scsiPhy.cpp 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. // Implements the low level interface to SCSI bus
  2. // Partially derived from scsiPhy.c from SCSI2SD-V6
  3. #include "scsiPhy.h"
  4. #include "ZuluSCSI_platform.h"
  5. #include "ZuluSCSI_log.h"
  6. #include "ZuluSCSI_log_trace.h"
  7. #include "ZuluSCSI_config.h"
  8. #include "scsi_accel_rp2040.h"
  9. #include "hardware/structs/iobank0.h"
  10. #include <scsi2sd.h>
  11. extern "C" {
  12. #include <scsi.h>
  13. #include <scsi2sd_time.h>
  14. }
  15. /***********************/
  16. /* SCSI status signals */
  17. /***********************/
  18. extern "C" bool scsiStatusATN()
  19. {
  20. return SCSI_IN(ATN);
  21. }
  22. extern "C" bool scsiStatusBSY()
  23. {
  24. return SCSI_IN(BSY);
  25. }
  26. /************************/
  27. /* SCSI selection logic */
  28. /************************/
  29. volatile uint8_t g_scsi_sts_selection;
  30. volatile uint8_t g_scsi_ctrl_bsy;
  31. void scsi_bsy_deassert_interrupt()
  32. {
  33. if (SCSI_IN(SEL) && !SCSI_IN(BSY))
  34. {
  35. // Check if any of the targets we simulate is selected
  36. uint8_t sel_bits = SCSI_IN_DATA();
  37. int sel_id = -1;
  38. for (int i = 0; i < S2S_MAX_TARGETS; i++)
  39. {
  40. if (scsiDev.targets[i].targetId <= 7 && scsiDev.targets[i].cfg)
  41. {
  42. if (sel_bits & (1 << scsiDev.targets[i].targetId))
  43. {
  44. sel_id = scsiDev.targets[i].targetId;
  45. break;
  46. }
  47. }
  48. }
  49. if (sel_id >= 0)
  50. {
  51. // Set ATN flag here unconditionally, real value is only known after
  52. // OUT_BSY is enabled in scsiStatusSEL() below.
  53. g_scsi_sts_selection = SCSI_STS_SELECTION_SUCCEEDED | SCSI_STS_SELECTION_ATN | sel_id;
  54. }
  55. // selFlag is required for Philips P2000C which releases it after 600ns
  56. // without waiting for BSY.
  57. // Also required for some early Mac Plus roms
  58. scsiDev.selFlag = *SCSI_STS_SELECTED;
  59. }
  60. }
  61. extern "C" bool scsiStatusSEL()
  62. {
  63. if (g_scsi_ctrl_bsy)
  64. {
  65. // We don't have direct register access to BSY bit like SCSI2SD scsi.c expects.
  66. // Instead update the state here.
  67. // Releasing happens with bus release.
  68. g_scsi_ctrl_bsy = 0;
  69. SCSI_OUT(BSY, 1);
  70. // On RP2040 hardware the ATN signal is only available after OUT_BSY enables
  71. // the IO buffer U105, so check the signal status here.
  72. delay_100ns();
  73. if (!scsiStatusATN())
  74. {
  75. // This is a SCSI1 host that does send IDENTIFY message
  76. scsiDev.atnFlag = 0;
  77. scsiDev.target->unitAttention = 0;
  78. scsiDev.compatMode = COMPAT_SCSI1;
  79. }
  80. }
  81. return SCSI_IN(SEL);
  82. }
  83. /************************/
  84. /* SCSI bus reset logic */
  85. /************************/
  86. static void scsi_rst_assert_interrupt()
  87. {
  88. // Glitch filtering
  89. bool rst1 = SCSI_IN(RST);
  90. delay_ns(500);
  91. bool rst2 = SCSI_IN(RST);
  92. if (rst1 && rst2)
  93. {
  94. azdbg("BUS RESET");
  95. scsiDev.resetFlag = 1;
  96. }
  97. }
  98. static void scsiPhyIRQ(uint gpio, uint32_t events)
  99. {
  100. if (gpio == SCSI_IN_BSY || gpio == SCSI_IN_SEL)
  101. {
  102. // Note BSY / SEL interrupts only when we are not driving OUT_BSY low ourselves.
  103. // The BSY input pin may be shared with other signals.
  104. if (sio_hw->gpio_out & (1 << SCSI_OUT_BSY))
  105. {
  106. scsi_bsy_deassert_interrupt();
  107. }
  108. }
  109. else if (gpio == SCSI_IN_RST)
  110. {
  111. scsi_rst_assert_interrupt();
  112. }
  113. }
  114. // This function is called to initialize the phy code.
  115. // It is called after power-on and after SCSI bus reset.
  116. extern "C" void scsiPhyReset(void)
  117. {
  118. SCSI_RELEASE_OUTPUTS();
  119. g_scsi_sts_selection = 0;
  120. g_scsi_ctrl_bsy = 0;
  121. scsi_accel_rp2040_init();
  122. // Enable BSY, RST and SEL interrupts
  123. // Note: RP2040 library currently supports only one callback,
  124. // so it has to be same for both pins.
  125. gpio_set_irq_enabled_with_callback(SCSI_IN_BSY, GPIO_IRQ_EDGE_RISE, true, scsiPhyIRQ);
  126. gpio_set_irq_enabled(SCSI_IN_RST, GPIO_IRQ_EDGE_FALL, true);
  127. // Check BSY line status when SEL goes active.
  128. // This is needed to handle SCSI-1 hosts that use the single initiator mode.
  129. // The host will just assert the SEL directly, without asserting BSY first.
  130. gpio_set_irq_enabled(SCSI_IN_SEL, GPIO_IRQ_EDGE_FALL, true);
  131. }
  132. /************************/
  133. /* SCSI bus phase logic */
  134. /************************/
  135. static SCSI_PHASE g_scsi_phase;
  136. extern "C" void scsiEnterPhase(int phase)
  137. {
  138. int delay = scsiEnterPhaseImmediate(phase);
  139. if (delay > 0)
  140. {
  141. s2s_delay_ns(delay);
  142. }
  143. }
  144. // Change state and return nanosecond delay to wait
  145. extern "C" uint32_t scsiEnterPhaseImmediate(int phase)
  146. {
  147. if (phase != g_scsi_phase)
  148. {
  149. // ANSI INCITS 362-2002 SPI-3 10.7.1:
  150. // Phase changes are not allowed while REQ or ACK is asserted.
  151. while (likely(!scsiDev.resetFlag) && SCSI_IN(ACK)) {}
  152. if (scsiDev.compatMode < COMPAT_SCSI2 && (phase == DATA_IN || phase == DATA_OUT))
  153. {
  154. // Akai S1000/S3000 seems to need extra delay before changing to data phase
  155. // after a command. The code in ZuluSCSI_disk.cpp tries to do this while waiting
  156. // for SD card, to avoid any extra latency.
  157. s2s_delay_ns(400000);
  158. }
  159. int oldphase = g_scsi_phase;
  160. g_scsi_phase = (SCSI_PHASE)phase;
  161. scsiLogPhaseChange(phase);
  162. // Select between synchronous vs. asynchronous SCSI writes
  163. if (g_scsi_phase == DATA_IN && scsiDev.target->syncOffset > 0)
  164. {
  165. scsi_accel_rp2040_setWriteMode(scsiDev.target->syncOffset, scsiDev.target->syncPeriod);
  166. }
  167. else
  168. {
  169. scsi_accel_rp2040_setWriteMode(0, 0);
  170. }
  171. if (phase < 0)
  172. {
  173. // Other communication on bus or reset state
  174. SCSI_RELEASE_OUTPUTS();
  175. return 0;
  176. }
  177. else
  178. {
  179. SCSI_OUT(MSG, phase & __scsiphase_msg);
  180. SCSI_OUT(CD, phase & __scsiphase_cd);
  181. SCSI_OUT(IO, phase & __scsiphase_io);
  182. SCSI_ENABLE_CONTROL_OUT();
  183. int delayNs = 400; // Bus settle delay
  184. if ((oldphase & __scsiphase_io) != (phase & __scsiphase_io))
  185. {
  186. delayNs += 400; // Data release delay
  187. }
  188. if (scsiDev.compatMode < COMPAT_SCSI2)
  189. {
  190. // EMU EMAX needs 100uS ! 10uS is not enough.
  191. delayNs += 100000;
  192. }
  193. return delayNs;
  194. }
  195. }
  196. else
  197. {
  198. return 0;
  199. }
  200. }
  201. // Release all signals
  202. void scsiEnterBusFree(void)
  203. {
  204. g_scsi_phase = BUS_FREE;
  205. g_scsi_sts_selection = 0;
  206. g_scsi_ctrl_bsy = 0;
  207. scsiDev.cdbLen = 0;
  208. SCSI_RELEASE_OUTPUTS();
  209. }
  210. /********************/
  211. /* Transmit to host */
  212. /********************/
  213. #define SCSI_WAIT_ACTIVE(pin) \
  214. if (!SCSI_IN(pin)) { \
  215. if (!SCSI_IN(pin)) { \
  216. while(!SCSI_IN(pin) && !scsiDev.resetFlag); \
  217. } \
  218. }
  219. // In synchronous mode the ACK pulse can be very short, so use edge IRQ to detect it.
  220. #define CHECK_EDGE(pin) \
  221. ((iobank0_hw->intr[pin / 8] >> (4 * (pin % 8))) & GPIO_IRQ_EDGE_FALL)
  222. #define SCSI_WAIT_ACTIVE_EDGE(pin) \
  223. if (!CHECK_EDGE(SCSI_IN_ ## pin)) { \
  224. while(!SCSI_IN(pin) && !CHECK_EDGE(SCSI_IN_ ## pin) && !scsiDev.resetFlag); \
  225. }
  226. #define SCSI_WAIT_INACTIVE(pin) \
  227. if (SCSI_IN(pin)) { \
  228. if (SCSI_IN(pin)) { \
  229. while(SCSI_IN(pin) && !scsiDev.resetFlag); \
  230. } \
  231. }
  232. // Write one byte to SCSI host using the handshake mechanism
  233. // This is suitable for both asynchronous and synchronous communication.
  234. static inline void scsiWriteOneByte(uint8_t value)
  235. {
  236. SCSI_OUT_DATA(value);
  237. delay_100ns(); // DB setup time before REQ
  238. gpio_acknowledge_irq(SCSI_IN_ACK, GPIO_IRQ_EDGE_FALL);
  239. SCSI_OUT(REQ, 1);
  240. SCSI_WAIT_ACTIVE_EDGE(ACK);
  241. SCSI_RELEASE_DATA_REQ();
  242. SCSI_WAIT_INACTIVE(ACK);
  243. }
  244. extern "C" void scsiWriteByte(uint8_t value)
  245. {
  246. scsiLogDataIn(&value, 1);
  247. scsiWriteOneByte(value);
  248. }
  249. extern "C" void scsiWrite(const uint8_t* data, uint32_t count)
  250. {
  251. scsiStartWrite(data, count);
  252. scsiFinishWrite();
  253. }
  254. extern "C" void scsiStartWrite(const uint8_t* data, uint32_t count)
  255. {
  256. scsiLogDataIn(data, count);
  257. if ((count & 1) != 0 || ((uint32_t)data & 1) != 0)
  258. {
  259. // Unaligned write, do it byte-by-byte
  260. scsiFinishWrite();
  261. for (uint32_t i = 0; i < count; i++)
  262. {
  263. if (scsiDev.resetFlag) break;
  264. scsiWriteOneByte(data[i]);
  265. }
  266. }
  267. else
  268. {
  269. // Use accelerated routine
  270. scsi_accel_rp2040_startWrite(data, count, &scsiDev.resetFlag);
  271. }
  272. }
  273. extern "C" bool scsiIsWriteFinished(const uint8_t *data)
  274. {
  275. return scsi_accel_rp2040_isWriteFinished(data);
  276. }
  277. extern "C" void scsiFinishWrite()
  278. {
  279. scsi_accel_rp2040_finishWrite(&scsiDev.resetFlag);
  280. }
  281. /*********************/
  282. /* Receive from host */
  283. /*********************/
  284. // Read one byte from SCSI host using the handshake mechanism.
  285. static inline uint8_t scsiReadOneByte(int* parityError)
  286. {
  287. SCSI_OUT(REQ, 1);
  288. SCSI_WAIT_ACTIVE(ACK);
  289. delay_100ns();
  290. uint16_t r = SCSI_IN_DATA();
  291. SCSI_OUT(REQ, 0);
  292. SCSI_WAIT_INACTIVE(ACK);
  293. if (parityError && r != (g_scsi_parity_lookup[r & 0xFF] ^ SCSI_IO_DATA_MASK))
  294. {
  295. azlog("Parity error in scsiReadOneByte(): ", (uint32_t)r);
  296. *parityError = 1;
  297. }
  298. return (uint8_t)r;
  299. }
  300. extern "C" uint8_t scsiReadByte(void)
  301. {
  302. uint8_t r = scsiReadOneByte(NULL);
  303. scsiLogDataOut(&r, 1);
  304. return r;
  305. }
  306. extern "C" void scsiRead(uint8_t* data, uint32_t count, int* parityError)
  307. {
  308. *parityError = 0;
  309. if ((count & 1) != 0 || ((uint32_t)data & 1) != 0)
  310. {
  311. // Unaligned transfer, do byte by byte
  312. for (uint32_t i = 0; i < count; i++)
  313. {
  314. if (scsiDev.resetFlag) break;
  315. data[i] = scsiReadOneByte(parityError);
  316. }
  317. }
  318. else
  319. {
  320. // Use accelerated routine
  321. scsi_accel_rp2040_read(data, count, parityError, &scsiDev.resetFlag);
  322. }
  323. scsiLogDataOut(data, count);
  324. }