. g_sdio.transfer_state = SDIO_TX;
  630. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  631. {
  632. // Precompute the CRC for next block so that it is ready when
  633. // we want to send it.
  634. sdio_compute_next_tx_checksum();
  635. }
  636. }
  637. else
  638. {
  639. rp2040_sdio_stop();
  640. }
  641. }
  642. }
  643. }
  644. // Check if transmission is complete
  645. sdio_status_t rp2040_sdio_tx_poll(uint32_t *bytes_complete)
  646. {
  647. // SCB_ICSR_VECTACTIVE_Msk (0x1FFUL)
  648. if (scb_hw->icsr & (0x1FFUL))
  649. {
  650. // Verify that IRQ handler gets called even if we are in hardfault handler
  651. rp2040_sdio_tx_irq();
  652. }
  653. if (bytes_complete)
  654. {
  655. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  656. }
  657. if (g_sdio.transfer_state == SDIO_IDLE)
  658. {
  659. rp2040_sdio_stop();
  660. return g_sdio.wr_status;
  661. }
  662. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  663. {
  664. dbgmsg("rp2040_sdio_tx_poll() timeout, "
  665. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_tx_offset,
  666. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  667. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  668. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  669. rp2040_sdio_stop();
  670. return SDIO_ERR_DATA_TIMEOUT;
  671. }
  672. return SDIO_BUSY;
  673. }
  674. // Force everything to idle state
  675. sdio_status_t rp2040_sdio_stop()
  676. {
  677. dma_channel_abort(SDIO_DMA_CH);
  678. dma_channel_abort(SDIO_DMA_CHB);
  679. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 0);
  680. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  681. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  682. g_sdio.transfer_state = SDIO_IDLE;
  683. return SDIO_OK;
  684. }
  685. void rp2040_sdio_init(int clock_divider)
  686. {
  687. // Mark resources as being in use, unless it has been done already.
  688. static bool resources_claimed = false;
  689. if (!resources_claimed)
  690. {
  691. pio_sm_claim(SDIO_PIO, SDIO_CMD_SM);
  692. pio_sm_claim(SDIO_PIO, SDIO_DATA_SM);
  693. dma_channel_claim(SDIO_DMA_CH);
  694. dma_channel_claim(SDIO_DMA_CHB);
  695. resources_claimed = true;
  696. }
  697. memset(&g_sdio, 0, sizeof(g_sdio));
  698. dma_channel_abort(SDIO_DMA_CH);
  699. dma_channel_abort(SDIO_DMA_CHB);
  700. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  701. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  702. // Load PIO programs
  703. pio_clear_instruction_memory(SDIO_PIO);
  704. // Command & clock state machine
  705. g_sdio.pio_cmd_clk_offset = pio_add_program(SDIO_PIO, &sdio_cmd_clk_program);
  706. pio_sm_config cfg = sdio_cmd_clk_program_get_default_config(g_sdio.pio_cmd_clk_offset);
  707. sm_config_set_out_pins(&cfg, SDIO_CMD, 1);
  708. sm_config_set_in_pins(&cfg, SDIO_CMD);
  709. sm_config_set_set_pins(&cfg, SDIO_CMD, 1);
  710. sm_config_set_jmp_pin(&cfg, SDIO_CMD);
  711. sm_config_set_sideset_pins(&cfg, SDIO_CLK);
  712. sm_config_set_out_shift(&cfg, false, true, 32);
  713. sm_config_set_in_shift(&cfg, false, true, 32);
  714. sm_config_set_clkdiv_int_frac(&cfg, clock_divider, 0);
  715. sm_config_set_mov_status(&cfg, STATUS_TX_LESSTHAN, 2);
  716. pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_cmd_clk_offset, &cfg);
  717. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
  718. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, true);
  719. // Data reception program
  720. g_sdio.pio_data_rx_offset = pio_add_program(SDIO_PIO, &sdio_data_rx_program);
  721. g_sdio.pio_cfg_data_rx = sdio_data_rx_program_get_default_config(g_sdio.pio_data_rx_offset);
  722. sm_config_set_in_pins(&g_sdio.pio_cfg_data_rx, SDIO_D0);
  723. sm_config_set_in_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
  724. sm_config_set_out_shift(&g_sdio.pio_cfg_data_rx, false, true, 32);
  725. sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_rx, clock_divider, 0);
  726. // Data transmission program
  727. g_sdio.pio_data_tx_offset = pio_add_program(SDIO_PIO, &sdio_data_tx_program);
  728. g_sdio.pio_cfg_data_tx = sdio_data_tx_program_get_default_config(g_sdio.pio_data_tx_offset);
  729. sm_config_set_in_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0);
  730. sm_config_set_set_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
  731. sm_config_set_out_pins(&g_sdio.pio_cfg_data_tx, SDIO_D0, 4);
  732. sm_config_set_in_shift(&g_sdio.pio_cfg_data_tx, false, false, 32);
  733. sm_config_set_out_shift(&g_sdio.pio_cfg_data_tx, false, true, 32);
  734. sm_config_set_clkdiv_int_frac(&g_sdio.pio_cfg_data_tx, clock_divider, 0);
  735. // Disable SDIO pins input synchronizer.
  736. // This reduces input delay.
  737. // Because the CLK is driven synchronously to CPU clock,
  738. // there should be no metastability problems.
  739. SDIO_PIO->input_sync_bypass |= (1 << SDIO_CLK) | (1 << SDIO_CMD)
  740. | (1 << SDIO_D0) | (1 << SDIO_D1) | (1 << SDIO_D2) | (1 << SDIO_D3);
  741. // Redirect GPIOs to PIO
  742. gpio_set_function(SDIO_CMD, GPIO_FUNC_PIO1);
  743. gpio_set_function(SDIO_CLK, GPIO_FUNC_PIO1);
  744. gpio_set_function(SDIO_D0, GPIO_FUNC_PIO1);
  745. gpio_set_function(SDIO_D1, GPIO_FUNC_PIO1);
  746. gpio_set_function(SDIO_D2, GPIO_FUNC_PIO1);
  747. gpio_set_function(SDIO_D3, GPIO_FUNC_PIO1);
  748. // Set up IRQ handler when DMA completes.
  749. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  750. irq_set_enabled(DMA_IRQ_1, true);
  751. #if 0
  752. #ifndef ENABLE_AUDIO_OUTPUT
  753. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  754. #else
  755. // seem to hit assertion in _exclusive_handler call due to DMA_IRQ_0 being shared?
  756. // slightly less efficient to do it this way, so investigate further at some point
  757. irq_add_shared_handler(DMA_IRQ_1, rp2040_sdio_tx_irq, 0xFF);
  758. #endif
  759. irq_set_enabled(DMA_IRQ_1, true);
  760. #endif
  761. }