AzulSCSI_platform.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741
  1. #include "AzulSCSI_platform.h"
  2. #include "gd32f20x_spi.h"
  3. #include "gd32f20x_dma.h"
  4. #include "AzulSCSI_log.h"
  5. #include "AzulSCSI_config.h"
  6. #include <SdFat.h>
  7. extern "C" {
  8. const char *g_azplatform_name = "GD32F205 AzulSCSI v1.x";
  9. static volatile uint32_t g_millisecond_counter;
  10. static volatile uint32_t g_watchdog_timeout;
  11. static uint32_t g_ns_to_cycles; // Q0.32 fixed point format
  12. static void watchdog_handler(uint32_t *sp);
  13. unsigned long millis()
  14. {
  15. return g_millisecond_counter;
  16. }
  17. void delay(unsigned long ms)
  18. {
  19. uint32_t start = g_millisecond_counter;
  20. while ((uint32_t)(g_millisecond_counter - start) < ms);
  21. }
  22. void delay_ns(unsigned long ns)
  23. {
  24. uint32_t CNT_start = DWT->CYCCNT;
  25. if (ns <= 100) return; // Approximate call overhead
  26. ns -= 100;
  27. uint32_t cycles = ((uint64_t)ns * g_ns_to_cycles) >> 32;
  28. while ((uint32_t)(DWT->CYCCNT - CNT_start) < cycles);
  29. }
  30. void SysTick_Handler_inner(uint32_t *sp)
  31. {
  32. g_millisecond_counter++;
  33. if (g_watchdog_timeout > 0)
  34. {
  35. g_watchdog_timeout--;
  36. if (g_watchdog_timeout == 0)
  37. {
  38. watchdog_handler(sp);
  39. }
  40. }
  41. }
  42. __attribute__((interrupt, naked))
  43. void SysTick_Handler(void)
  44. {
  45. // Take note of stack pointer so that we can print debug
  46. // info in watchdog handler.
  47. asm("mrs r0, msp\n"
  48. "b SysTick_Handler_inner": : : "r0");
  49. }
  50. // Writes log data to the PB3 SWO pin
  51. void azplatform_log(const char *s)
  52. {
  53. while (*s)
  54. {
  55. // Write to SWO pin
  56. while (ITM->PORT[0].u32 == 0);
  57. ITM->PORT[0].u8 = *s++;
  58. }
  59. }
  60. // Initialize SPI and GPIO configuration
  61. // Clock has already been initialized by system_gd32f20x.c
  62. void azplatform_init()
  63. {
  64. SystemCoreClockUpdate();
  65. // Enable SysTick to drive millis()
  66. g_millisecond_counter = 0;
  67. SysTick_Config(SystemCoreClock / 1000U);
  68. NVIC_SetPriority(SysTick_IRQn, 0x00U);
  69. // Enable DWT counter to drive delay_ns()
  70. g_ns_to_cycles = ((uint64_t)SystemCoreClock << 32) / 1000000000;
  71. CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
  72. DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;
  73. // Enable debug output on SWO pin
  74. DBG_CTL |= DBG_CTL_TRACE_IOEN;
  75. CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
  76. TPI->ACPR = SystemCoreClock / 2000000 - 1; // 2 Mbps baudrate for SWO
  77. TPI->SPPR = 2;
  78. TPI->FFCR = 0x100; // TPIU packet framing disabled
  79. // DWT->CTRL = (1 << DWT_CTRL_CYCTAP_Pos)
  80. // | (15 << DWT_CTRL_POSTPRESET_Pos)
  81. // | (1 << DWT_CTRL_PCSAMPLENA_Pos)
  82. // | (3 << DWT_CTRL_SYNCTAP_Pos)
  83. // | (1 << DWT_CTRL_CYCCNTENA_Pos);
  84. ITM->LAR = 0xC5ACCE55;
  85. ITM->TCR = (1 << ITM_TCR_DWTENA_Pos)
  86. | (1 << ITM_TCR_SYNCENA_Pos)
  87. | (1 << ITM_TCR_ITMENA_Pos);
  88. ITM->TER = 0xFFFFFFFF; // Enable all stimulus ports
  89. // Enable needed clocks for GPIO
  90. rcu_periph_clock_enable(RCU_GPIOA);
  91. rcu_periph_clock_enable(RCU_GPIOB);
  92. rcu_periph_clock_enable(RCU_GPIOC);
  93. rcu_periph_clock_enable(RCU_GPIOD);
  94. rcu_periph_clock_enable(RCU_GPIOE);
  95. // Switch to SWD debug port (disable JTAG) to release PB4 as GPIO
  96. gpio_pin_remap_config(GPIO_SWJ_SWDPENABLE_REMAP, ENABLE);
  97. // SCSI pins.
  98. // Initialize open drain outputs to high.
  99. gpio_bit_set(SCSI_OUT_PORT, SCSI_OUT_MASK);
  100. gpio_init(SCSI_OUT_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SCSI_OUT_MASK);
  101. gpio_init(SCSI_IN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_IN_MASK);
  102. gpio_init(SCSI_ATN_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ATN_PIN);
  103. gpio_init(SCSI_BSY_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_BSY_PIN);
  104. gpio_init(SCSI_SEL_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_SEL_PIN);
  105. gpio_init(SCSI_ACK_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_ACK_PIN);
  106. gpio_init(SCSI_RST_PORT, GPIO_MODE_IN_FLOATING, 0, SCSI_RST_PIN);
  107. // Terminator enable
  108. gpio_bit_set(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
  109. gpio_init(SCSI_TERM_EN_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, SCSI_TERM_EN_PIN);
  110. // SD card pins
  111. gpio_init(SD_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, SD_CS_PIN);
  112. gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_CLK_PIN);
  113. gpio_init(SD_PORT, GPIO_MODE_IPU, 0, SD_MISO_PIN);
  114. gpio_init(SD_PORT, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, SD_MOSI_PIN);
  115. // DIP switches
  116. gpio_init(DIP_PORT, GPIO_MODE_IPD, 0, DIPSW1_PIN | DIPSW2_PIN | DIPSW3_PIN);
  117. // LED pins
  118. gpio_bit_set(LED_PORT, LED_PINS);
  119. gpio_init(LED_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_2MHZ, LED_PINS);
  120. // SWO trace pin on PB3
  121. gpio_init(GPIOB, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_3);
  122. if (gpio_input_bit_get(DIP_PORT, DIPSW3_PIN))
  123. {
  124. azlog("DIPSW3 is ON: Enabling SCSI termination");
  125. gpio_bit_reset(SCSI_TERM_EN_PORT, SCSI_TERM_EN_PIN);
  126. }
  127. else
  128. {
  129. azlog("DIPSW3 is OFF: SCSI termination disabled");
  130. }
  131. if (gpio_input_bit_get(DIP_PORT, DIPSW2_PIN))
  132. {
  133. azlog("DIPSW2 is ON: enabling debug messages");
  134. g_azlog_debug = true;
  135. }
  136. else
  137. {
  138. g_azlog_debug = false;
  139. }
  140. }
  141. static void (*g_rst_callback)();
  142. void azplatform_set_rst_callback(void (*callback)())
  143. {
  144. g_rst_callback = callback;
  145. gpio_exti_source_select(SCSI_RST_EXTI_SOURCE_PORT, SCSI_RST_EXTI_SOURCE_PIN);
  146. exti_init(SCSI_RST_EXTI, EXTI_INTERRUPT, EXTI_TRIG_FALLING);
  147. NVIC_SetPriority(SCSI_RST_IRQn, 0x00U);
  148. NVIC_EnableIRQ(SCSI_RST_IRQn);
  149. }
  150. void SCSI_RST_IRQ (void)
  151. {
  152. if (exti_interrupt_flag_get(SCSI_RST_EXTI))
  153. {
  154. exti_interrupt_flag_clear(SCSI_RST_EXTI);
  155. if (g_rst_callback)
  156. {
  157. g_rst_callback();
  158. }
  159. }
  160. }
  161. /*****************************************/
  162. /* Crash handlers */
  163. /*****************************************/
  164. extern SdFs SD;
  165. void azplatform_emergency_log_save()
  166. {
  167. FsFile crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  168. if (!crashfile.isOpen())
  169. {
  170. // Try to reinitialize
  171. int max_retry = 10;
  172. while (max_retry-- > 0 && !SD.begin(SD_CONFIG));
  173. crashfile = SD.open(CRASHFILE, O_WRONLY | O_CREAT | O_TRUNC);
  174. }
  175. uint32_t startpos = 0;
  176. crashfile.write(azlog_get_buffer(&startpos));
  177. crashfile.write(azlog_get_buffer(&startpos));
  178. crashfile.flush();
  179. crashfile.close();
  180. }
  181. extern uint32_t _estack;
  182. __attribute__((noinline))
  183. void show_hardfault(uint32_t *sp)
  184. {
  185. uint32_t pc = sp[6];
  186. uint32_t lr = sp[5];
  187. uint32_t cfsr = SCB->CFSR;
  188. azlog("--------------");
  189. azlog("CRASH!");
  190. azlog("Platform: ", g_azplatform_name);
  191. azlog("FW Version: ", g_azlog_firmwareversion);
  192. azlog("CFSR: ", cfsr);
  193. azlog("SP: ", (uint32_t)sp);
  194. azlog("PC: ", pc);
  195. azlog("LR: ", lr);
  196. azlog("R0: ", sp[0]);
  197. azlog("R1: ", sp[1]);
  198. azlog("R2: ", sp[2]);
  199. azlog("R3: ", sp[3]);
  200. uint32_t *p = (uint32_t*)((uint32_t)sp & ~3);
  201. for (int i = 0; i < 8; i++)
  202. {
  203. if (p == &_estack) break; // End of stack
  204. azlog("STACK ", (uint32_t)p, ": ", p[0], " ", p[1], " ", p[2], " ", p[3]);
  205. p += 4;
  206. }
  207. azplatform_emergency_log_save();
  208. while (1)
  209. {
  210. // Flash the crash address on the LED
  211. // Short pulse means 0, long pulse means 1
  212. int base_delay = 1000;
  213. for (int i = 31; i >= 0; i--)
  214. {
  215. LED_OFF();
  216. for (int j = 0; j < base_delay; j++) delay_ns(100000);
  217. int delay = (pc & (1 << i)) ? (3 * base_delay) : base_delay;
  218. LED_ON();
  219. for (int j = 0; j < delay; j++) delay_ns(100000);
  220. LED_OFF();
  221. }
  222. for (int j = 0; j < base_delay * 10; j++) delay_ns(100000);
  223. }
  224. }
  225. __attribute__((naked, interrupt))
  226. void HardFault_Handler(void)
  227. {
  228. // Copies stack pointer into first argument
  229. asm("mrs r0, msp\n"
  230. "b show_hardfault": : : "r0");
  231. }
  232. __attribute__((naked, interrupt))
  233. void MemManage_Handler(void)
  234. {
  235. asm("mrs r0, msp\n"
  236. "b show_hardfault": : : "r0");
  237. }
  238. __attribute__((naked, interrupt))
  239. void BusFault_Handler(void)
  240. {
  241. asm("mrs r0, msp\n"
  242. "b show_hardfault": : : "r0");
  243. }
  244. __attribute__((naked, interrupt))
  245. void UsageFault_Handler(void)
  246. {
  247. asm("mrs r0, msp\n"
  248. "b show_hardfault": : : "r0");
  249. }
  250. } /* extern "C" */
  251. static void watchdog_handler(uint32_t *sp)
  252. {
  253. azlog("-------------- WATCHDOG TIMEOUT");
  254. show_hardfault(sp);
  255. }
  256. void azplatform_reset_watchdog(int timeout_ms)
  257. {
  258. // This uses a software watchdog based on systick timer interrupt.
  259. // It gives us opportunity to collect better debug info than the
  260. // full hardware reset that would be caused by hardware watchdog.
  261. g_watchdog_timeout = timeout_ms;
  262. }
  263. /*****************************************/
  264. /* Driver for GD32 SPI for SdFat library */
  265. /*****************************************/
  266. extern volatile bool g_busreset;
  267. #define SCSI_WAIT_ACTIVE(pin) \
  268. if (!SCSI_IN(pin)) { \
  269. if (!SCSI_IN(pin)) { \
  270. while(!SCSI_IN(pin) && !g_busreset); \
  271. } \
  272. }
  273. #define SCSI_WAIT_INACTIVE(pin) \
  274. if (SCSI_IN(pin)) { \
  275. if (SCSI_IN(pin)) { \
  276. while(SCSI_IN(pin) && !g_busreset); \
  277. } \
  278. }
  279. // Optimized ASM blocks for the SCSI communication subroutine
  280. // Take 8 bits from d and format them for writing
  281. // d is name of data operand, b is bit offset, x is unique label
  282. #define ASM_LOAD_DATA(d, b, x) \
  283. " load_data1_" x "_%=: \n" \
  284. " ubfx %[tmp1], %[" d "], #" b ", #8 \n" \
  285. " ldr %[tmp1], [%[byte_lookup], %[tmp1], lsl #2] \n"
  286. // Write data to SCSI port and set REQ high
  287. #define ASM_SEND_DATA(x) \
  288. " send_data" x "_%=: \n" \
  289. " str %[tmp1], [%[out_port_bop]] \n"
  290. // Wait for ACK to be high, set REQ low, wait ACK low
  291. #define ASM_HANDSHAKE(x) \
  292. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  293. " str %[tmp2], [%[req_pin_bb]] \n" \
  294. " cbnz %[tmp2], req_is_low_now" x "_%= \n" \
  295. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  296. " str %[tmp2], [%[req_pin_bb]] \n" \
  297. " cbnz %[tmp2], req_is_low_now" x "_%= \n" \
  298. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  299. " str %[tmp2], [%[req_pin_bb]] \n" \
  300. " cbnz %[tmp2], req_is_low_now" x "_%= \n" \
  301. " wait_ack_inactive" x "_%=: \n" \
  302. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  303. " str %[tmp2], [%[req_pin_bb]] \n" \
  304. " cbnz %[tmp2], req_is_low_now" x "_%= \n" \
  305. " b.n wait_ack_inactive" x "_%= \n" \
  306. " req_is_low_now" x "_%=: \n" \
  307. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  308. " cbz %[tmp2], over_ack_active" x "_%= \n" \
  309. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  310. " cbz %[tmp2], over_ack_active" x "_%= \n" \
  311. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  312. " cbz %[tmp2], over_ack_active" x "_%= \n" \
  313. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  314. " cbz %[tmp2], over_ack_active" x "_%= \n" \
  315. " wait_ack_active" x "_%=: \n" \
  316. " ldr %[tmp2], [%[ack_pin_bb]] \n" \
  317. " cbz %[tmp2], over_ack_active" x "_%= \n" \
  318. " b.n wait_ack_active" x "_%= \n" \
  319. " over_ack_active" x "_%=: \n" \
  320. // Send bytes to SCSI bus using the asynchronous handshake mechanism
  321. // Takes 4 bytes at a time for sending from buf.
  322. // Returns the next buffer pointer.
  323. static inline uint32_t *scsi_send_words_async(uint32_t *buf, uint32_t num_words)
  324. {
  325. volatile uint32_t *out_port_bop = (volatile uint32_t*)&GPIO_BOP(SCSI_OUT_PORT);
  326. const uint32_t *byte_lookup = g_scsi_out_byte_to_bop;
  327. uint32_t ack_pin_bb = PERIPH_BB_BASE + (((uint32_t)&GPIO_ISTAT(SCSI_ACK_PORT)) - APB1_BUS_BASE) * 32 + 12 * 4;
  328. uint32_t req_pin_bb = PERIPH_BB_BASE + (((uint32_t)out_port_bop) - APB1_BUS_BASE) * 32 + (9 + 16) * 4;
  329. register uint32_t tmp1 = 0;
  330. register uint32_t tmp2 = 0;
  331. register uint32_t data = 0;
  332. asm volatile (
  333. " ldr %[data], [%[buf]], #4 \n" \
  334. ASM_LOAD_DATA("data", "0", "first")
  335. "inner_loop_%=: \n" \
  336. ASM_SEND_DATA("0")
  337. ASM_LOAD_DATA("data", "8", "8")
  338. ASM_HANDSHAKE("0")
  339. ASM_SEND_DATA("8")
  340. ASM_LOAD_DATA("data", "16", "16")
  341. ASM_HANDSHAKE("8")
  342. ASM_SEND_DATA("16")
  343. ASM_LOAD_DATA("data", "24", "24")
  344. ASM_HANDSHAKE("16")
  345. ASM_SEND_DATA("24")
  346. " ldr %[data], [%[buf]], #4 \n" \
  347. ASM_LOAD_DATA("data", "0", "0")
  348. ASM_HANDSHAKE("24")
  349. " subs %[num_words], %[num_words], #1 \n" \
  350. " bne inner_loop_%= \n"
  351. : /* Output */ [tmp1] "+l" (tmp1), [tmp2] "+l" (tmp2), [data] "+r" (data),
  352. [buf] "+r" (buf), [num_words] "+r" (num_words)
  353. : /* Input */ [ack_pin_bb] "r" (ack_pin_bb),
  354. [req_pin_bb] "r" (req_pin_bb),
  355. [out_port_bop] "r"(out_port_bop),
  356. [byte_lookup] "r" (byte_lookup)
  357. : /* Clobber */ );
  358. return buf - 1;
  359. }
  360. class GD32SPIDriver : public SdSpiBaseClass
  361. {
  362. public:
  363. void begin(SdSpiConfig config) {
  364. rcu_periph_clock_enable(RCU_SPI0);
  365. rcu_periph_clock_enable(RCU_DMA0);
  366. dma_parameter_struct rx_dma_config =
  367. {
  368. .periph_addr = (uint32_t)&SPI_DATA(SD_SPI),
  369. .periph_width = DMA_PERIPHERAL_WIDTH_8BIT,
  370. .memory_addr = 0, // Set before transfer
  371. .memory_width = DMA_MEMORY_WIDTH_8BIT,
  372. .number = 0, // Set before transfer
  373. .priority = DMA_PRIORITY_ULTRA_HIGH,
  374. .periph_inc = DMA_PERIPH_INCREASE_DISABLE,
  375. .memory_inc = DMA_MEMORY_INCREASE_ENABLE,
  376. .direction = DMA_PERIPHERAL_TO_MEMORY
  377. };
  378. dma_init(DMA0, SD_SPI_RX_DMA_CHANNEL, &rx_dma_config);
  379. dma_parameter_struct tx_dma_config =
  380. {
  381. .periph_addr = (uint32_t)&SPI_DATA(SD_SPI),
  382. .periph_width = DMA_PERIPHERAL_WIDTH_8BIT,
  383. .memory_addr = 0, // Set before transfer
  384. .memory_width = DMA_MEMORY_WIDTH_8BIT,
  385. .number = 0, // Set before transfer
  386. .priority = DMA_PRIORITY_HIGH,
  387. .periph_inc = DMA_PERIPH_INCREASE_DISABLE,
  388. .memory_inc = DMA_MEMORY_INCREASE_ENABLE,
  389. .direction = DMA_MEMORY_TO_PERIPHERAL
  390. };
  391. dma_init(DMA0, SD_SPI_TX_DMA_CHANNEL, &tx_dma_config);
  392. }
  393. void activate() {
  394. spi_parameter_struct config = {
  395. SPI_MASTER,
  396. SPI_TRANSMODE_FULLDUPLEX,
  397. SPI_FRAMESIZE_8BIT,
  398. SPI_NSS_SOFT,
  399. SPI_ENDIAN_MSB,
  400. SPI_CK_PL_LOW_PH_1EDGE,
  401. SPI_PSC_256
  402. };
  403. // Select closest available divider based on system frequency
  404. int divider = (SystemCoreClock + m_sckfreq / 2) / m_sckfreq;
  405. if (divider <= 2)
  406. config.prescale = SPI_PSC_2;
  407. else if (divider <= 4)
  408. config.prescale = SPI_PSC_4;
  409. else if (divider <= 8)
  410. config.prescale = SPI_PSC_8;
  411. else if (divider <= 16)
  412. config.prescale = SPI_PSC_16;
  413. else if (divider <= 32)
  414. config.prescale = SPI_PSC_32;
  415. else if (divider <= 64)
  416. config.prescale = SPI_PSC_64;
  417. else if (divider <= 128)
  418. config.prescale = SPI_PSC_128;
  419. else
  420. config.prescale = SPI_PSC_256;
  421. spi_init(SD_SPI, &config);
  422. spi_enable(SD_SPI);
  423. }
  424. void deactivate() {
  425. spi_disable(SD_SPI);
  426. }
  427. void wait_idle() {
  428. while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE));
  429. while (SPI_STAT(SD_SPI) & SPI_STAT_TRANS);
  430. }
  431. uint8_t receive() {
  432. // Wait for idle and clear RX buffer
  433. wait_idle();
  434. (void)SPI_DATA(SD_SPI);
  435. // Send dummy byte and wait for receive
  436. SPI_DATA(SD_SPI) = 0xFF;
  437. while (!(SPI_STAT(SD_SPI) & SPI_STAT_RBNE));
  438. return SPI_DATA(SD_SPI);
  439. }
  440. uint8_t receive(uint8_t* buf, size_t count) {
  441. // Wait for idle and clear RX buffer
  442. wait_idle();
  443. (void)SPI_DATA(SD_SPI);
  444. if (buf == m_stream_buffer + m_stream_status)
  445. {
  446. // Stream data directly to SCSI bus
  447. return stream_receive(buf, count);
  448. }
  449. // Stream to memory
  450. // Use DMA to stream dummy TX data and store RX data
  451. uint8_t tx_data = 0xFF;
  452. DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL);
  453. DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL);
  454. DMA_CHMADDR(DMA0, SD_SPI_RX_DMA_CHANNEL) = (uint32_t)buf;
  455. DMA_CHMADDR(DMA0, SD_SPI_TX_DMA_CHANNEL) = (uint32_t)&tx_data;
  456. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_MNAGA; // No memory increment for TX
  457. DMA_CHCNT(DMA0, SD_SPI_RX_DMA_CHANNEL) = count;
  458. DMA_CHCNT(DMA0, SD_SPI_TX_DMA_CHANNEL) = count;
  459. DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN;
  460. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN;
  461. SPI_CTL1(SD_SPI) |= SPI_CTL1_DMAREN | SPI_CTL1_DMATEN;
  462. uint32_t start = millis();
  463. while (!(DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL)))
  464. {
  465. if (millis() - start > 500)
  466. {
  467. azlog("ERROR: SPI DMA receive of ", (int)count, " bytes timeouted");
  468. return 1;
  469. }
  470. }
  471. if (DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL))
  472. {
  473. azlog("ERROR: SPI DMA receive set DMA_FLAG_ERR");
  474. }
  475. SPI_CTL1(SD_SPI) &= ~(SPI_CTL1_DMAREN | SPI_CTL1_DMATEN);
  476. DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN;
  477. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN;
  478. return 0;
  479. }
  480. // Stream data directly to SCSI bus
  481. uint8_t stream_receive(uint8_t *buf, size_t count)
  482. {
  483. uint8_t tx_data = 0xFF;
  484. DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL);
  485. DMA_INTC(DMA0) = DMA_FLAG_ADD(DMA_FLAG_FTF | DMA_FLAG_ERR, SD_SPI_TX_DMA_CHANNEL);
  486. DMA_CHMADDR(DMA0, SD_SPI_RX_DMA_CHANNEL) = (uint32_t)buf;
  487. DMA_CHMADDR(DMA0, SD_SPI_TX_DMA_CHANNEL) = (uint32_t)&tx_data;
  488. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_MNAGA; // No memory increment for TX
  489. DMA_CHCNT(DMA0, SD_SPI_RX_DMA_CHANNEL) = count;
  490. DMA_CHCNT(DMA0, SD_SPI_TX_DMA_CHANNEL) = count;
  491. DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN;
  492. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) |= DMA_CHXCTL_CHEN;
  493. SPI_CTL1(SD_SPI) |= SPI_CTL1_DMAREN | SPI_CTL1_DMATEN;
  494. // DMA transfer is now running, we can start sending received bytes to SCSI
  495. uint32_t *word_ptr = (uint32_t*)buf;
  496. uint32_t *end_ptr = word_ptr + (count / 4);
  497. while (word_ptr < end_ptr)
  498. {
  499. uint32_t words_available = (count - DMA_CHCNT(DMA0, SD_SPI_RX_DMA_CHANNEL)) / 4;
  500. if (words_available > 0)
  501. {
  502. if (word_ptr + words_available > end_ptr)
  503. {
  504. words_available = end_ptr - word_ptr;
  505. }
  506. word_ptr = scsi_send_words_async(word_ptr, words_available);
  507. }
  508. }
  509. SCSI_RELEASE_DATA_REQ();
  510. if (DMA_INTF(DMA0) & DMA_FLAG_ADD(DMA_FLAG_ERR, SD_SPI_RX_DMA_CHANNEL))
  511. {
  512. azlog("ERROR: SPI DMA receive set DMA_FLAG_ERR");
  513. }
  514. SPI_CTL1(SD_SPI) &= ~(SPI_CTL1_DMAREN | SPI_CTL1_DMATEN);
  515. DMA_CHCTL(DMA0, SD_SPI_RX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN;
  516. DMA_CHCTL(DMA0, SD_SPI_TX_DMA_CHANNEL) &= ~DMA_CHXCTL_CHEN;
  517. m_stream_status += count;
  518. return 0;
  519. }
  520. void send(uint8_t data) {
  521. SPI_DATA(SD_SPI) = data;
  522. wait_idle();
  523. }
  524. void send(const uint8_t* buf, size_t count) {
  525. if (buf == m_stream_buffer + m_stream_status)
  526. {
  527. stream_send(count);
  528. return;
  529. }
  530. for (size_t i = 0; i < count; i++) {
  531. while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE));
  532. SPI_DATA(SD_SPI) = buf[i];
  533. }
  534. wait_idle();
  535. }
  536. // Stream data directly from SCSI bus
  537. void stream_send(size_t count)
  538. {
  539. for (size_t i = 0; i < count; i++) {
  540. SCSI_OUT(REQ, 1);
  541. SCSI_WAIT_ACTIVE(ACK);
  542. delay_100ns(); // ACK.Fall to DB output delay 100ns(MAX) (DTC-510B)
  543. uint8_t data = SCSI_IN_DATA();
  544. SCSI_OUT(REQ, 0);
  545. while (!(SPI_STAT(SD_SPI) & SPI_STAT_TBE));
  546. SPI_DATA(SD_SPI) = data;
  547. SCSI_WAIT_INACTIVE(ACK);
  548. }
  549. wait_idle();
  550. m_stream_status += count;
  551. }
  552. void setSckSpeed(uint32_t maxSck) {
  553. m_sckfreq = maxSck;
  554. }
  555. void prepare_stream(uint8_t *buffer)
  556. {
  557. m_stream_buffer = buffer;
  558. m_stream_status = 0;
  559. }
  560. size_t finish_stream()
  561. {
  562. size_t result = m_stream_status;
  563. m_stream_status = 0;
  564. m_stream_buffer = NULL;
  565. return result;
  566. }
  567. private:
  568. uint32_t m_sckfreq;
  569. uint8_t *m_stream_buffer;
  570. size_t m_stream_status; // Number of bytes transferred so far
  571. };
  572. void sdCsInit(SdCsPin_t pin)
  573. {
  574. }
  575. void sdCsWrite(SdCsPin_t pin, bool level)
  576. {
  577. if (level)
  578. GPIO_BOP(SD_PORT) = SD_CS_PIN;
  579. else
  580. GPIO_BC(SD_PORT) = SD_CS_PIN;
  581. }
  582. GD32SPIDriver g_sd_spi_port;
  583. SdSpiConfig g_sd_spi_config(0, DEDICATED_SPI, SD_SCK_MHZ(30), &g_sd_spi_port);
  584. void azplatform_prepare_stream(uint8_t *buffer)
  585. {
  586. g_sd_spi_port.prepare_stream(buffer);
  587. }
  588. size_t azplatform_finish_stream()
  589. {
  590. return g_sd_spi_port.finish_stream();
  591. }
  592. /**********************************************/
  593. /* Mapping from data bytes to GPIO BOP values */
  594. /**********************************************/
  595. #define PARITY(n) ((1 ^ (n) ^ ((n)>>1) ^ ((n)>>2) ^ ((n)>>3) ^ ((n)>>4) ^ ((n)>>5) ^ ((n)>>6) ^ ((n)>>7)) & 1)
  596. #define X(n) (\
  597. ((n & 0x01) ? (SCSI_OUT_DB0 << 16) : SCSI_OUT_DB0) | \
  598. ((n & 0x02) ? (SCSI_OUT_DB1 << 16) : SCSI_OUT_DB1) | \
  599. ((n & 0x04) ? (SCSI_OUT_DB2 << 16) : SCSI_OUT_DB2) | \
  600. ((n & 0x08) ? (SCSI_OUT_DB3 << 16) : SCSI_OUT_DB3) | \
  601. ((n & 0x10) ? (SCSI_OUT_DB4 << 16) : SCSI_OUT_DB4) | \
  602. ((n & 0x20) ? (SCSI_OUT_DB5 << 16) : SCSI_OUT_DB5) | \
  603. ((n & 0x40) ? (SCSI_OUT_DB6 << 16) : SCSI_OUT_DB6) | \
  604. ((n & 0x80) ? (SCSI_OUT_DB7 << 16) : SCSI_OUT_DB7) | \
  605. (PARITY(n) ? (SCSI_OUT_DBP << 16) : SCSI_OUT_DBP) | \
  606. (SCSI_OUT_REQ) \
  607. )
  608. const uint32_t g_scsi_out_byte_to_bop[256] =
  609. {
  610. X(0x00), X(0x01), X(0x02), X(0x03), X(0x04), X(0x05), X(0x06), X(0x07), X(0x08), X(0x09), X(0x0a), X(0x0b), X(0x0c), X(0x0d), X(0x0e), X(0x0f),
  611. X(0x10), X(0x11), X(0x12), X(0x13), X(0x14), X(0x15), X(0x16), X(0x17), X(0x18), X(0x19), X(0x1a), X(0x1b), X(0x1c), X(0x1d), X(0x1e), X(0x1f),
  612. X(0x20), X(0x21), X(0x22), X(0x23), X(0x24), X(0x25), X(0x26), X(0x27), X(0x28), X(0x29), X(0x2a), X(0x2b), X(0x2c), X(0x2d), X(0x2e), X(0x2f),
  613. X(0x30), X(0x31), X(0x32), X(0x33), X(0x34), X(0x35), X(0x36), X(0x37), X(0x38), X(0x39), X(0x3a), X(0x3b), X(0x3c), X(0x3d), X(0x3e), X(0x3f),
  614. X(0x40), X(0x41), X(0x42), X(0x43), X(0x44), X(0x45), X(0x46), X(0x47), X(0x48), X(0x49), X(0x4a), X(0x4b), X(0x4c), X(0x4d), X(0x4e), X(0x4f),
  615. X(0x50), X(0x51), X(0x52), X(0x53), X(0x54), X(0x55), X(0x56), X(0x57), X(0x58), X(0x59), X(0x5a), X(0x5b), X(0x5c), X(0x5d), X(0x5e), X(0x5f),
  616. X(0x60), X(0x61), X(0x62), X(0x63), X(0x64), X(0x65), X(0x66), X(0x67), X(0x68), X(0x69), X(0x6a), X(0x6b), X(0x6c), X(0x6d), X(0x6e), X(0x6f),
  617. X(0x70), X(0x71), X(0x72), X(0x73), X(0x74), X(0x75), X(0x76), X(0x77), X(0x78), X(0x79), X(0x7a), X(0x7b), X(0x7c), X(0x7d), X(0x7e), X(0x7f),
  618. X(0x80), X(0x81), X(0x82), X(0x83), X(0x84), X(0x85), X(0x86), X(0x87), X(0x88), X(0x89), X(0x8a), X(0x8b), X(0x8c), X(0x8d), X(0x8e), X(0x8f),
  619. X(0x90), X(0x91), X(0x92), X(0x93), X(0x94), X(0x95), X(0x96), X(0x97), X(0x98), X(0x99), X(0x9a), X(0x9b), X(0x9c), X(0x9d), X(0x9e), X(0x9f),
  620. X(0xa0), X(0xa1), X(0xa2), X(0xa3), X(0xa4), X(0xa5), X(0xa6), X(0xa7), X(0xa8), X(0xa9), X(0xaa), X(0xab), X(0xac), X(0xad), X(0xae), X(0xaf),
  621. X(0xb0), X(0xb1), X(0xb2), X(0xb3), X(0xb4), X(0xb5), X(0xb6), X(0xb7), X(0xb8), X(0xb9), X(0xba), X(0xbb), X(0xbc), X(0xbd), X(0xbe), X(0xbf),
  622. X(0xc0), X(0xc1), X(0xc2), X(0xc3), X(0xc4), X(0xc5), X(0xc6), X(0xc7), X(0xc8), X(0xc9), X(0xca), X(0xcb), X(0xcc), X(0xcd), X(0xce), X(0xcf),
  623. X(0xd0), X(0xd1), X(0xd2), X(0xd3), X(0xd4), X(0xd5), X(0xd6), X(0xd7), X(0xd8), X(0xd9), X(0xda), X(0xdb), X(0xdc), X(0xdd), X(0xde), X(0xdf),
  624. X(0xe0), X(0xe1), X(0xe2), X(0xe3), X(0xe4), X(0xe5), X(0xe6), X(0xe7), X(0xe8), X(0xe9), X(0xea), X(0xeb), X(0xec), X(0xed), X(0xee), X(0xef),
  625. X(0xf0), X(0xf1), X(0xf2), X(0xf3), X(0xf4), X(0xf5), X(0xf6), X(0xf7), X(0xf8), X(0xf9), X(0xfa), X(0xfb), X(0xfc), X(0xfd), X(0xfe), X(0xff)
  626. };
  627. #undef X