sdio.cpp 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971
  1. /**
  2. * ZuluSCSI™ - Copyright (c) 2022-2025 Rabbit Hole Computing™
  3. * Copyright (c) 2024 Tech by Androda, LLC
  4. *
  5. * ZuluSCSI™ firmware is licensed under the GPL version 3 or any later version. 
  6. *
  7. * https://www.gnu.org/licenses/gpl-3.0.html
  8. * ----
  9. * This program is free software: you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation, either version 3 of the License, or
  12. * (at your option) any later version. 
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17. * GNU General Public License for more details. 
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program.  If not, see <https://www.gnu.org/licenses/>.
  21. **/
  22. // Implementation of SDIO communication for RP2040 and RP23XX
  23. //
  24. // The RP2040 official work-in-progress code at
  25. // https://github.com/raspberrypi/pico-extras/tree/master/src/rp2_common/pico_sd_card
  26. // may be useful reference, but this is independent implementation.
  27. //
  28. // For official SDIO specifications, refer to:
  29. // https://www.sdcard.org/downloads/pls/
  30. // "SDIO Physical Layer Simplified Specification Version 8.00"
  31. #include <BlueSCSI_platform.h>
  32. #if defined(SD_USE_SDIO) && !defined(SD_USE_RP2350_SDIO)
  33. #include "sdio.h"
  34. #include <hardware/pio.h>
  35. #include <hardware/dma.h>
  36. //#include <hardware/gpio.h>
  37. #include <hardware/structs/scb.h>
  38. #include <BlueSCSI_platform.h>
  39. #include <BlueSCSI_log.h>
  40. #include "timings_RP2MCU.h"
  41. # include "sdio_RP2MCU.pio.h"
  42. #define SDIO_PIO pio1
  43. #define SDIO_CMD_SM 0
  44. #define SDIO_DATA_SM 1
  45. #define SDIO_DMA_CH 4
  46. #define SDIO_DMA_CHB 5
  47. // If the highest SD pin is beyond the first 32 GPIOs,
  48. // set the base GPIO to 16 to use GPIOs 16-47
  49. #if SDIO_D3 > 31
  50. # define SDIO_GPIO_BASE_HIGH
  51. # define SDIO_BASE_OFFSET 16
  52. #else
  53. # define SDIO_BASE_OFFSET 0
  54. #endif
  55. // Maximum number of 512 byte blocks to transfer in one request
  56. #define SDIO_MAX_BLOCKS 256
  57. enum sdio_transfer_state_t { SDIO_IDLE, SDIO_RX, SDIO_TX, SDIO_TX_WAIT_IDLE};
  58. static struct {
  59. uint32_t pio_cmd_rsp_clk_offset;
  60. pio_sm_config pio_cfg_cmd_rsp;
  61. uint32_t pio_data_rx_offset;
  62. pio_sm_config pio_cfg_data_rx;
  63. uint32_t pio_data_tx_offset;
  64. pio_sm_config pio_cfg_data_tx;
  65. sdio_transfer_state_t transfer_state;
  66. uint32_t transfer_start_time;
  67. uint32_t *data_buf;
  68. uint32_t blocks_done; // Number of blocks transferred so far
  69. uint32_t total_blocks; // Total number of blocks to transfer
  70. uint32_t blocks_checksumed; // Number of blocks that have had CRC calculated
  71. uint32_t checksum_errors; // Number of checksum errors detected
  72. uint8_t cmdBuf[6];
  73. // Variables for block writes
  74. uint64_t next_wr_block_checksum;
  75. uint32_t end_token_buf[3]; // CRC and end token for write block
  76. sdio_status_t wr_status;
  77. uint32_t card_response;
  78. // Variables for block reads
  79. // This is used to perform DMA into data buffers and checksum buffers separately.
  80. struct {
  81. void * write_addr;
  82. uint32_t transfer_count;
  83. } dma_blocks[SDIO_MAX_BLOCKS * 2];
  84. struct {
  85. uint32_t top;
  86. uint32_t bottom;
  87. } received_checksums[SDIO_MAX_BLOCKS];
  88. } g_sdio;
  89. void rp2040_sdio_dma_irq();
  90. /*******************************************************
  91. * Checksum algorithms
  92. *******************************************************/
  93. // Table lookup for calculating CRC-7 checksum that is used in SDIO command packets.
  94. // Usage:
  95. // uint8_t crc = 0;
  96. // crc = crc7_table[crc ^ byte];
  97. // .. repeat for every byte ..
  98. __attribute__((section(".time_critical.crc7_table")))
  99. static const uint8_t crc7_table[256] = {
  100. 0x00, 0x12, 0x24, 0x36, 0x48, 0x5a, 0x6c, 0x7e,
  101. 0x90, 0x82, 0xb4, 0xa6, 0xd8, 0xca, 0xfc, 0xee,
  102. 0x32, 0x20, 0x16, 0x04, 0x7a, 0x68, 0x5e, 0x4c,
  103. 0xa2, 0xb0, 0x86, 0x94, 0xea, 0xf8, 0xce, 0xdc,
  104. 0x64, 0x76, 0x40, 0x52, 0x2c, 0x3e, 0x08, 0x1a,
  105. 0xf4, 0xe6, 0xd0, 0xc2, 0xbc, 0xae, 0x98, 0x8a,
  106. 0x56, 0x44, 0x72, 0x60, 0x1e, 0x0c, 0x3a, 0x28,
  107. 0xc6, 0xd4, 0xe2, 0xf0, 0x8e, 0x9c, 0xaa, 0xb8,
  108. 0xc8, 0xda, 0xec, 0xfe, 0x80, 0x92, 0xa4, 0xb6,
  109. 0x58, 0x4a, 0x7c, 0x6e, 0x10, 0x02, 0x34, 0x26,
  110. 0xfa, 0xe8, 0xde, 0xcc, 0xb2, 0xa0, 0x96, 0x84,
  111. 0x6a, 0x78, 0x4e, 0x5c, 0x22, 0x30, 0x06, 0x14,
  112. 0xac, 0xbe, 0x88, 0x9a, 0xe4, 0xf6, 0xc0, 0xd2,
  113. 0x3c, 0x2e, 0x18, 0x0a, 0x74, 0x66, 0x50, 0x42,
  114. 0x9e, 0x8c, 0xba, 0xa8, 0xd6, 0xc4, 0xf2, 0xe0,
  115. 0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62, 0x70,
  116. 0x82, 0x90, 0xa6, 0xb4, 0xca, 0xd8, 0xee, 0xfc,
  117. 0x12, 0x00, 0x36, 0x24, 0x5a, 0x48, 0x7e, 0x6c,
  118. 0xb0, 0xa2, 0x94, 0x86, 0xf8, 0xea, 0xdc, 0xce,
  119. 0x20, 0x32, 0x04, 0x16, 0x68, 0x7a, 0x4c, 0x5e,
  120. 0xe6, 0xf4, 0xc2, 0xd0, 0xae, 0xbc, 0x8a, 0x98,
  121. 0x76, 0x64, 0x52, 0x40, 0x3e, 0x2c, 0x1a, 0x08,
  122. 0xd4, 0xc6, 0xf0, 0xe2, 0x9c, 0x8e, 0xb8, 0xaa,
  123. 0x44, 0x56, 0x60, 0x72, 0x0c, 0x1e, 0x28, 0x3a,
  124. 0x4a, 0x58, 0x6e, 0x7c, 0x02, 0x10, 0x26, 0x34,
  125. 0xda, 0xc8, 0xfe, 0xec, 0x92, 0x80, 0xb6, 0xa4,
  126. 0x78, 0x6a, 0x5c, 0x4e, 0x30, 0x22, 0x14, 0x06,
  127. 0xe8, 0xfa, 0xcc, 0xde, 0xa0, 0xb2, 0x84, 0x96,
  128. 0x2e, 0x3c, 0x0a, 0x18, 0x66, 0x74, 0x42, 0x50,
  129. 0xbe, 0xac, 0x9a, 0x88, 0xf6, 0xe4, 0xd2, 0xc0,
  130. 0x1c, 0x0e, 0x38, 0x2a, 0x54, 0x46, 0x70, 0x62,
  131. 0x8c, 0x9e, 0xa8, 0xba, 0xc4, 0xd6, 0xe0, 0xf2
  132. };
  133. // Calculate the CRC16 checksum for parallel 4 bit lines separately.
  134. // When the SDIO bus operates in 4-bit mode, the CRC16 algorithm
  135. // is applied to each line separately and generates total of
  136. // 4 x 16 = 64 bits of checksum.
  137. __attribute__((optimize("O3")))
  138. uint64_t sdio_crc16_4bit_checksum(uint32_t *data, uint32_t num_words)
  139. {
  140. uint64_t crc = 0;
  141. uint32_t *end = data + num_words;
  142. while (data < end)
  143. {
  144. for (int unroll = 0; unroll < 4; unroll++)
  145. {
  146. // Each 32-bit word contains 8 bits per line.
  147. // Reverse the bytes because SDIO protocol is big-endian.
  148. uint32_t data_in = __builtin_bswap32(*data++);
  149. // Shift out 8 bits for each line
  150. uint32_t data_out = crc >> 32;
  151. crc <<= 32;
  152. // XOR outgoing data to itself with 4 bit delay
  153. data_out ^= (data_out >> 16);
  154. // XOR incoming data to outgoing data with 4 bit delay
  155. data_out ^= (data_in >> 16);
  156. // XOR outgoing and incoming data to accumulator at each tap
  157. uint64_t xorred = data_out ^ data_in;
  158. crc ^= xorred;
  159. crc ^= xorred << (5 * 4);
  160. crc ^= xorred << (12 * 4);
  161. }
  162. }
  163. return crc;
  164. }
  165. /*******************************************************
  166. * Clock Runner
  167. *******************************************************/
  168. void cycleSdClock() {
  169. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_nop() | pio_encode_sideset_opt(1, 1) | pio_encode_delay(1));
  170. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_nop() | pio_encode_sideset_opt(1, 0) | pio_encode_delay(1));
  171. }
  172. /*******************************************************
  173. * Status Register Receiver
  174. *******************************************************/
  175. sdio_status_t receive_status_register(uint8_t* sds) {
  176. rp2040_sdio_rx_start(sds, 1, 64);
  177. // Wait for the DMA operation to complete, or fail if it took too long
  178. waitagain:
  179. while (dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH))
  180. {
  181. if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 2)
  182. {
  183. // Reset the state machine program
  184. dma_channel_abort(SDIO_DMA_CHB);
  185. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  186. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  187. return SDIO_ERR_RESPONSE_TIMEOUT;
  188. }
  189. }
  190. // Assert that both DMA channels are complete
  191. if(dma_channel_is_busy(SDIO_DMA_CHB) || dma_channel_is_busy(SDIO_DMA_CH)) {
  192. // Wait failure, go back.
  193. goto waitagain;
  194. }
  195. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  196. g_sdio.transfer_state = SDIO_IDLE;
  197. return SDIO_OK;
  198. }
  199. /*******************************************************
  200. * Basic SDIO command execution
  201. *******************************************************/
  202. static void sdio_send_command(uint8_t command, uint32_t arg, uint8_t response_bits)
  203. {
  204. // if (command != 41 && command != 55) {
  205. // log("C: ", (int)command, " A: ", arg);
  206. // }
  207. io_wo_8* txFifo = reinterpret_cast<io_wo_8*>(&SDIO_PIO->txf[SDIO_CMD_SM]);
  208. // Reinitialize the CMD SM
  209. pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_cmd_rsp_clk_offset, &g_sdio.pio_cfg_cmd_rsp);
  210. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
  211. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CMD, 1, true);
  212. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_D0, 4, false);
  213. // Pin direction: output, initial state should be high
  214. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_set(pio_pins, 1));
  215. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_set(pio_pindirs, 1));
  216. // Write the number of tx / rx bits to the SM
  217. *txFifo = 55; // Write 56 bits total
  218. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_out(pio_x, 8));
  219. *txFifo = response_bits ? response_bits - 1 : 0; // Bit count to receive
  220. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_out(pio_y, 8));
  221. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, true);
  222. // Build the command bytes (commands are 48 bits long)
  223. g_sdio.cmdBuf[0] = command | 0x40;
  224. g_sdio.cmdBuf[1] = (uint8_t)(arg >> 24U);
  225. g_sdio.cmdBuf[2] = (uint8_t)(arg >> 16U);
  226. g_sdio.cmdBuf[3] = (uint8_t)(arg >> 8U);
  227. g_sdio.cmdBuf[4] = (uint8_t)arg;
  228. // Get the SM clocking while we calculate CRCs
  229. *txFifo = 0XFF;
  230. // CRC calculation
  231. uint8_t crc = 0;
  232. for(uint8_t i = 0; i < 5; i++) {
  233. crc = crc7_table[crc ^ g_sdio.cmdBuf[i]];
  234. }
  235. crc = crc | 0x1;
  236. g_sdio.cmdBuf[5] = crc;
  237. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  238. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_8);
  239. channel_config_set_read_increment(&dmacfg, true);
  240. channel_config_set_write_increment(&dmacfg, false);
  241. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, true));
  242. dma_channel_configure(SDIO_DMA_CH, &dmacfg, &SDIO_PIO->txf[SDIO_CMD_SM], &g_sdio.cmdBuf, 6, true);
  243. }
  244. sdio_status_t rp2040_sdio_command_R1(uint8_t command, uint32_t arg, uint32_t *response)
  245. {
  246. uint32_t resp[2];
  247. if (response) {
  248. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  249. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_8);
  250. channel_config_set_read_increment(&dmacfg, false);
  251. channel_config_set_write_increment(&dmacfg, true);
  252. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false)); //6 * 8 = 48 bits
  253. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &resp, &SDIO_PIO->rxf[SDIO_CMD_SM], 6, true);
  254. }
  255. sdio_send_command(command, arg, response ? 48 : 0);
  256. uint32_t start = millis();
  257. if (response)
  258. {
  259. // Wait for DMA channel to receive response
  260. while (dma_channel_is_busy(SDIO_DMA_CHB))
  261. {
  262. if ((uint32_t)(millis() - start) > 2)
  263. {
  264. if (command != 8) {
  265. logmsg("Timeout waiting for response in rp2040_sdio_command_R1(", (int)command, "), ",
  266. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_rsp_clk_offset,
  267. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  268. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  269. }
  270. // Reset the state machine program
  271. dma_channel_abort(SDIO_DMA_CHB);
  272. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, there was an error
  273. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  274. return SDIO_ERR_RESPONSE_TIMEOUT;
  275. }
  276. }
  277. // Must bswap due to 8 bit segmentation
  278. resp[0] = __builtin_bswap32(resp[0]);
  279. resp[1] = __builtin_bswap32(resp[1]) >> 16;
  280. // dbgmsg("SDIO R1 response: ", resp0, " ", resp1);
  281. // Calculate response checksum
  282. uint8_t crc = 0;
  283. crc = crc7_table[crc ^ ((resp[0] >> 24) & 0xFF)];
  284. crc = crc7_table[crc ^ ((resp[0] >> 16) & 0xFF)];
  285. crc = crc7_table[crc ^ ((resp[0] >> 8) & 0xFF)];
  286. crc = crc7_table[crc ^ ((resp[0] >> 0) & 0xFF)];
  287. crc = crc7_table[crc ^ ((resp[1] >> 8) & 0xFF)];
  288. uint8_t actual_crc = ((resp[1] >> 0) & 0xFE);
  289. if (crc != actual_crc)
  290. {
  291. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  292. dbgmsg("resp[0]:", resp[0], "resp[1]:", resp[1]);
  293. return SDIO_ERR_RESPONSE_CRC;
  294. }
  295. uint8_t response_cmd = ((resp[0] >> 24) & 0xFF);
  296. if (response_cmd != command && command != 41)
  297. {
  298. dbgmsg("rp2040_sdio_command_R1(", (int)command, "): received reply for ", (int)response_cmd);
  299. return SDIO_ERR_RESPONSE_CODE;
  300. }
  301. *response = ((resp[0] & 0xFFFFFF) << 8) | ((resp[1] >> 8) & 0xFF);
  302. } else {
  303. // Wait for CMD SM TX FIFO Stall (all command bits were sent)
  304. uint32_t tx_stall_flag = 1u << (PIO_FDEBUG_TXSTALL_LSB + SDIO_CMD_SM);
  305. // Clear the stall marker
  306. SDIO_PIO->fdebug = tx_stall_flag;
  307. // Wait for the stall
  308. while (!(SDIO_PIO->fdebug & tx_stall_flag)) {
  309. if ((uint32_t)(millis() - start) > 2)
  310. {
  311. if (command != 8) {
  312. logmsg("Timeout waiting for CMD TX in rp2040_sdio_command_R1(", (int)command, "), ",
  313. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_rsp_clk_offset,
  314. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  315. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  316. }
  317. // Reset the state machine program
  318. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, there was an error
  319. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  320. return SDIO_ERR_RESPONSE_TIMEOUT;
  321. }
  322. }
  323. }
  324. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  325. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  326. return SDIO_OK;
  327. }
  328. sdio_status_t rp2040_sdio_command_R2(uint8_t command, uint32_t arg, uint8_t response[16])
  329. {
  330. // The response is too long to fit in the PIO FIFO, so use DMA to receive it.
  331. uint32_t response_buf[5];
  332. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  333. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_8);
  334. channel_config_set_read_increment(&dmacfg, false);
  335. channel_config_set_write_increment(&dmacfg, true);
  336. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false)); //17 * 8 = 136
  337. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &response_buf, &SDIO_PIO->rxf[SDIO_CMD_SM], 17, true);
  338. sdio_send_command(command, arg, 136);
  339. uint32_t start = millis();
  340. while (dma_channel_is_busy(SDIO_DMA_CHB))
  341. {
  342. if ((uint32_t)(millis() - start) > 2)
  343. {
  344. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R2(", (int)command, "), ",
  345. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_rsp_clk_offset,
  346. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  347. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  348. // Reset the state machine program
  349. dma_channel_abort(SDIO_DMA_CHB);
  350. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, there was an error
  351. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  352. return SDIO_ERR_RESPONSE_TIMEOUT;
  353. }
  354. }
  355. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, its job is done
  356. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  357. dma_channel_abort(SDIO_DMA_CHB);
  358. // Must byte swap because receiving 8-bit chunks instead of 32 bit
  359. response_buf[0] = __builtin_bswap32(response_buf[0]);
  360. response_buf[1] = __builtin_bswap32(response_buf[1]);
  361. response_buf[2] = __builtin_bswap32(response_buf[2]);
  362. response_buf[3] = __builtin_bswap32(response_buf[3]);
  363. response_buf[4] = __builtin_bswap32(response_buf[4]) >> 24;
  364. // Copy the response payload to output buffer
  365. response[0] = ((response_buf[0] >> 16) & 0xFF);
  366. response[1] = ((response_buf[0] >> 8) & 0xFF);
  367. response[2] = ((response_buf[0] >> 0) & 0xFF);
  368. response[3] = ((response_buf[1] >> 24) & 0xFF);
  369. response[4] = ((response_buf[1] >> 16) & 0xFF);
  370. response[5] = ((response_buf[1] >> 8) & 0xFF);
  371. response[6] = ((response_buf[1] >> 0) & 0xFF);
  372. response[7] = ((response_buf[2] >> 24) & 0xFF);
  373. response[8] = ((response_buf[2] >> 16) & 0xFF);
  374. response[9] = ((response_buf[2] >> 8) & 0xFF);
  375. response[10] = ((response_buf[2] >> 0) & 0xFF);
  376. response[11] = ((response_buf[3] >> 24) & 0xFF);
  377. response[12] = ((response_buf[3] >> 16) & 0xFF);
  378. response[13] = ((response_buf[3] >> 8) & 0xFF);
  379. response[14] = ((response_buf[3] >> 0) & 0xFF);
  380. response[15] = ((response_buf[4] >> 0) & 0xFF);
  381. // Calculate checksum of the payload
  382. uint8_t crc = 0;
  383. for (int i = 0; i < 15; i++)
  384. {
  385. crc = crc7_table[crc ^ response[i]];
  386. }
  387. uint8_t actual_crc = response[15] & 0xFE;
  388. if (crc != actual_crc)
  389. {
  390. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
  391. return SDIO_ERR_RESPONSE_CRC;
  392. }
  393. uint8_t response_cmd = ((response_buf[0] >> 24) & 0xFF);
  394. if (response_cmd != 0x3F)
  395. {
  396. dbgmsg("rp2040_sdio_command_R2(", (int)command, "): Expected reply code 0x3F");
  397. return SDIO_ERR_RESPONSE_CODE;
  398. }
  399. return SDIO_OK;
  400. }
  401. sdio_status_t rp2040_sdio_command_R3(uint8_t command, uint32_t arg, uint32_t *response)
  402. {
  403. uint32_t resp[2];
  404. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  405. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_8);
  406. channel_config_set_read_increment(&dmacfg, false);
  407. channel_config_set_write_increment(&dmacfg, true);
  408. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false)); //6 * 8 = 48 bits
  409. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &resp, &SDIO_PIO->rxf[SDIO_CMD_SM], 6, true);
  410. sdio_send_command(command, arg, 48);
  411. // Wait for response
  412. uint32_t start = millis();
  413. while (dma_channel_is_busy(SDIO_DMA_CHB))
  414. {
  415. if ((uint32_t)(millis() - start) > 2)
  416. {
  417. dbgmsg("Timeout waiting for response in rp2040_sdio_command_R3(", (int)command, "), ",
  418. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_cmd_rsp_clk_offset,
  419. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  420. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
  421. // Reset the state machine program
  422. dma_channel_abort(SDIO_DMA_CHB);
  423. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, there was an error
  424. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  425. return SDIO_ERR_RESPONSE_TIMEOUT;
  426. }
  427. }
  428. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false); // Turn off the CMD SM, its job is done
  429. pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
  430. // Must bswap due to 8 bit transfer
  431. resp[0] = __builtin_bswap32(resp[0]);
  432. resp[1] = __builtin_bswap32(resp[1]) >> 16;
  433. *response = ((resp[0] & 0xFFFFFF) << 8) | ((resp[1] >> 8) & 0xFF);
  434. // debuglog("SDIO R3 response: ", resp0, " ", resp1);
  435. return SDIO_OK;
  436. }
  437. /*******************************************************
  438. * Data reception from SD card
  439. *******************************************************/
  440. sdio_status_t rp2040_sdio_rx_start(uint8_t *buffer, uint32_t num_blocks, uint32_t block_size)
  441. {
  442. // Buffer must be aligned
  443. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  444. g_sdio.transfer_state = SDIO_RX;
  445. g_sdio.transfer_start_time = millis();
  446. g_sdio.data_buf = (uint32_t*)buffer;
  447. g_sdio.blocks_done = 0;
  448. g_sdio.total_blocks = num_blocks;
  449. g_sdio.blocks_checksumed = 0;
  450. g_sdio.checksum_errors = 0;
  451. // Create DMA block descriptors to store each block of block_size bytes of data to buffer
  452. // and then 8 bytes to g_sdio.received_checksums.
  453. for (int i = 0; i < num_blocks; i++)
  454. {
  455. g_sdio.dma_blocks[i * 2].write_addr = buffer + i * block_size;
  456. g_sdio.dma_blocks[i * 2].transfer_count = block_size / sizeof(uint32_t);
  457. g_sdio.dma_blocks[i * 2 + 1].write_addr = &g_sdio.received_checksums[i];
  458. g_sdio.dma_blocks[i * 2 + 1].transfer_count = 2;
  459. }
  460. g_sdio.dma_blocks[num_blocks * 2].write_addr = 0;
  461. g_sdio.dma_blocks[num_blocks * 2].transfer_count = 0;
  462. // Configure first DMA channel for reading from the PIO RX fifo
  463. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  464. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  465. channel_config_set_read_increment(&dmacfg, false);
  466. channel_config_set_write_increment(&dmacfg, true);
  467. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
  468. channel_config_set_bswap(&dmacfg, true);
  469. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  470. dma_channel_configure(SDIO_DMA_CH, &dmacfg, 0, &SDIO_PIO->rxf[SDIO_DATA_SM], 0, false);
  471. // Configure second DMA channel for reconfiguring the first one
  472. dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  473. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  474. channel_config_set_read_increment(&dmacfg, true);
  475. channel_config_set_write_increment(&dmacfg, true);
  476. channel_config_set_ring(&dmacfg, true, 3);
  477. dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &dma_hw->ch[SDIO_DMA_CH].al1_write_addr,
  478. g_sdio.dma_blocks, 2, false);
  479. // Initialize PIO state machine
  480. pio_sm_init(SDIO_PIO, SDIO_DATA_SM, g_sdio.pio_data_rx_offset, &g_sdio.pio_cfg_data_rx);
  481. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_CLK, 1, true);
  482. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
  483. // Write number of nibbles to receive to Y register
  484. pio_sm_put(SDIO_PIO, SDIO_DATA_SM, block_size * 2 + 16 - 1);
  485. pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
  486. // Enable RX FIFO join because we don't need the TX FIFO during transfer.
  487. // This gives more leeway for the DMA block switching
  488. SDIO_PIO->sm[SDIO_DATA_SM].shiftctrl |= PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS;
  489. // Start PIO and DMA
  490. dma_channel_start(SDIO_DMA_CHB);
  491. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
  492. return SDIO_OK;
  493. }
  494. // Check checksums for received blocks
  495. static void sdio_verify_rx_checksums(uint32_t maxcount)
  496. {
  497. while (g_sdio.blocks_checksumed < g_sdio.blocks_done && maxcount-- > 0)
  498. {
  499. // Calculate checksum from received data
  500. int blockidx = g_sdio.blocks_checksumed++;
  501. uint64_t checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  502. SDIO_WORDS_PER_BLOCK);
  503. // Convert received checksum to little-endian format
  504. uint32_t top = __builtin_bswap32(g_sdio.received_checksums[blockidx].top);
  505. uint32_t bottom = __builtin_bswap32(g_sdio.received_checksums[blockidx].bottom);
  506. uint64_t expected = ((uint64_t)top << 32) | bottom;
  507. if (checksum != expected)
  508. {
  509. g_sdio.checksum_errors++;
  510. if (g_sdio.checksum_errors == 1)
  511. {
  512. logmsg("SDIO checksum error in reception: block ", blockidx,
  513. " calculated ", checksum, " expected ", expected);
  514. }
  515. }
  516. }
  517. }
  518. sdio_status_t rp2040_sdio_rx_poll(uint32_t *bytes_complete)
  519. {
  520. // Was everything done when the previous rx_poll() finished?
  521. if (g_sdio.blocks_done >= g_sdio.total_blocks)
  522. {
  523. g_sdio.transfer_state = SDIO_IDLE;
  524. }
  525. else
  526. {
  527. // Use the idle time to calculate checksums
  528. sdio_verify_rx_checksums(4);
  529. // Check how many DMA control blocks have been consumed
  530. uint32_t dma_ctrl_block_count = (dma_hw->ch[SDIO_DMA_CHB].read_addr - (uint32_t)&g_sdio.dma_blocks);
  531. dma_ctrl_block_count /= sizeof(g_sdio.dma_blocks[0]);
  532. // Compute how many complete 512 byte SDIO blocks have been transferred
  533. // When transfer ends, dma_ctrl_block_count == g_sdio.total_blocks * 2 + 1
  534. g_sdio.blocks_done = (dma_ctrl_block_count - 1) / 2;
  535. // NOTE: When all blocks are done, rx_poll() still returns SDIO_BUSY once.
  536. // This provides a chance to start the SCSI transfer before the last checksums
  537. // are computed. Any checksum failures can be indicated in SCSI status after
  538. // the data transfer has finished.
  539. }
  540. if (bytes_complete)
  541. {
  542. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  543. }
  544. if (g_sdio.transfer_state == SDIO_IDLE)
  545. {
  546. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  547. // Verify all remaining checksums.
  548. sdio_verify_rx_checksums(g_sdio.total_blocks);
  549. if (g_sdio.checksum_errors == 0)
  550. return SDIO_OK;
  551. else
  552. return SDIO_ERR_DATA_CRC;
  553. }
  554. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  555. {
  556. dbgmsg("rp2040_sdio_rx_poll() timeout, "
  557. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)g_sdio.pio_data_rx_offset,
  558. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  559. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
  560. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count,
  561. " BD: ", g_sdio.blocks_done);
  562. rp2040_sdio_stop();
  563. return SDIO_ERR_DATA_TIMEOUT;
  564. }
  565. return SDIO_BUSY;
  566. }
  567. /*******************************************************
  568. * Data transmission to SD card
  569. *******************************************************/
  570. static void sdio_start_next_block_tx()
  571. {
  572. // Initialize PIOs
  573. pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_data_tx_offset, &g_sdio.pio_cfg_data_tx);
  574. // Re-set the pin direction things here
  575. pio_sm_set_pins(SDIO_PIO, SDIO_CMD_SM, 0xF);
  576. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
  577. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_D0, 4, true);
  578. // Configure DMA to send the data block payload (512 bytes)
  579. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
  580. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
  581. channel_config_set_read_increment(&dmacfg, true);
  582. channel_config_set_write_increment(&dmacfg, false);
  583. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, true));
  584. channel_config_set_bswap(&dmacfg, true);
  585. channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
  586. dma_channel_configure(SDIO_DMA_CH, &dmacfg,
  587. &SDIO_PIO->txf[SDIO_CMD_SM], g_sdio.data_buf + g_sdio.blocks_done * SDIO_WORDS_PER_BLOCK,
  588. SDIO_WORDS_PER_BLOCK, false);
  589. // Prepare second DMA channel to send the CRC and block end marker
  590. uint64_t crc = g_sdio.next_wr_block_checksum;
  591. g_sdio.end_token_buf[0] = (uint32_t)(crc >> 32);
  592. g_sdio.end_token_buf[1] = (uint32_t)(crc >> 0);
  593. g_sdio.end_token_buf[2] = 0xFFFFFFFF;
  594. channel_config_set_bswap(&dmacfg, false);
  595. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  596. &SDIO_PIO->txf[SDIO_CMD_SM], g_sdio.end_token_buf, 3, false);
  597. // Enable IRQ to trigger when block is done
  598. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  599. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 1);
  600. // Initialize register X with nibble count
  601. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, 1048);
  602. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_out(pio_x, 32));
  603. // Initialize CRC receiver Y bit count
  604. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, 7);
  605. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_out(pio_y, 32));
  606. // Initialize pins to output and high
  607. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_set(pio_pins, 15));
  608. pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_set(pio_pindirs, 15));
  609. // Write start token and start the DMA transfer.
  610. pio_sm_put(SDIO_PIO, SDIO_CMD_SM, 0xFFFFFFF0);
  611. dma_channel_start(SDIO_DMA_CH);
  612. // Start state machine
  613. pio_set_sm_mask_enabled(SDIO_PIO, (1ul << SDIO_CMD_SM)/* | (1ul << SDIO_DATA_SM)*/, true);
  614. }
  615. static void sdio_compute_next_tx_checksum()
  616. {
  617. assert (g_sdio.blocks_done < g_sdio.total_blocks && g_sdio.blocks_checksumed < g_sdio.total_blocks);
  618. int blockidx = g_sdio.blocks_checksumed++;
  619. g_sdio.next_wr_block_checksum = sdio_crc16_4bit_checksum(g_sdio.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
  620. SDIO_WORDS_PER_BLOCK);
  621. }
  622. // Start transferring data from memory to SD card
  623. sdio_status_t rp2040_sdio_tx_start(const uint8_t *buffer, uint32_t num_blocks)
  624. {
  625. // Buffer must be aligned
  626. assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
  627. g_sdio.transfer_state = SDIO_TX;
  628. g_sdio.transfer_start_time = millis();
  629. g_sdio.data_buf = (uint32_t*)buffer;
  630. g_sdio.blocks_done = 0;
  631. g_sdio.total_blocks = num_blocks;
  632. g_sdio.blocks_checksumed = 0;
  633. g_sdio.checksum_errors = 0;
  634. // Compute first block checksum
  635. sdio_compute_next_tx_checksum();
  636. // Start first DMA transfer and PIO
  637. sdio_start_next_block_tx();
  638. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  639. {
  640. // Precompute second block checksum
  641. sdio_compute_next_tx_checksum();
  642. }
  643. return SDIO_OK;
  644. }
  645. sdio_status_t check_sdio_write_response(uint32_t card_response)
  646. {
  647. uint8_t wr_status = card_response & 0x1F;
  648. // 5 = 0b0101 = data accepted (11100101)
  649. // 11 = 0b1011 = CRC error (11101011)
  650. // 13 = 0b1101 = Write Error (11101101)
  651. if (wr_status == 0b101)
  652. {
  653. return SDIO_OK;
  654. }
  655. else if (wr_status == 0b1011)
  656. {
  657. logmsg("SDIO card reports write CRC error, status ", card_response);
  658. return SDIO_ERR_WRITE_CRC;
  659. }
  660. else if (wr_status == 0b1101)
  661. {
  662. logmsg("SDIO card reports write failure, status ", card_response);
  663. return SDIO_ERR_WRITE_FAIL;
  664. }
  665. else
  666. {
  667. logmsg("SDIO card reports unknown write status ", card_response);
  668. return SDIO_ERR_WRITE_FAIL;
  669. }
  670. }
  671. // When a block finishes, this IRQ handler starts the next one
  672. static void rp2040_sdio_tx_irq()
  673. {
  674. dma_hw->ints1 = 1 << SDIO_DMA_CHB;
  675. if (g_sdio.transfer_state == SDIO_TX)
  676. {
  677. if (!dma_channel_is_busy(SDIO_DMA_CH) && !dma_channel_is_busy(SDIO_DMA_CHB))
  678. {
  679. // Main data transfer is finished now.
  680. // When card is ready, PIO will put card response on RX fifo
  681. g_sdio.transfer_state = SDIO_TX_WAIT_IDLE;
  682. if (!pio_sm_is_rx_fifo_empty(SDIO_PIO, SDIO_CMD_SM))
  683. {
  684. // Card is already idle
  685. g_sdio.card_response = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
  686. }
  687. else
  688. {
  689. // Use DMA to wait for the response
  690. dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
  691. channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_8);
  692. channel_config_set_read_increment(&dmacfg, false);
  693. channel_config_set_write_increment(&dmacfg, false);
  694. channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false));
  695. dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
  696. &g_sdio.card_response, &SDIO_PIO->rxf[SDIO_CMD_SM], 1, true);
  697. }
  698. }
  699. }
  700. if (g_sdio.transfer_state == SDIO_TX_WAIT_IDLE)
  701. {
  702. if (!dma_channel_is_busy(SDIO_DMA_CHB))
  703. {
  704. g_sdio.wr_status = check_sdio_write_response(g_sdio.card_response);
  705. if (g_sdio.wr_status != SDIO_OK)
  706. {
  707. rp2040_sdio_stop();
  708. return;
  709. }
  710. g_sdio.blocks_done++;
  711. if (g_sdio.blocks_done < g_sdio.total_blocks)
  712. {
  713. sdio_start_next_block_tx();
  714. g_sdio.transfer_state = SDIO_TX;
  715. if (g_sdio.blocks_checksumed < g_sdio.total_blocks)
  716. {
  717. // Precompute the CRC for next block so that it is ready when
  718. // we want to send it.
  719. sdio_compute_next_tx_checksum();
  720. }
  721. }
  722. else
  723. {
  724. rp2040_sdio_stop();
  725. }
  726. }
  727. }
  728. }
  729. // Check if transmission is complete
  730. sdio_status_t rp2040_sdio_tx_poll(uint32_t *bytes_complete)
  731. {
  732. // SCB_ICSR_VECTACTIVE_Msk (0x1FFUL)
  733. if (scb_hw->icsr & (0x1FFUL))
  734. {
  735. // Verify that IRQ handler gets called even if we are in hardfault handler
  736. rp2040_sdio_tx_irq();
  737. }
  738. if (bytes_complete)
  739. {
  740. *bytes_complete = g_sdio.blocks_done * SDIO_BLOCK_SIZE;
  741. }
  742. if (g_sdio.transfer_state == SDIO_IDLE)
  743. {
  744. rp2040_sdio_stop();
  745. return g_sdio.wr_status;
  746. }
  747. else if ((uint32_t)(millis() - g_sdio.transfer_start_time) > 1000)
  748. {
  749. dbgmsg("rp2040_sdio_tx_poll() timeout, "
  750. "PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)g_sdio.pio_data_tx_offset,
  751. " RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  752. " TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
  753. " DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
  754. rp2040_sdio_stop();
  755. return SDIO_ERR_DATA_TIMEOUT;
  756. }
  757. return SDIO_BUSY;
  758. }
  759. // Force everything to idle state
  760. sdio_status_t rp2040_sdio_stop()
  761. {
  762. dma_channel_abort(SDIO_DMA_CH);
  763. dma_channel_abort(SDIO_DMA_CHB);
  764. dma_set_irq1_channel_mask_enabled(1 << SDIO_DMA_CHB, 0);
  765. pio_set_sm_mask_enabled(SDIO_PIO, (1ul << SDIO_CMD_SM) | (1ul << SDIO_DATA_SM), false);
  766. g_sdio.transfer_state = SDIO_IDLE;
  767. return SDIO_OK;
  768. }
  769. void rp2040_sdio_init(int clock_divider)
  770. {
  771. #ifdef SDIO_GPIO_BASE_HIGH
  772. pio_set_gpio_base(SDIO_PIO, 16);
  773. #endif
  774. // Mark resources as being in use, unless it has been done already.
  775. static bool resources_claimed = false;
  776. if (!resources_claimed)
  777. {
  778. pio_sm_claim(SDIO_PIO, SDIO_CMD_SM);
  779. pio_sm_claim(SDIO_PIO, SDIO_DATA_SM);
  780. dma_channel_claim(SDIO_DMA_CH);
  781. dma_channel_claim(SDIO_DMA_CHB);
  782. resources_claimed = true;
  783. }
  784. memset(&g_sdio, 0, sizeof(g_sdio));
  785. dma_channel_abort(SDIO_DMA_CH);
  786. dma_channel_abort(SDIO_DMA_CHB);
  787. pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
  788. pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
  789. // Load PIO programs
  790. pio_clear_instruction_memory(SDIO_PIO);
  791. // Set pull resistors for all SD data lines
  792. gpio_set_pulls(SDIO_CLK, true, false);
  793. gpio_set_pulls(SDIO_CMD, true, false);
  794. gpio_set_pulls(SDIO_D0, true, false);
  795. gpio_set_pulls(SDIO_D1, true, false);
  796. gpio_set_pulls(SDIO_D2, true, false);
  797. gpio_set_pulls(SDIO_D3, true, false);
  798. // Command state machine
  799. g_sdio.pio_cmd_rsp_clk_offset = pio_add_program(SDIO_PIO, &cmd_rsp_program);
  800. g_sdio.pio_cfg_cmd_rsp = pio_cmd_rsp_program_config(g_sdio.pio_cmd_rsp_clk_offset, SDIO_CMD, SDIO_CLK, clock_divider, 0);
  801. pio_sm_init(SDIO_PIO, SDIO_CMD_SM, g_sdio.pio_cmd_rsp_clk_offset, &g_sdio.pio_cfg_cmd_rsp);
  802. pio_sm_set_pins(SDIO_PIO, SDIO_CMD_SM, 1);
  803. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
  804. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CMD, 1, true);
  805. pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_D0, 4, false);
  806. // Data reception program
  807. g_sdio.pio_data_rx_offset = pio_add_program(SDIO_PIO, &rd_data_w_clock_program);
  808. g_sdio.pio_cfg_data_rx = pio_rd_data_w_clock_program_config(g_sdio.pio_data_rx_offset, SDIO_D0, SDIO_CLK, clock_divider);
  809. // Data transmission program
  810. g_sdio.pio_data_tx_offset = pio_add_program(SDIO_PIO, &sdio_tx_w_clock_program);
  811. g_sdio.pio_cfg_data_tx = pio_sdio_tx_w_clock_program_config(g_sdio.pio_data_tx_offset, SDIO_D0, SDIO_CLK, clock_divider);
  812. // Disable SDIO pins input synchronizer.
  813. // This reduces input delay.
  814. // Because the CLK is driven synchronously to CPU clock,
  815. // there should be no metastability problems.
  816. SDIO_PIO->input_sync_bypass |= (1 << (SDIO_CLK - SDIO_BASE_OFFSET)) | (1 << (SDIO_CMD - SDIO_BASE_OFFSET))
  817. | (1 << (SDIO_D0 - SDIO_BASE_OFFSET)) | (1 << (SDIO_D1 - SDIO_BASE_OFFSET))
  818. | (1 << (SDIO_D2 - SDIO_BASE_OFFSET)) | (1 << (SDIO_D3 - SDIO_BASE_OFFSET));
  819. // Redirect GPIOs to PIO
  820. gpio_set_function(SDIO_CMD, GPIO_FUNC_PIO1);
  821. gpio_set_function(SDIO_CLK, GPIO_FUNC_PIO1);
  822. gpio_set_function(SDIO_D0, GPIO_FUNC_PIO1);
  823. gpio_set_function(SDIO_D1, GPIO_FUNC_PIO1);
  824. gpio_set_function(SDIO_D2, GPIO_FUNC_PIO1);
  825. gpio_set_function(SDIO_D3, GPIO_FUNC_PIO1);
  826. // Set up IRQ handler when DMA completes.
  827. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  828. irq_set_enabled(DMA_IRQ_1, true);
  829. #if 0
  830. #ifndef ENABLE_AUDIO_OUTPUT_SPDIF
  831. irq_set_exclusive_handler(DMA_IRQ_1, rp2040_sdio_tx_irq);
  832. #else
  833. // seem to hit assertion in _exclusive_handler call due to DMA_IRQ_0 being shared?
  834. // slightly less efficient to do it this way, so investigate further at some point
  835. irq_add_shared_handler(DMA_IRQ_1, rp2040_sdio_tx_irq, 0xFF);
  836. #endif
  837. irq_set_enabled(DMA_IRQ_1, true);
  838. #endif
  839. }
  840. #endif